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Lutein isolated 
from Scenedesmus obliquus 
microalga boosts immunity 
against cyclophosphamide‑induced 
brain injury in rats
Farouk K. El‑Baz 1, Abeer Salama 2, Sami I. Ali 1* & Rania Elgohary 3

Lutein is a naturally potent antioxidant carotenoid synthesized in green microalgae with a 
potent ability to prevent different human chronic conditions. To date, there are no reports of the 
immune‑stimulating effect of pure lutein isolated from Scenedesmus obliquus. Thus, we isolated 
the natural lutein from S. obliquus and evaluated its effectiveness as an immunostimulant against 
cyclophosphamide‑induced brain injury. We purified all‑E‑(3R, 3′R, 6′R)‑Lutein from S. obliquus using 
prep‑HPLC and characterized it by 1H‑ and 13C‑NMR spectroscopy. We assigned rats randomly to four 
experimental groups: the Control group got a vehicle for lutein dimethyl sulfoxide for ten successive 
days. The Cyclophosphamide group received a single i.p injection of Cyclophosphamide (200 mg/kg). 
Lutein groups received 50 and 100 (mg/kg) of lutein one time per day for ten successive days after the 
cyclophosphamide dose. Lutein administration reduced brain contents of Macrophage inflammatory 
protein2 (MIP2), cytokine‑induced‑ neutrophil chemoattractant (CINC), and Matrix metalloproteinase 
1 (MMP1). Besides, it lowered the contents of interleukin 1 beta (IL‑1β) and interleukin 18 (IL‑18), 
associated with low content of NLR pyrin domain protein 3 (NLRP3) and consequently caspase‑1 
compared to the cyclophosphamide group. In the histomorphometric analysis, lutein groups (50 and 
100 mg/Kg) showed mild histopathological alterations as they significantly reduced nuclear pyknosis 
numbers by 65% and 69% respectively, compared to the cyclophosphamide group. This is the first 
study that showed the immunomodulatory roles of lutein against cyclophosphamide‑induced brain 
injury via decreasing neuroinflammation, chemokines recruitment, and neuron degeneration with 
the modulation of immune markers. Hence, lutein can be an effective immunomodulator against 
inflammation‑related immune disorders.

Cyclophosphamide, a cancer chemotherapy agent, stimulates malignant growth and life expectancy in cancer 
management. Its metabolites phosphoramide mustard and acrolein produce unfortunate  symptoms1 besides other 
side effects such as hepatotoxicity, nephrotoxicity, neuronal toxicity, and  immunotoxicity2. Growing evidence 
indicates the neurotoxicity of  cyclophosphamide3 through inflammatory  cytokines4. Metabolite acrolein induces 
lipid peroxidation and reactive oxygen species (ROS) release causing cellular  impairments5. Interleukin 1 beta 
(IL-1β) and interleukin 18 (IL-18) cytokines provoked innate immunity and  inflammation6. The production of 
IL-1β and IL-18 by the innate immune system is involved in experimental brain  injury7. They induce CINC-1 
and MIP-2 chemokines production and boost neutrophil propagation in the brain during acute and chronic 
 injury8. In brain injury, the destruction of the blood–brain barrier results in inflammatory signals that enter the 
periphery through the blood and provoke a systemic immune response. These inflammatory signals initiates the 
repair tissue damage or necrosis and stimulate nerve and blood vessel  regeneration9.

