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Power mean based image 
segmentation in the presence 
of noise
Afzal Rahman 1, Haider Ali 1, Noor Badshah 2,6, Muhammad Zakarya 3,6, Hameed Hussain 4, 
Izaz Ur Rahman 3,6, Aftab Ahmed 3 & Muhammad Haleem 5,6*

In image segmentation and in general in image processing, noise and outliers distort contained 
information posing in this way a great challenge for accurate image segmentation results. To ensure 
a correct image segmentation in presence of noise and outliers, it is necessary to identify the outliers 
and isolate them during a denoising pre-processing or impose suitable constraints into a segmentation 
framework. In this paper, we impose suitable removing outliers constraints supported by a well-
designed theory in a variational framework for accurate image segmentation. We investigate a novel 
approach based on the power mean function equipped with a well established theoretical base. The 
power mean function has the capability to distinguishes between true image pixels and outliers and, 
therefore, is robust against outliers. To deploy the novel image data term and to guaranteed unique 
segmentation results, a fuzzy-membership function is employed in the proposed energy functional. 
Based on qualitative and quantitative extensive analysis on various standard data sets, it has been 
observed that the proposed model works well in images having multi-objects with high noise and in 
images with intensity inhomogeneity in contrast with the latest and state-of-the-art models.

Image segmentation is a fundamental step in computer vision and in digital image processing. The main idea of 
image segmentation is to visualize meaningful objects in a given scene or image1,2 linked to many important fields 
such as medical imaging, object detection, video, traffic control systems, surveillance, automated surgeries, and so 
on3–5. Several state-of-the-art approaches for image segmentation exist; and some well-known methods include 
clustering3, thresholding6, edge detection and region-based models7–10, Markov random fields7,8, and stochastic 
methods9,10, etc. However, images are diverse in nature, and frequently happens that one model working for a 
particular class or type of images but may not properly work for other types. Some well-known factors which 
normally affect the performance of the segmentation models are noise and intensity in-homogeneity in a given 
image4,11. To cope with these issues, and to achieve accurate image segmentation, the active contour framework 
is a very popular technique due to its flexibility of allowing and imposing the desired constraints. Moreover, 
the availability of robust implementations, such as efficient optimization, and fast numerical methods are 
crucial. The main idea of active contour methods, as suggested in1,7–10,12–17, is to allow dynamical curves to move 
autonomously on a given image which, in fact, locates boundaries of the objects/regions therein.

The active contour models mainly use the concept of variational calculus1,21–25, that is functional optimization. 
It can be easily observed that the variational models for image processing in general and for segmentation, in 
particular, derive an energy functional which is minimized to get the desired results. The active contour models 
can be mainly divided into three categories, region-based1,12–16,18, edge-based models7–10 and region and edge 
based models26. A milestone variational model for segmentation purposes introduced by Mumford-Shah (MS 
)1 aims to obtain a smooth cartoon image that leads to edge detection. It is important to note that the design of 
the MS model is for ideal images, that is, images without noise, outliers and intensity in-homogeneity. Moreover, 
the direct implementation of this model is not feasible22. To easily implement the MS model, Chan et al. (CV)9 
restricted the MS model to a piece-wise function reconstruction (two phases). By phase here we mean the set 
of homogeneous intensity pixels which can be easily distinguished from other sets of homogeneous intensity 
pixels in a given image. We should emphasize that the CV model ignores the presence of noise and other factors 
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such as intensity in-homogeneity23. To improve the CV model, many techniques has been introduced in the last 
decades. In contrast with CV model, Li et al.39 proposed the Local Binary Fitting (LBF) model which performs 
much better and resembles than the MS model by carrying out the segmentation via approximating given image 
with two locally smooth functions.

Through balancing the local and global information, Mondal et al.16 pioneered a revolutionary methodology 
in their work. The model performs exceptionally well for images, in fact, with noise, inhomogeneity in intensity, 
and it happens within the presence of outliers. According to numerous experimental and numerical outcomes that 
we observed for various datasets, the model can successfully handle all images with: (i) intensity inhomogeneity, 
(ii) fuzzy border or discontinuous margins, and (iii) the presence of moderate noise. In addition, both Chuang 
et al.19 and Tripathy et al.20 provided models that are claimed to perform better for MRI images that are, in 
particular, noisy; but these models may perform worse or less well for those images that have greater impacts of 
intensity inhomogeneity. Since, these anticipated models are not convex, therefore it is essential and required 
to make multiple adjustments and considerable modifications to the original guess’s position in order to get the 
desired outcomes, and results. The concept of Coefficient of Variation (CoV) is the foundation of the model that 
is demonstrated in Wu et al.24 which is, in fact, a convex variational segmentation model and has received more 
attention in the image segmentation literature. This should be noted that this particular approach overlooks the 
factor and presence of noise and outliers in given images. In fact, the authors provide evidence for this assertion 
using the CoV-based image data fitting term, which is the sum of squares divided by the total of image intensity.

Similar to the average fitting term in the CV model, the value of the average fitting term in the Wu et al.24 
model shows sensitivity to noise and outliers27. To further improve this model, Wu et al.12 proposed an active 
contour model incorporating a kernel metric, which is robust, stable, and works well for images with low noise 
and outliers. Ali et al.28 introduced the Lehmer’s type generalized mean which is mathematically expressed as 
given in Eq. (1).

Note that the above formula shows the Lehmer’s type generalized mean in a segmentation framework, where p 
is any real number. Although, this average is very effective in multi-region segmentation and suitable to different 
image intensity backgrounds, however it requires further analysis to tackle noise and outliers.

Chan et al.9 restricted the MS model to a piece-wise function reconstruction, but due to non-convexity, one 
must tune several times the position of the initial guess for the desired results. Krinidis et al.31 proposed a fuzzy 
energy-based active contour model, but it may not perform well for noisy images because of the old conventional 
least square objective function. Wu et al.12, proposed a fuzzy active contour model which gets enough weights 
to affect the segmentation performance in noisy images. The results of Li et al.15 is less efficient for noisy images. 
Wu et al.24 proposed a strictly convex model, but their objective function is sensitive to noise and outliers27. As 
compared to12,15,27,31 models a new objective function is used and the results clearly depicts that our work out 
performs.

From the above discussion, we can observe that most of the variational region-based image segmentation 
models, in the existing literature, are based on the least square function. In fact, this forces the fit of the data 
to a piece-wise function of the mean intensity values of the foreground and background. Moreover, they are 
unable to fully discriminate the noise and intrinsic intensities in the images. This is one the main reasons that 
the aforementioned models and similar frameworks are unable to correctly and appropriately segment noisy 
and outliers affected images28.

In this article, we mainly focus to design an efficient image data fitting term based on a novel objective 
function, as given by Eq. (2).

As further will be explained in “Proposed model” section, this term is robust against the outliers by giving very 
fewer weights to outliers and noise in contrast compare with the traditional and old objective function which gives 
equal or almost equal weights to outliers and true image pixels29. Moreover, besides the new data fitting term of 
the proposed model, a fuzzy level set function is employed which has two main benefits over the traditional level 
set function. Firstly, a single fuzzy function can capture more than one phase or objects of different intensities 
at the same time30,31. Secondly, it plays an important role in efficiently imposing constraints for implementing 
convexity. This lead to non-dependence of the initial guess. Furthermore, for a deeper understanding of the 
proposed model, the mathematical analysis is presented. For the regularization of the fuzzy membership function, 
the Gaussian smoothing filtering is employed. Following are the major contributions of this work:

•	 we impose suitable removing outliers constraints supported by a well-designed theory in a variational 
framework for accurate image segmentation;

•	 we investigate a novel approach based on the power mean function equipped with a well established 
theoretical base;

•	 to guarantee unique segmentation results, a fuzzy-membership function is employed in the proposed energy 
functional; and
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•	 extensive analysis on various standard data sets, it has been observed that the proposed model works well in 
images having multi-objects with high noise.

The rest of the paper is organized as follows. In “Related works” section, we give a brief review of related seg-
mentation models. The design and analysis of the proposed novel model are presented in “Proposed model” 
section. In “Experimental results” section, a comprehensive experimental analysis is carried out both qualitative 
and quantitatively for types of outdoor natural, synthetic and medical images compared to existing and latest 
state-of-the-art segmentation techniques. Final remarks and conclusions are made in “Conclusions and future 
work” section.

Related works
Active contours without edges (CV).  To easily implement the MS model1, Chan et al. (CV)9 restricted 
the MS model to a piecewise function reconstruction (two phases). Chan et al.9 considered a piecewise constant 
function which divides the image into different homogeneous regions representing the foreground and 
background47. For the image u, the minimization energy functional is given by Eq. (3):

where �1, �2, µ ≥ 0 are constants which tune the weight between the smoothing and the fitting terms. Ŵ is the 
contour, and c1 , c2 are average intensities of given image I0(x, y) for foreground and background, respectively. 
This is a non-convex model, so consequently one need to tune several times the position of initial guess for the 
desired results51.

Fuzzy energy‑based minimization (FEBM).  Given an image, u(x, y) in a spacial domain � Krinidis 
et  al.31 proposed a segmentation model based on fuzzy function embedded in active contour variational 
framework which is mathematically illustrated using the following Eq. (4):

where the constants c1 , c2 stand for average values inside and outside the contour Ŵ , respectively, m is the weight 
exponent (normally taking the value 2), η1, η2 > 0 and µ ≥ 0 are constants. The function z(x, y) ∈ [0, 1] is the 
fuzzy membership function representing the membership degree of u(x, y) inside the Ŵ and 1− z(x, y) is the 
membership degree of u(x, y) outside the Ŵ . For a fast convergence of the minimization problem in Eq. (4) the 
authors use a fast algorithm as proposed by Song and Chan32. This model can segment images with multi-objects, 
different intensity variations objects, and hazy boundaries, however, it may not properly segment noisy images. 
The reason is that this model uses the same conventional least square objective function which fits the data to 
the mean value of the foreground and background.

A convex variational level set model for image segmentation (CVMS).  Wu et al.24 proposed 
a strictly convex functional for two-phase image segmentation which is mathematically illustrated using the 
following Eq. (5):

where ψ denotes the level set function5, and η > 0 is a parameter. This should be noted that Eq. (5) is strictly 
convex, and it is flexible to its initial contour place, but it may not work for the noisy images as we can see in 
Figs. 4 and 5. Note that Fig. 4 has been taken from the from Berkeley’s data set and is publicly available online 
[https://​www2.​eecs.​berke​ley.​edu/​Resea​rch/​Proje​cts/​CS/​vision/​group​ing/​resou​rces.​html]. In the theoretical 
aspect, the image data fitting term in a discrete sense is based on the concept of squared CoV, 

CoV2 =
∑

i,j

(u(i, j)− a)2

a2
 whose minimum turns out to be a =

∑

i,j

u(i, j)2

∑

i,j

u(i, j)
 . The value of this average and the 
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main reasons that why the Wu et al.12 model is unable to work in noisy images and performs even worser than 
the CV model (Figs. 1, 2, 3).