Antioxidants showed their benefits in preventing and treating cyclophosphamide neurotoxicity. Lutein is 
an orange-red carotenoid pigment classified as the main xanthophyll component produced by plants especially 
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marigold flowers that are used for the sustainable production of lutein in the  market10. However, the low content 
(0.03%) of the lutein, and cultivation time, besides the labor-intensive separation process of marigold petals 
are big obstacles to this commercial  production11. Microalgae are a promising renewable alternative source 
of lutein production and other  carotenoids10. Microalgae such as Scenedesmus sp.12, Chlorella zofingensis13, 
Muriellopsis sp.14, Parachlorella kessleri15, and Chlorella protothecoides16 with their high growth rate, renewable 
biomass production, and high content of lutein can provide the needs of lutein commercial production compared 
to marigold and other leafy  vegetables17. S. obliquus is one of the promising microalgae producing a valuable 
content (4–4.52 mg/g) of  lutein18. Lutein is a forty carbons xanthophyll containing a specific series of leading, 
conjugated double bonds besides two hydroxyl groups one on each side of the molecule. This chemical structure 
improves its capacity to scavenge free radicals and singlet oxygen and increases its biological  effectiveness19,20. 
The effective antioxidant, anti-inflammatory, and other therapeutic properties of lutein have increased its use in 
pharmaceutical, cosmetic, and nutraceutical  applications21. It is an energetic constituent that can accumulate in 
the human retina in the macula lutea, so it is an important factor in protecting against the visual loss associated 
with age-related macular  degeneration22. Moreover, can inhibit different chronic diseases including cardiovas-
cular diseases, cancers, age-related diseases, diabetes, retinopathy, and atherosclerosis. It can also protect the 
skin cells against UV  injury23. Lutein is a natural antioxidant has a potent ability to inactivate the singlet oxy-
gen, capture hydroxyl radicals, bind to lipids to suppress lipid oxidation, and inhibit the free radical injury to 
bio-membranes24. It exerts its immunomodulatory effect through its antioxidative properties and controls the 
immune response via modifying cytokines and other immune mediators  expressions25. Therefore, the current 
study aims to isolate and identify the lutein from S. obliquus using prep-HPLC and 1H- and 13C-NMR. Moreover, 
the immunomodulatory effect of lutein against cyclophosphamide-induced brain injury via the modulation 
of brain contents of MIP2, CINC, MMP1, IL-18, IL-1β, NLRP3, and caspase-1 was investigated in this study.

Materials and methods
Chemicals. For extraction and column chromatography separation, n-hexane, acetone, methanol (analytical 
grade), and silica gel (40–63 μm) from Sigma-Aldrich (USA) were used. Acetone and n-hexane (HPLC grade) 
from Sigma-Aldrich (USA) were used for HPLC analysis and purification. Furthermore, deuterated chloroform 
from Merck (Darmstadt, Germany) was used for NMR measurements.

Cultivation of S. obliquus. S. obliquus was isolated from the freshwater community of the River Nile in 
October 2011 and grown on BG11  media26. Cultivation was conducted in 17 L capacity plastic bottles having 
15 L of S. obliquus culture with the following conditions: continuous aeration, culture temperature of 22 ± 3 °C, 
and constant light intensity ≈of 2500 lx using fluorescent light. After 10 days of algal growth, the culture was 
transferred to a fully automated and computer-controlled vertical photobioreactor with a capacity of 4000 L. 
Carbon dioxide was injected into the culture as a carbon source. The culture was left to grow until the biomass 
reached 2–2.5 g/L. The biomass of S. obliquus was harvested by centrifugation at 2000 rpm for 15 min using a 
basket centrifuge. Samples were washed twice with water, dried in an oven at 50 °C, ground into a homogenous 
powder, and stored in a deep freezer until used.

Preparation of lutein extract. The fine powder of S. obliquus (300  g) was soaked in 1.5 L of hexane: 
acetone (1:1, v/v) in a 5 L conical flask and kept on an orbital shaker (Stuart, England) at 160 rpm at room 
temperature for 24 h. Then, the extract was centrifuged (Sigma 3–18ks Centrifuge, Germany) at 5000 rpm for 
20 min at 25 °C to separate cell debris from the supernatant. The extraction step was repeated twice using the 
freshly prepared solvent mixture, and the pooled supernatants were concentrated using a vacuum rotary evapo-
rator (Heidolph Unimax 2010, Germany) at 40 °C to dryness giving the S. obliquus hexane: acetone crude extract 
(SOCE). All the extraction steps were performed in dim  light27.