Fuzzy active contour (FAC) model.  In contrast with the traditional L2 norm fidelity term based models, 
a fuzzy active contour model with kernel metric is proposed by Wu et al.12, which is based on the following fuzzy 
function given in Eq. (6):

Figure 1.   Illustration of the proposed segmentation method for the first ever black hole image and noisy images 
taken from31,36 papers. First row: different initial contours. Second row: final contours. Third row: segmented 
results with p = 0.5 , µ  = 0.7, and σ  = 3.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.   Performance of the proposed model for different images (Berkeley image data set) with p = 0.5 , µ = 
0.7, and σ = 3.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21177  | https://doi.org/10.1038/s41598-022-25250-x

www.nature.com/scientificreports/

where the kernel metric is characterized by k̂(ξ1, ξ2) = �χ(ξ1),χ(ξ2)� and the given values for ξ1 , ξ2 are vectors 
and χ(.) symbolizes a nonlinear map. Here 〈χ(ξ1),χ(ξ2)〉 is the inner product of χ(ξ1) and χ(ξ2) . Gaussian radial 
basis function k̂(ξ1, ξ2) is given by Eq. (7):

where ρ is the parameter. From Figs. 4, 5, 6, 7, 8, 9 in the experimental section it is clear that Eq. (6) may not work 
for noisy images although k̂ serves as a weight function which is supposed to assign suitable weights to image 
true pixel and outliers48. In the model implementation, the outliers get enough weights to affect the segmentation 
performance of this model in noisy images.
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(a) p=0.1 (b) p=0.2 (c) p=0.3 (d) p=0.4 (e) p=0.5

(f) p=0.6 (g) p=0.7 (h) p=0.8 (i) p=0.9 (j) p=0.10

Figure 3.   The performance of the proposed method for noisy image taken from31,36 papers for different values 
of p, and fixed µ=0.7, σ=3, iteration= 50.

Figure 4.   This image is taken from the Berkeley’s data set1 . First row shows the given image and the zero level 
set initialization, the second row shows the segmentation contour and the last row denotes the binary image 
resulting from the reconstruction of each method involved in the comparison. First, second, third and fourth 
columns are the segmentation results of Wu et al.24, Li et al.15, Wu et al.12 and Krinidis et al.31, respectively. The 
fifth column illustrates the result of proposed model with p = 0.5 , µ=0.7, σ=3, with speckle noise = 0.2.
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Unconditional stable method for bimodal (USMB) image segmentation.  Li et al.15, proposed the 
following energy functional which is based on Lee et al.33 idea of a stationary global minimum and is given by 
Eq. (8):

where H denotes the Heaviside function and c1 , c2 are constants.
The fact that the CV model ignores the presence of noise and other factors such as intensity in-homogeneity23, 

can be easily observed from the fitting data term used in the CV model. The fitting data term is mathematically 
illustrated using Eq. (9):

(8)
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Figure 5.   First row shows the given image and the zero level set initialization, the second row shows the 
segmentation contour and the last row the binary image resulting from the reconstruction of each method 
involved in the comparison. First, second, third and fourth columns are the segmentation results of Wu et al.24, 
Li et al.15, Wu et al.12 and Krinidis et al.31, respectively. The Fifth column illustrates the result of proposed model 
with p = 0.5 , µ=0.7, σ=3, with speckle noise = 0.2.

Figure 6.   First, second, third and fourth columns are the segmentation results of Wu et al.24, Li et al.15, Wu et 
al.12 and Krinidis et al.31, respectively. The fifth column is the segmentation result of proposed model with p=0.6, 
µ=0.7, σ=3, and noise = 0.1.
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where u(x, y) is the given image with (x, y) ∈ � a rectangular domain, c1 , c2 are constants, and Ŵ denotes the 
boundary of the objects. In discrete sense, this data term is based on the least square method and the objective 
function given by Eq. (10):

whose minimum is the sample mean c = (c1, c2) = x̄ inside and outside the Ŵ . From the formula, this can be 
easily observed that the sample mean is largely affected by the outliers.

The (LBF) model, that was anticipated by Li et al., tackles intensity in-homogeneity but not noise. This phe-
nomenon can be observed by analyzing the data fitting term as given in Eq. (11):
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Figure 7.   First, second, third and fourth columns are the segmentation results of Wu et al.24, Li et al.15, Wu 
et al.12 and Krinidis et al.31, respectively. The fifth column is the segmentation result of proposed model with 
p = 0.6 , µ = 0.7, and σ = 3.

Figure 8.   First, second, third and fourth columns are the segmentation results of Wu et al.24, Li-kim15, Wu 
et al.12 and Krinidis et al.31, respectively. The fifth column is the segmentation result of proposed model with 
p = 0.5 , µ = 0.7, and σ = 3.
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where Kσ is Gaussian kernel. In a discrete and local sense this data term is also based on the least square method 
and the corresponding objective function is represented by Eq. (12):

The above is true, particularly, in local neighborhood Nx whose minimum is also the sample mean c = x̄ . In 
other words, the LBF model uses the concept of the CV model but in local neighborhoods throughout image 
domain � . This leads to wider image intensity variation in small patches but on the other hand, it is more prone 
to noise and outliers as compared to the CV model48–50. In this way, the fitting term takes into account the image 
intensity variance in small patches but on the other hand, it is more prone to noise and outliers as compared to 
the CV model. Moreover, this model is not convex so consequently one need tune several times the position of 
initial guess for the desired results.

Li et al.15 showed that for any time step the proposed scheme is unconditionally stable. Moreover, with the 
assumption that |ψn| ≤ 1 it is easy to show that |ψn+1| ≤ 1 , which leads to a straightforward update of ψn+1 from 
given ψn . Although the method shows stability for image segmentation of synthetic and real images with moder-
ated noise the method, similar to the above ideas were the least square fit directs to the mean of the foreground 
and background, shows sensitivity to high noise and outliers29.

Ali et al.34 introduced Lehmer’s type generalized mean in an segmentation framework. Although this average 
is very effective in multi-region segmentation and suitable to different image intensity backgrounds it requires 
further analysis to tackle noise and outliers. Goldstein et al.37 used Bregman-split method which is well known 
for its speed, but may not work very well for images with intensity inhomogeneous. Furat et al.40 proposed tech-
niques for the segmentation of tomographic image data of functional materials by combining machine learning 
methods and conventional image processing steps. This approach produced good segmentation results specially 
for tomographic images.

Image segmentation with deep learning.  The convolutional neural networks (CNNs) have emerged as 
the most popular and successful among various deep learning based models for the task of image segmentation. 
All of these methods are, in fact, based on the notion of machine learning techniques, and they have produced 
many outstanding and promising outcomes. There are additional methods that combine the concepts of CNN 
and active contour to solve the problem of image segmentation, such as the deep active contour network 
(DACN) approach developed by Zhang et al.41. However, the CNN method has a disadvantage in that it does 
a poor job of recognizing specific object boundaries. Information loss in the subsequent down sampling layers 
is the primary culprit42. The active contour models, on the other hand, produce localization of boundaries 
that is comparatively more precise and valuable since they fit an arch for the object form in the image using 
certain methods. Furat et al.40 proposed numerous techniques for the segmentation of tomographic image data 
of functional materials through combining machine learning methods and conventional image processing 
steps. With the notable exception of tomographic images, this should be noted that the model has not shown 
superiority for segmentation results.

Similarly, the long and short term model (LSTM) is frequently employed for image segmentation. Traditional 
LSTM models, however, are inadequate because they are potentially unable to extract spatial information from 
images. The computational costs of models may also be greatly raised by completely linked weights. Therefore, to 
do instance-level segmentation, convolutional LSTM approaches have essentially replaced classic LSTM models. 
These models have the ability to choose each instance of the item in output and sequential results with different 

(12)
∑

Nx

(u(i, j)− c)2,

Figure 9.   First, second, third and fourth columns are the segmentation results of Wu et al.24, Li et al.15, Wu 
et al.12 and Krinidis et al.31, respectively. The fifth column is the segmentation result of proposed model with 
p = 0.5 , µ = 0.7, σ = 3, and speckle noise = 0.2.
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timestamps. Due to their alleged greater control over the process of localizing specific instances than typical 
convolutional LSTMs, which may choose various examples of objects at different timestamps, attention models 
are therefore assured to further enhance the model performance. A deep learning-based denoising strategy that 
uses the CNN model with residual connection and attention mechanism is presented in43. The denoised image is 
produced by further removing noise once the Attention-Residual process has determined how much of it there 
is in the image. Other works such as44,45, provide an overview of several deep learning based models, including 
CNN, and RNN based techniques for image segmentation46.

Proposed model
As mentioned above, most of the active contour region-based variational segmentation models consider ideal 
image while constructing the energy functional(s). This can be very easily observed by investigating the utilized 
image statistical information incorporated in objective functions, such as averages, the measures of dispersions, 
statistical variance, and standard deviation. In the literature, most of the variational region-based image segmen-
tation models are based on the CV model fitting term idea which is sensitive to noise and outliers29, or similar to 
the works in24,26. Albeit, these methods are demonstrated to be very robust and effective when detecting edges 
and boundaries in images of low contrast; however, these methods can be very sensitive when there exists noise 
and outliers27. Therefore, other methods or, at least, improvements to the classical CV model should be made in 
order to ensure detection of noise and outliers in low contrast images.

To improve the state-of-the-art models mentioned in related works, we propose a new method which incor-
porates the power mean into the robust discrete objective function by replacing the traditional models where 
the arithmetic mean has been used. The sate-of-the-art with in the domain of the power mean indicates that 
it has the capability to discriminate the noise and intrinsic intensity29. To handle a noisy image one can design 
a formulation in the continuous framework based on averages and measure of dispersion’s. Furthermore, the 
employment of a fuzzy membership function has its advantages over the traditional level set function, as this 
allows, the involvement of less number of functions to capture many objects of different intensities30,31.

Initially, we discuss the power mean function and its property of canceling the negative effect of outliers. 
We continue in the second subsection with the presentation of the proposed model guided by a fuzzy function 
based formulation. The rest of the section analyses the convexity of the energy functional, its semi-continuity 
and coercivity.