HPLC analysis. The HPLC analysis of SOCE and its fractions were performed using an Agilent 1260 infin-
ity series HPLC–DAD system (Agilent Technologies, Waldbronn, Germany) equipped with a binary gradient 
Agilent 1260 prep pump (G1361A) and an autosampler Agilent 1260 prep ALS (G2260A). Agilent diode array 
detector 1260 DAD VL (G1315D) was employed for the detection of carotenoids. The separation was performed 
using an Agilent normal phase (NP) silica column (ZORBAX RX-Sil, 5 µm, 4.6 × 150 mm). The following sol-
vents (A) n-hexane and (B) acetone were used at a flow rate of 1 mL/min using a gradient between solvents A and 
B following the method of Prum et al.28 with some modifications as follows: B was run at 0 to 30% for 5 min, 30 
to 50% for 15 min, 50 to 100% for 3 min, and maintaining 100% of B until the end of the separation at 30 min. 
The peaks were integrated at 450 nm.

Purification of lutein. The HPLC chemical profile of SOCE showed an abundant peak (P1) at 8.89 min 
representing about 40% of the total peak area. Consequently, to isolate the compound corresponding to this 
peak, a portion of SOCE (8 g) was fractionated by Vacuum Liquid Chromatography (VLC) over Sigma-Aldrich 
silica gel (40–63 mesh, 250 g) and eluted with n-hexane (1L), n-hexane/EtOAc (95:5, 1.5L), n-hexane/EtOAc 
(70:30, 2L), EtOAc (1L), and EtOAc/MeOH (50:50, 1L) to yield 4 fractions namely, F1 (1.2276 g), F2 (2.8654 g), 
F3 (0.3598 g), and F4 (2.7962 g). The two solvent systems of n-hexane and n-hexane/EtOAc (95:5) were collected 
in one batch, while in other solvent systems, each system was collected in one batch. The HPLC analysis revealed 
that F3 is the rich fraction of the compound corresponding to P1. F3 (orange-red precipitate) was further puri-
fied by Medium Pressure Liquid Chromatography (MPLC) using a BUCHI GlasPure glass chromatography 
column (ID: 230 × 36 mm), which was packed with 125 g dry silica gel (40–63 mesh) and wetted by 1000 mL of 
hexane using Lab alliance series 1 pump (USA). Then F3 (0.3598 g) was dissolved in ethyl acetate and loaded on 
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the column using an injection column (BUCHI, Switzerland) and eluted at a flow rate of 4 ml/min by n-hexane 
(150 mL), n-hexane/EtOAc (95:5, 400 mL), n-hexane/EtOAc (70:30, 500 mL), n-hexane/EtOAc (30:70, 300 mL), 
and EtOAc (700 mL) to yield 4 subfractions, FI (0.0721 g), FII (0.1061 g), FIII (0.1641 g), and FIV (0.0161 g) 
based on HPLC profile. The HPLC analysis revealed that FIII is a semi-pure compound. Then FIII (0.1641 g) was 
entirely purified by using preparative HPLC (Agilent 1260 infinity series) using an Agilent prep silica column 
(Agilent 5 Prep-Silica, 150 × 21.2 mm). The isocratic mobile phase (20% acetone in hexane) at a flow rate of 
20 ml/min was performed to give pure compound (lutein, 127 mg) at 11.809 min as an amorphous orange-red 
powder.

Identification of lutein from S. obliquus by nuclear magnetic resonance (NMR). The 1H- and 
13C-NMR (500 MHz, 125 MHz) spectra of P1 (isolated from S. obliquus) were recorded on an NMR spectrom-
eter (JEOL, USA) with  CDCl3 as the solvent. The chemical shifts are reported in ppm (parts per million; δ) and 
coupling constants (J) are expressed in Hz. TMS was used as an internal standard. For improving the signal-
to-noise ratio, total scans of 128 and 725 were performed for 1H- and 13C-NMR, respectively. The data were 
analyzed using the software program MestReNova v8.0.2 (2012 Mestrelab Research S. L.).

Animals. Adult male Wister albino rats aged 4–6 weeks (120–140 g) were purchased from the animal house 
colony of the National Research Centre (Dokki, Cairo, Egypt). Animals were kept in standard cages, under 
pathogen-free conditions, and maintained under controlled room temperature and normal dark–light cycles. 
Animals were provided with standard food and water ad libitum. Rats were allowed to adapt to these conditions 
for 2 weeks before beginning the experimental protocol. All experimental procedures were conducted accord-
ing to the ethical principles and guidelines of the use, care, and handling of experimental animals adopted by 
the Medical Research Ethics Committee at the National Research Centre, Egypt, and approved under (Reg. No. 
19/116), which is based on the Principles of Laboratory Animal Care (NIH No. 85:23 revised 1985). All experi-
mental procedures were conducted in compliance with the Animal Research: Reporting of In Vivo Experiments 
(ARRIVE) guidelines.