Power mean. 
Definition  For a given gray scale image u(x, y) ∈ � of size N ×M , power mean can be defined in discrete form 
as follows in Eq. (13)29,34:

where p  = 0 , and u(i, j) > 0 is the intensity value at a certain pixel (i,  j). For different value of p, such as 
p = 1, 0,−1 , the general mean represents specific mean variations such as arithmetic, geometric or harmonic 
mean.

The parameter p controls the contribution of each sample’s element by handling each of them differently 
according to their significance. Oh et al.29 and Ali et al.34 has been introduced an implementation of such feature. 
The authors have expressed the general power mean as a linear combination of the elements in the set and its 
simplification form is illustrated as given in Eq. (14):

The employment of the generalized mean controls the existing trade-off between the negativeness of outliers in 
the observed set. It is easy to observe that, the generalized mean in Eq. (14) is an arithmetic mean if p = 1 . The 
weight y(i, j) decreases (increases) as u(i, j) increases (decreases) if p ≤ 1 . This indicates that Eq. (14) is more 
affected by the small intensity values in the given image {u(i, j)}N ,M

i=1,j=1 and if p decreases, the extent of the effete-
ness increases. In35, this information played a key role in applying the generalized mean approach. To develop the 
ancient models, Oh et al.29 exchange the conventional least square sample mean fitting term with the generalized 
mean fitting term as given below in Eq. (15):

where a is any arbitrary value in a given image intensity values. We observe that Eq. (15) converts to the tra-
ditional CV objective function for p = 1 which is based on the conventional arithmetic mean of the squared 
distance29,34. One can choose p < 129,34 to reduce the negative effects of outliers. In such a way, as p decreases 
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,
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N ,M
∑
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y(i, j)u(i, j),

y(i, j) = u(i, j)p−1, for i = 1, 2, ...,N and j = 1, 2, ...,M.
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the contribution of a large number to the objective function decreases. This means that the power mean can 
discriminate the noise and intrinsic intensity. Furthermore, Eq. (15) can be written as given by Eq. (16)29,34:

The basic condition for the generalized sample mean mG to be a local minimum of the objective function (15) 
is that the gradient of this function with respect to a is equal to zero29,34, that is mathematically described as 
given by Eq. (17).

Similar to the expectation-maximization algorithm scheme, Oh et al.29 developed an iterative form for easily 
solving Eq. (16). First, rewriting Eq. (16) in the form of Eq. (14) and then approximated by a quadratic function 
given by Eq. (18):

which can be optimized as illustrated in Eq. (19):

where β is denoted using Eq. (20):

for k number of the iterations. The approximation is exact when a = a
(k) . Here, a(k) can be updated based on 

the computed β(i, j) in Eq. (19). The approximated function, which based on the computed value of β(i, j) , is 
mathematically expressed as given in Eq. (21):

Then, as a weighted average of the samples a(k+1) can be computed by (20) and it gives to the following Eq. (22):

It is important to point out that the function β serves as a weight function that assigns suitable weights to the 
true image pixels and outliers29,34. The parameter p controls the function β and its optimal tuning value has 
been shown to be in the range 0.6 ≤ p ≤ 0.829,34. In the following section, we show a new implementation of 
generalized mean in fuzzy membership variational segmentation framework, which has been fully studied in 
the work of Oh et al.29.

A new fuzzy function segmentation model led by data‑guided outliers avoidance.  Defining 
the image u on � ⊂ ℜ2 , and �i ⊆ � are disjoint connected open subsets with a piecewise smooth boundary C 
( ∪i�i ). {Ci ∈ ℜ2|ni=1} are the curves of the samples to be segmented and {ci ∈ ℜ2|ni=1} are their homogeneous 
associated means. The task of image segmentation is to divide an image into n group of data samples {Ci|

n
i=1} . To 

improve the segmentation accuracy in the presence of outliers we investigate a novel approach where the quality 
of generalized sample mean is taken into account and incorporated as a fitting term in a minimization functional. 
Concretely, we use the Euclidean distance of an input sample Ci to representative samples ci by allowing in this 
way some pixels of Ci to be recognized as outliers. In this case, the ci value not necessary must be near to these 
samples which consequently brings robustness to outliers. Based on this simple idea we can modify the Chan-
Vese active contour model, and described it in the following form using Eq. (23):

here we have three terms, first on is the curve length term, the second and third terms, which we will further 
refer as F1(C) and F2(C) , are the new fitting-terms with N1(C) and N2(C) the number of points inside and outside 
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the curve C, respectively. By the same argument, as we get Eq. (16), the values of F1(C) and F2(C) are computed 
using Eqs. (24) and (25):

and by the same way to Eq. (19), we get this mathematical illustration and the values of F1(C) and F2(C) are 
computed using Eqs. (26) and (27):

where

and

Incorporating the fuzzy membership function z(x, y) , Eq. (16) can be rewritten as Eq. (30):

and

where α , β are updated through c1 and c2 in each step using Eqs. (28), (29) and z is the fuzzy membership function.
We propose the following minimization functional which is mathematically expressed as given in Eq. (32):

Keeping c1 and c2 fixed in Eq. (32), then minimizing F(z, c1, c2) with respect to z , we get the associated Euler-
Lagrange equation for z , t is an artificial time parameterizing the descent direction as mathematically illustrated 
in Eq. (33):

with

where −→n  is the normal to the boundary ∂� in exterior, α(x, y) is defined in Eq. (28), β(x, y) is defined in Eq. 
(29) and ∂z

∂
−→n

 is the normal derivative of z at ∂� . It is important to note that c1 and c2 are updated through α and 
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β in each step using Eq. (22). This should be noted that the values for c1 and c2 are given by Eqs. (35) and (36), 
respectively.

Keeping c1 , c2 fixed and µ = 0 , then minimizing the energy functional (31) with respect to the fuzzy membership 
function z , as in31 we get the value of z using Eq. (37):

Moreover, this updated value is used in the numerical explicit solution of the following Euler Lagrange’s math-
ematical model which is given by Eq. (38):

With the introduction of a time step �t , the above equation can be solved with the time marching method as 
given through the following Eq. (39):

In the following section, we explore some mathematical properties that are related to the convexity of the pro-
posed functional measurements, as determined in Eq. (31), which are important to obtain the global minimum.

Convexity, Lower semi‑continuity and coercivity of the energy functional. 
Theorem 1  The energy functional (32) is convex. The mathematical discussion over the proof of this theorem 
can be found in the Appendix.

Proof  (6). 	�  �

Theorem 2  For the energy functional Eq. (32) and for fixed α,β , c1, c2 , there exists at least one solution z∗ in the 
admissible set � = {z : z ∈ BV(�), 0 ≤ z ≤ 1} . The mathematical discussion over the proof of this theorem can 
be found in the Appendix.

Proof  (5). 	�  �

Experimental results
In this section, we present experiments for real and synthetic image compare the performance of our method 
to other existing models such as Wu et al.24, Krinidis et al.31, Li et al.15, and Wu et al.12. The images used in our 
experiments are of a wide range including medical and real-world images having different sizes and different 
noise level. The proposed model is also tested for images with intensity in-homogeneity and compared with 
Goldstein et al.37. Moreover, different initial guesses have been applied to show the proposed model does not 
depend on the initialization and stuck in local minima. In our experiments the parameters µ = 0.7 , p = 0.5 
( p = 0.6 ) has been fixed through the experiments. Through the experiments, we observed that for the param-
eter p in the range of 0.5 ≤ p ≤ 0.9 the new model works, but from Fig. 3 it is clear that the best value for p is 
0.5. All the experiments were performed on a 1.61 GHz Core m3− 7y30 CPU @1.00 GHz with 8 GB memory. 
The algorithm was implemented and carried out using Matlab 9.4, in Windows 10 environment. The image size 
varies from 100× 100 to 256× 256 . The datasets and images used during the experimental study are publicly 
available in the kaggle repository, and can be accessed at [https://​www.​kaggle.​com/​datas​ets/​mnava​idd/​image-​
segme​ntati​on-​datas​et].
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Test Set 1: Global minima achievement of the new model.  To show the global minima achievement 
of the proposed model due to its convexity property we run experiments with diferent initialization. Figure 1 
consist of two images (noisy image with three objects and first-ever black hole image) with different initial guess 
as shown in the first row. As clearly the proposed model does not depend on the initial guesses to archive the 
same segmentation results. This indicates that the method is independent on the initialization and that there is 
no need to check several times for different initial points. Fig. 2 shown the performance of the proposed model 
for different images, taken from the Berkeley image data set, with p = 0.5 , µ = 0.7, and σ=3. Figure 3 is the 
experimental results of our proposed model for different value of p, it shows that the best value for p is 0.5.

Test Set 2: Robustness and accuracy of the new model.  This test set consist of showing the successful 
performance of the proposed model on noisy images with a single and multiple objects in comparison with well-
known models, such as Wu et al.24, Krinidis et al.31, Li et al.15, and Wu et al.12. Figure 4 (Berkeley’s data set) and 
5 are images in presence of high noise and outlier, Figs. 6 and 7 are medical images, and Figs. 8 and  9 are noisy 
images with multi-objects. From all this experiments it can be observed that Wu et al.24, Krinidis et al.31, Li et 
al.15, and Wu et al.12 fail or partially fail to properly segment the objects in the given images whereas the proposed 
method gives satisfactory results.

Test Set 3: Comparison of the proposed model on images with intensity inhomogeneity.  Figure 10 
shows the comparison of the proposed model and Goldstein et al.37. The images with intensity inhomogeneity 
are also taken from the Goldstein et al.37. The images are publicly available online [https://sites.google.com/a/
istec.net/prodrig/Home]. This can be observed that the proposed method gives satisfactory results as compare to 
Goldstein et al.37. Similarly, Fig. 11 offers a comparison of obtained results using the proposed approach and the 
model demonstrated in40. Note that, the image were taken from Furat et al.40.

Test Set 4: Accuracy analysis through Jaccard Similarity (JS) coefficient and Sørensen‑Dice 
similarity.  We evaluate the accuracy of the proposed model using the Jaccard similarity coefficient and 
Sørensen-Dice similarity index38. One can quantifying the similarities between the obtained image X and the 
ground truth Y using the Jaccard index that is mathematically defined by Eq. (40):

In Figs. 12 and 13 we show the quantitative comparison of our proposed model compared to the other existing 
models such as Wu et al.24, Krinidis et al.31, and Li et al.15 for 5 different images with or without noise. It can be 
observed that Krinidis et al.31 produced relatively better results compared to Wu et al.24 and Li et al.15, but the 
results of the proposed model are better than Krinidis et al.31 as clearly seen in the last column of those figures. 