Kits and chemicals. Cyclophosphamide was obtained from Santa Cruz Biotechnology, Inc. (California, 
USA). Interleukin-18 (IL-18; SL0400Ra), Interleukin-1β (IL-1β; SL0402Ra), Macrophage inflammatory protein2 
(MIP2; SL0465Ra), cytokine-induced- neutrophil chemoattractant (CINC; SL1588Ra), Matrix metalloprotein-
ase 1 (MMP1; SL0480Ra), NLR pyrin domain protein 3 (NLRP3; SL1497Ra) and caspase-1 (SL1601Ra) were 
determined using ELISA kits (Sunlong Biotech Co., Ltd, China). All other chemicals used in this study are of the 
highest grade commercially available.

Experimental design. Adult male Wister albino rats were randomly assigned to four experimental groups 
each having 8 animals and treated as follows:

1. Control group where rat received vehicle for lutein (DMSO) for 10 consecutive days.
2. Cyclophosphamide group where rats were intraperitoneally injected with a single injection (200 mg/kg)29.
3. Lutein group where rats were administered lutein (50 mg/kg)30 once daily for 10 consecutive days after 

cyclophosphamide injection.
4. Lutein group where rats were administered lutein (100 mg/kg)30 once daily for 10 consecutive days after 

cyclophosphamide injection.

Tissue samples. At the end of the experiment, the animals were sacrificed by decapitation, and the brain 
of each rat was immediately dissected out, washed with ice‐cooled physiological saline, and homogenized in 
phosphate-buffered saline (pH 7.4) at 20% (w/v) for the biochemical  measurements31. The other brain was kept 
in 10% formalin for histopathological assessment.

Biochemical analysis of IL‑18, IL 1β, MIP2, CINC, MMP1, NLRP3, and caspase‑1. Brain con-
tents of IL-18, IL 1β, MIP2, CINC, MMP1, NLRP3, and caspase-1 were determined using an ELISA kit (Sun-
Long Biotec Co., LTD, China, Glory Science, and NOVA, Beijing, China). Standards and samples were pipetted 
into wells with immobilized antibodies specific for IL-18, IL-1β, MIP2, CINC, MMP1, NLRP3, and caspase-1 
then were incubated for 30  min at 37  °C. After incubation and washing, horseradish peroxidase-conjugated 
streptavidin was pipetted into the wells and incubated for 30 min at 37 °C, then washed once again. Tetrame-
thyl benzidine (TMB) substrate solution was added to the wells and incubated for 15 min at 37 °C; a color was 
developed proportionally to the amount of IL-18, IL-1β, MIP2, CINC, MMP1, NLRP3, and caspase-1 bound. 
Color development was discontinued (stop solution) and after 10 min color intensity was measured at 450  nm32.

Histological examination. The dissected brains of diverse groups were fixed in 10% formalin. Fixation for 
one or two days was followed by dehydration in ascending grades of alcohol (70%, 90%, and three changes in 
absolute alcohol), clearance with xylene, impregnation in three successive changes in soft paraffin at 50 °C, and 
finally embedded in paraffin wax to obtain solid blocks having the tissue. Serial transverse sections of 7 μm thick 
were cut. Paraffin sections were mounted on glass slides covered by albumin glycerin and then stained with Hae-
matoxylin and Eosin. Hematoxylin and Eosin sections were evaluated qualitatively under light  microscopy33. A 
semiquantitative scoring system, ranging between zero and three, was used for grading both the histopathologi-
cal changes. (Nuclear pyknosis) in the brain tissues of all histological samples. The scores were derived using 
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light microscopy and scored in four categories based on the intensity of alterations: 0, absent; 1, mild; 2, moder-
ate; 3  severe34.

Statistical analysis. All the values are presented as means ± standard error of the means (SE) of (n = 8) for 
each group. Data of this study were evaluated by one-way analysis of variance followed by Tukey’s multiple com-
parisons test. Graph pad Prism software, version 5 (Inc., San Diego, USA) was used to conduct these statistical 
tests. The difference was considered significant when P < 0.05.

Results
Identification of lutein. The extraction of carotenoids from S. obliquus by hexane: acetone (1:1, v/v) yielded 
an abundant extract yield of 22.05%. The HPLC profile of SOCE on the silica column using the mobile phase of 
hexane and acetone showed an abundant peak (P1) at 8.89 min with about 40% of the total area (Fig. 1A). The 
different chromatographic techniques (VLC and MPLC) were processed to isolate and purify the compound 
corresponding to P1and they revealed the VLC fraction (F3) as the rich fraction of P1 (Fig. 1B), then the MPLC 
sub-fraction (FIII) as a semi pure compound corresponding to P1 (Fig. 1C). The compound corresponding to 
P1 was entirely purified by the prep HPLC as orange-red powder and identified based on the 1H- and 13C-NMR 
data as Lutein (Table 1, and Figs. 2 and 3).

Lutein reduced brain contents of IL‑18, IL‑1β, and MMP1. Brain injury induced by cyclophospha-
mide produced a significant increase in IL-18, IL 1β, and MMP1 brain contents by 14-fold, tenfold, and twofold 
respectively, as compared to the normal control group. The 50 and 100 (mg/kg) of lutein lowered the content of 
IL-18 by 32% and 90%, IL-1β by 55% and 89%, and MMP1 by 33% and 51% respectively, in the brain compared 
to the cyclophosphamide group. Treatment with a high dose of lutein returned IL-18 and IL-1β brain contents 
to their normal contents (Fig. 4).

Lutein reduced brain contents of MIP2 and CINC. Cyclophosphamide elevated MIP2 and CINC brain 
contents by 18-fold and fourfold compared to the control group. The 50 and 100 (mg/kg) of lutein lowered the 
content of MIP2 by 6% and 83% and CINC by 24% and 81% respectively, in the brain compared to the cyclo-
phosphamide group. The high dose of lutein returned elevated the content of CINC in the brain to its normal 
value (Fig. 5).

Figure 1.  The HPLC profile of (A) S. obliquus crude extract (SOCE), (B) VLC fraction (F3), and (C) MPLC 
subfraction (FIII) on the silica column (ZORBAX RX-Sil, 5 µm, 4.6 X 150 mm), integration at 450 nm.
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Lutein reduced brain contents of NLRP3 and caspase 1. Injection of Cyclophosphamide increased 
the content of NLRP3 and caspase 1 in the brain by 14-fold and 16-fold respectively, compared with the con-
trol group. The 50 and 100 (mg/kg) of lutein lowered the content of NLRP3 in the brain by 51% and 84% and 
decreased the content of caspase 1 in the brain by 42% and 79% respectively, compared with the Cyclophospha-
mide group. The high dose of lutein (100 mg/kg) returned NLRP3 brain content to its normal value (Fig. 6).

Histopathological findings. The microphotographs of the cerebral cortex of rats. In the control group, 
the examined part of the cerebral cortex showed no histopathological changes and showed ordinary histological 
structures of neurons (Fig. 7A). The neurons in the Cyclophosphamide group exhibited nuclear pyknosis and 
degeneration (Fig. 7B). Lutein 50 and 100 groups showed mild histopathological alteration (Fig. 7C,D).

The microphotographs of the hippocampus of rats. In the control group, the examined part of 
the subiculum showed no histopathological changes and showed ordinary histological structures of neurons 

Table 1.  The 1H and 13C NMR spectroscopic data of lutein isolated from S. obliquus. *These assignments may 
be interchanged.