(40)J(X,Y) =
|X ∩ Y |

|X ∪ Y |

Figure 10.   As Bregman-split method is well known for its speed. But it can be seen that the performance of our 
proposed model is better than Goldstein et al.37. The first row is the segmentation result of Goldstein et al.37 and 
second row is the segmentation result of our proposed model with p = 0.5 , µ = 0.7, and σ = 0.6.

(a) (b) (c) (d)

Figure 11.   The segmentation results of the proposed model for the image taken from Furat et al.40: (a) 2D cut-
out of tomographic image data of ore particles, (b) Initial contour, (c) Final contour and (d) Segmentated result 
of our proposed model with p = 0.6 , µ = 3, and σ = 0.5.
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From the quantitative comparisons, it can be seen that the proposed model performs better than other existing 
models15,24,31. Table 1 shows the JS coefficients comparison of our model with other competing models. The results 
of this table show 10 images from Berkeley’s data set. It can be observed that in terms of accuracy the proposed 
model is performing better than the competing three other models in almost each image.

Sørensen‑Dice similarity.  The Sørensen-Dice similarity is computed using Eq. (41):

The Sørensen-Dice similarity values are normalized and given with in the range of [0, 1]. The higher Dice value 
shows better segmentation results and vice versa.

(41)D(X,Y) =
2|X ∩ Y |

|X| + |Y |
.
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Figure 12.   First row image is a clear image, second row denotes a nosy image. The second column shows 
the clean image. The Jaccard similarity coefficient for Wu et al.24, Li et al.15, Krinidis et al.31 and the proposed 
model with p = 0.5,µ = 0.7, and σ = 3 is shown in the third, forth, fifth, and sixth column. The x-axis denotes the 
iterations and y-axis is the Jaccard accuracy in each time step iteration.
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Figure 13.   First row is a clear image, second row is noisy image, and third row is noisy and is taken from the 
Berkeley’s data set. The second column shows the clean image. The Jaccard similarity coefficient for Wu et al.24, 
Li et al.15, Krinidis et al.31 and the proposed model with p = 0.5 , µ = 0.7 , and σ = 3 is shown in the third, forth, 
fifth and sixth column. The x-axis denotes the iterations and y-axis is the Jaccard accuracy in each time step 
iteration.
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Table 2 shows the Sørensen-Dice coefficients for the comparison of our anticipated model with other 
competing models, for instance, Krinidis et al.31, Wu et al.24, and Li et al.15. These results were obtained from 
experiments on 10 different images that were suitable for interactive segmentation with a pre-labeled ground 
truth consisting of means of the labeled ground truth. It can be observed that Krinidis et al. model produced 
relatively better results as compared to Wu et al. and Li et al., but for a high noisy or low intensity image it loses 
the details. From the results it is clear that the proposed model performs better than the other competing models.

Conclusions and future work
This article mainly focuses to design an efficient image data term based on an unconventional and novel objec-
tive function - as given by Equation 2. The reason is that this metric is robust against the outliers by giving fewer 
weights to outliers and noise in contrast with the conventional and old objective function, given by Equation 10, 
which give importance to outliers. Besides this a fuzzy level set function is employed with two main benefits over 
the conventional level set function: capturing more than one phase or objects of different intensities plays an 
important role while designing a convex functional. In this way, one can impose constraints for convexity, which 
can be efficiently implemented, avoiding the initial guess tuning. For a deeper understanding of the properties of 
the proposed model, a mathematical analysis is presented and demonstrated. Moreover, the Gaussian smoothing 
filtering is employed for the regularization of the fuzzy membership function. Furthermore, for comprehensive 
analysis of the performance of the proposed model qualitative and quantitative measures are performed on vari-
ous images. It has been observed that the proposed novel model performs far, and much, better than the existing 
and latest state-of-the-art segmentation techniques.

Selective image segmentation is one of the most important topics in medical imaging and real applications. 
In the future, we will work and propose a robust selective segmentation model using a dual-level set variational 
formulation model that should be based on the local spatial distance. A similar model should aim to segment 
all objects with one level set function (global) and the selected object with another level set function (local). 
Furthermore, the combination of marker distance function, edge detection, local spatial distance, and active 
contour without edges should be considered in the future. Outliers must be discovered and segregated during 
the denoising pre-processing or suitable limits must be put on the segmentation framework to ensure correct 
and the most appropriate image segmentation in the presence of noise and outliers. In the future, we will use 
suitable removing outliers criteria backed by a well-designed theory in a variational framework for accurate and 
appropriate image segmentation. Finally, as stated earlier that our current work lacks comparison with methods 

Table 1.   Jaccard similarity measure, number of iterations and CPU time (second) of Krinidis et al.31, Wu et 
al.24, Li et al.15 and of our proposed model on 10 images from Berkeley’s data set, image size 110 × 110.