Position δH (500 MHz, J values in Hz) δC (125 MHz), type

1 – 37.2, C

2 1.36 dd J = 6.61, 12.83 Hz, *1.77 ddd J = 1.51, 3.25, 6.76 Hz 48.54,  CH2

3 4.00 m 65.17, CH

4 2.04 dd J = 9.71, 16.81 Hz, *2.36 dd J = 4.8, 5.48 Hz 42.65,  CH2

5 – 126.3, C

6 – 138.05, C

7 6.13 m 125.68, CH

8 6.13 m 138.68, CH

9 – 135.15, C

10 6.15 m 130.9, CH

11 6.63 m 125.02, CH

12 6.35 m 137.66, CH

13 – 136.57, C

14 6.24 m 132.66, CH

15 6.63 m 130.18, CH

16 1.06 s 30.34,  CH3

17 1.06 s 28.81,  CH3

18 1.73 s 21.69,  CH3

19 1.96 s 13.18,  CH3

20 1.96 s 12.88,  CH3

1′ – 34.11, C

2′ 1.46 dd J = 4.18, 11.71 Hz, *1.83 dd J = 5.58, 12.78Hx 44.73,  CH2

3′ 4.24 s 66.01, CH

4′ 5.54 s 124.59, CH

5′ – 137.82, C

6′ 2.40 d J = 8.60 55.06, CH

7′ 5.43 dd J = 5.07, 10.37 Hz 128.81, CH

8′ 6.13 m 138.68, CH

9′ – 135.77, C

10′ 6.15 m 131.4, CH

11′ 6.63 m 124.9, CH

12′ 6.35 m 137.82, CH

13′ – 136.5, C

14′ 6.24 m 132.66, CH

15′ 6.63 m 130.9, CH

16′ 0.84 s 29.58,  CH3

17′ 0.99 s 24.37,  CH3

18′ 1.61 s 22.93,  CH3

19′ 1.90 s 13.18,  CH3

20′ 1.96 s 12.88,  CH3
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Figure 2.  The 1H NMR spectrum of Lutein isolated from S. obliquus. (500 MHz,  CDCl3).

Figure 3.  The 13C NMR spectrum of Lutein isolated from S. obliquus (125 MHz,  CDCl3).
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Figure 4.  Effects of lutein on IL-18, IL 1β, and MMP1 brain contents. aSignificant compared to the control 
group. bSignificant compared to the Cyclophosphamide group. cSignificant compared to Lutein 50 group at 
P < 0.05.
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(Fig. 8A). The neurons in the Cyclophosphamide group exhibited nuclear pyknosis and degeneration (Fig. 8B). 
Lutein 50 and 100 groups showed no histopathological alteration (Fig. 8C,D).

In the control group, the examined part of the fascia dentata and hilus showed no histopathological changes 
and showed ordinary histological structures of neurons (Fig. 8E). The neurons in the Cyclophosphamide group 
exhibited nuclear pyknosis and degeneration (Fig. 8F). Lutein 50 and 100 groups showed no histopathological 
alteration (Fig. 8G,H).

The microphotographs of the striatum of rats. In the control group, the examined part of the striatum 
showed no histopathological changes and showed ordinary histological structures of neurons (Fig. 9A). The neu-
rons in the Cyclophosphamide group exhibited damage, nuclear pyknosis, and degeneration (Fig. 9B). Lutein 50 
and 100 groups showed mild histopathological alteration (Fig. 9C,D).

The histomorphometric analysis. The control group revealed no histopathological alterations as it 
scored the lowest number of nuclear pyknosis (near to scoring 0). The cyclophosphamide group revealed severe 
histopathological alterations (scoring 3) as it scored the highest number of nuclear pyknosis. Interestingly, lutein 
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Figure 6.  Effects of lutein on NLRP3 and caspase 1 brain contents. aSignificant compared to the control group. 
bSignificant compared to the Cyclophosphamide group. cSignificant compared to Lutein 50 group at P < 0.05.

Figure 7.  Representative photomicrographs (H&E, × 200) of the cerebral cortex (A) control group, (B) 
Cyclophosphamide group, (C) Lutein 50 group, and (D) Lutein 100 group.
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50 and 100 groups significantly showed mild histopathological alterations (scoring 1), as it reduced nuclear pyk-
nosis numbers by 65% and 69% respectively, compared to the cyclophosphamide group (Fig. 10).

Discussion
The lutein was purified from S. obliquus as orange-red powder. The 1H and 13C NMR spectroscopic data and 
assignments of the isolated lutein (Table 1, and Figs. 2 and 3) conformed with the previous  reports35,36. The 1H 
NMR data of lutein isolated from S. obliquus revealed the chemical shift of protons corresponding to C-4 at 2.04 
and 2.36 ppm, C-4′ at 5.54 ppm, C-8 at 6.13 ppm, C-10 at 5.15 ppm, C-11 at 6.63 ppm, C-12 and 12′ at 6.35 ppm, 
and C-18 at 1.73 ppm. These chemical shifts were equivalent to the lutein isolated from the human plasma, it 
configured as all-E lutein (3R,3′R,6′R) based on the difference in the relevant δH values of C-4, 4′, 8, 10, 11, 12, 
12′, and 18 protons in the all-E-lutein and 9Z-lutein and 9′Z-lutein37. The NMR spectra of isolated lutein in the 
present study showed chemical shifts of protons at 4.00, 4.24, and 2.40 ppm, along with the downfield shift of 
carbons at 65.17, 66.01, and 65.06 ppm for the C-3, C-3′, and C-6′ respectively. These data are congruent with 
that of (3R,3′R,6′R) lutein isolated from marigold  oleoresin38. Therefore, the present NMR data of lutein isolated 
from S. obliquus supports its configuration as all-E-(3R,3′R,6′R)-Lutein.

Innate immunity is the first line of defense against infectious agents and molecules released from neuron 
 injuries39. The innate immune cells such as microglia and astrocytes in the brain recognize pathogens or other 
inflammatory triggers and activate the inflammasome. The inflammasome stimulates proinflammatory caspases 
which increase the release of interleukin-1 β and IL-18 which reduce the toxins released from glial and endothe-
lial cells and so modulate neurodegenerative  processes40. In the present study, cyclophosphamide exhibited a 

Figure 8.  Representative photomicrographs (H&E, × 200) of (A) section from the subiculum of the control 
group, (B) section from the subiculum of the cyclophosphamide, (C) section from the subiculum of lutein 50 
group, (D) section from the subiculum of lutein 100 group, (E) section from the fascia dentata and hilus of the 
control group, (F) section from the fascia dentata and hilus of cyclophosphamide group, (G) section from the 
fascia dentata and hilus of lutein 50 group, and (H) section from the fascia dentata and hilus of lutein 100 group.
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negative effect on innate immunity cells microglia, and astrocytes, in the brain as it accelerated the generation of 
proinflammatory factors of IL-1β and IL-18. The administration of lutein controlled these immune cells through 
the decrease of brain contents of IL1β, and IL 18. In the earlier mouse model, cyclophosphamide-induced the 
expression of inflammatory mediators, cytokines, chemokines, and growth  factors41. Cheng et al.42 reported that 
lutein protects against ischemia–reperfusion injury by modulating oxidative stress, membrane lipids peroxida-
tion, and inflammation, and has immunomodulatory properties.

Active microglia and astrocytes produce MMPs which participate as proinflammatory mediators in the 
 brain43,44. MMP-1 mediates matrix degradation as it cleaves extracellular collagen I, II, and III forming embolus 
and ischemic  stroke45. During brain injury, reactive oxygen species (ROS) and inflammatory cytokines activate 
 MMPs46, which accelerate the generation of IL-1β and TNF-α as inflammatory  cytokines47. These results showed 
for the first time the role of immunomodulatory activity of lutein via the suppression of neuroinflammatory 
marker MMP1 and the inhibition of IL-1β through the modulation of the immune cells in the brain injury 
induced by cyclophosphamide. These results suggest the cytoprotective function of lutein which may be owing to 
its effect as anti-inflammatory and immunomodulatory. In a previous work, MMPS modulates neurodegeneration 

Figure 9.  Representative photomicrographs (H&E, × 200) of the section from the striatum of (A) control group, 
(B) Cyclophosphamide group, (C) Lutein 50 group, and (D) Lutein 100 group.

Figure 10.  Effects of lutein on the histomorphometric analysis. aSignificant compared to the control group. 
bSignificant compared to the cyclophosphamide group at P < 0.05.
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in rats after blast-induced mild  TBI48. Lutein significantly suppressed MMP-1 expression in melanoma cells and 
dermal  fibroblasts49.

Cytokines such as interleukin (IL)-1β generate neurons degeneration and lesion  exacerbation50. Increasing 
IL-1β results in chemokine induction in the brain. These chemokines as cytokine- CINC-1 and CINC-3 (also 
known as MIP-2) are involved in neutrophil recruitment to the spinal cord and brain of rodents following 
an inflammatory challenge, stress, stroke, or in response to acute and chronic  injury51. In the present study, 
lutein significantly decreased CINC-3 and MIP-2 which are increased in the cyclophosphamide-treated group. 
These findings suggest that part of the immunomodulatory mechanism of lutein includes the prevention of the 
chemokines induced by neutrophil recruitment and neuron degeneration. In another study, lutein treatment 
significantly reduced MIP-2 concentration in aqueous humor in  rats52.

In recent years, there is evidence that immune response dysregulation is implicated in brain injury in animal 
models, increasing neurological impairment, and brain pathology. The high release of cytokines is the clearest 
prognostic sign of clinical results in brain  injury53. The high expression of IL-1β in a traumatic brain injury by 
NLRP3 inflammatory corpuscle is one of the major components of the innate immune  system54. It responds to 
damage by forming an NLRP3 intracellular inflammasome complex, in which apoptosis-associated speck-like 
protein (ASC) binds NLRP3 to pro-caspase-1, which activates caspase-1 that converts the proinflammatory 
cytokines pro-IL-1β and pro-IL-18 to their active secreted  forms55. In the present study, lutein administration 
at a dose of 100 mg/Kg reduced the production of IL-1β and IL-18 as it returned the contents of IL-1β and IL-18 
in the brain to their normal contents, and this was associated with the low content of caspase 1 and NLRP3 in 
the brain. These results accord with He et al.56, who reported that the inhibition of the protein complex (NLRP3, 
ASC, and Caspase-1) reduce the production of IL-1β and IL-18. Thus, the low contents of IL-1β and IL-18 in the 
lutein group might be owing to the low expression of NLRP3 and consequently Caspase-1. These results are in line 
with the suppressive effect of β-carotene (another carotenoid) on NLRP3 inflammasome, which attenuates gouty 
arthritis inflammatory responses in mouse  models57. Different natural extracts and polyphenolic compounds, 
have shown anti-inflammatory effects through the inhibition of NLRP3 inflammasome, and consequently the 
reduction of caspase-1, IL-18, and IL-1ß58–60.

In the present work, the cyclophosphamide group showed severe histopathological alterations with a high 
score of nuclear pyknosis, besides neuron damage and deterioration of neurons of the cerebral cortex, hippocam-
pus (subiculum and fascia dentata and hilus), and striatum area of the brain. Inline Shaibah et al.61 reported that 
cyclophosphamide-treated rats showed neurons with dystrophic degenerations including enlarged blood vessels, 
vacuolated and deteriorated, and neurocytes. On the other hand, treatment with lutein in this study showed 
mild histopathological alterations with a lower number of nuclear pyknosis compared with the cyclophospha-
mide group. In a previous study, lutein could lessen the destructive effects of brain damage after cerebral I/R by 
enhancing survival and reducing neuronal  damage62.

Conclusion
Scenedesmus obliquus is a promising sustainable renewable source of natural lutein. The all-E-(3R,3′R,6′R)-
Lutein was purified from S. obliquus by prep-HPLC and characterized by 1H- and 13C-NMR spectroscopy. Lutein 
administration showed an immunomodulatory role in cyclophosphamide-induced brain injury via attenuation 
of pro-inflammatory mediator release, including inhibition of CINC / MIP2 /NLRP3/ caspase 1, and modulation 
of IL-1β, IL-18, and MMP1 contents. In addition, lutein administration improved deterioration in many neurons 
in the striatum, cerebral cortex, and hippocampus portions as it significantly reduced the numbers of nuclear 
pyknosis caused by cyclophosphamide. Thus, natural lutein could be considered a prospective immunomodulator 
agent for treating different inflammation-related immune conditions.

Data availability
All data generated or analyzed during this study are included in the manuscript.
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