Image

Proposed model Krinidis et al.31 Wu et al.24 Li et al.15

Iter. JS Time Iter. JS Time Iter. JS Time Iter. JS Time

1 50 0.9999 0.0674 50 0.9912 0.0935 300 0.7525 0.1595 1000 0.2806 0.1085

2 100 0.8872 0.0850 100 0.8720 0.1395 300 0.7747 0.1705 1000 0.4780 0.0975

3 100 0.9210 0.0873 100 0.8890 0.1203 300 0.4976 0.1773 800 0.3003 0.0935

4 100 0.7989 0.0845 100 0.7922 0.1253 250 0.7227 0.1543 1000 0.4043 0.0971

5 100 0.7210 0.0715 100 0.6709 0.1257 300 0.5606 0.1784 900 0.5437 0.0926

6 80 0.9194 0.0656 100 0.5488 0.0936 300 0.5427 0.1475 1000 0.3563 0.0981

7 100 0.7273 0.0881 100 0.5342 0.0982 300 0.3440 0.1421 1000 0.2863 0.1103

8 100 0.7840 0..0752 100 0.7839 0.1052 300 0.7372 0.1522 1000 0.5321 0.0973

9 100 0.8458 0.0661 100 0.8325 0.1203 300 0.6735 0.1253 1000 0.3425 0.0953

10 100 0.8053 0.0771 100 0.7832 0.1283 300 0.7452 0.1523 1000 0.4731 0.1150

Table 2.   Sørensen-Dice similarity for Krinidis et al.31, Wu et al.24, Li et al.15 and of our proposed model on 10 
different images, µ = mean, σ = SD.

Krinidis et al.31 Wu et al.24 Li et al.15 Proposed model

µ± σ µ± σ µ± σ µ± σ

0.95 ± 0.082 0.91 ± 0.058 0.80 ± 0.069 0.98 ± 0.085
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that are established over deep learning. Therefore, in the future we will compare our approach with other deep 
learning based methods.

Data availability
The datasets generated and/or analysed during the current study are publicly available in the kaggle repository, 
and can be accessed at [https://​www.​kaggle.​com/​datas​ets/​mnava​idd/​image-​segme​ntati​on-​datas​et]. Moreover, 
various images used within the experimental work are publicly available online.

Appendix

Proof of Theorem 1  For simplicity, consider the energy functional in Eq. (32) as follow:

where ζ = (x, y),

First of all, the domain � is convex, because it is a rectangle. The function f1(ζ ) is convex as in25. Consider

Taking F2(ζ ) = α(ζ )||u(ζ )− c1||
2
2[z(ζ )]

m , where F2 : � → R such that

Let ζ1 = (x1, y1), ζ2 = (x2, y2) ∈ � and κ ∈ [0, 1] , since � is convex, we can write:

Taking the derivative of F2(ζ ) with respect to the function z(ζ ) , we get

Differentiating again with respect to z(ζ ) , we get

∂2F2
∂z2

≥ 0 , as z(ζ ) ∈ [0, 1] , m = 2 , α(ζ ) ≥ 0 and ||u − c1||
2
2 ≥ 0 , also � is convex. Thus F2(ζ ) is convex and for all 

ζ1, ζ2 ∈ � and κ ∈ [0, 1] the inequality

holds. From Eq. (51), we have

Using Eq. (42), we get

which means that f2 is convex. In the same way, one can prove the convexity of f3 . Thus, f (ζ ) is convex with 
respect to z(ζ ) being the sum of convex functions. 	�  �

Proof of Theorem 2  Let {zn} be a minimizing sequence of the energy functional Eq. (32), then there exists a 
constant M, such that F(zn, c1, c2,α,β) ≤ M . This implies that

(42)f (ζ ) = µf1(ζ )+ f2(ζ )+ f3(ζ )

(43)f1(ζ ) =

∫

�

|
�

z(ζ )|dζ ,

(44)f2(ζ ) =

∫

�

α(ζ )||u(ζ )− c1||
2
2[z(ζ )]

mdζ ,

(45)f3(ζ ) =

∫

�

β(ζ )||u(ζ )− c2||
2
2[1− z(ζ )]mdζ .

(46)f2(ζ ) =

∫

�

α(ζ )||u(ζ )− c1||
2
2[z(ζ )]

mdζ .

(47)f2(ζ ) =

∫

�

F2(ζ )dζ .

(48)
κζ1+(1− κ)ζ2 = (κ(x1, y1)+ (1− κ)(x2, y2))

= (κ(x1 − x2)+ x2, κ(y1 − y2)+ y2) ∈ �.

(49)
∂F2

∂z
= m[z(ζ )]m−1α(ζ )||u(ζ )− c1||

2
2.

(50)∂2F2

∂z2
= m(m− 1)[z(ζ )]m−2α(x, y)||u(ζ )− c1||

2
2.

(51)F2(κζ1 + (1− κ)ζ2) ≤ κF2(ζ1)+ (1− κ)F2(ζ2)

(52)

∫

�

F2(κζ1 + (1− κ)ζ2)dζ

≤ κ

∫

�

F2(ζ1)dζ + (1− κ)

∫

�

F2(ζ2)dζ .

(53)f2(κζ1 + (1− κ)ζ2) ≤ κf2(ζ1)+ (1− κ)f2(ζ2),

https://www.kaggle.com/datasets/mnavaidd/image-segmentation-dataset
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The constraint 0 ≤ z ≤ 1 , ensure that {zn} is uniformly bounded in BV(�) . Moreover, BV(�) is compact w.r.t 
BV∗

w(�) topology, then for the subsequence which we also denote by {zn} , ∃ {z∗} ∈ BV(�) such that zn L1(�)
−−−→ z

∗ 
and zn → z

∗ a.e x ∈ � and by convergence result the constraint 0 ≤ z
∗ ≤ 1 also holds. Since zn → z

∗ implies 
that [zn]m → [z∗]m and this implies that α||u − c1||

2
2[z

n]m → α||u − c1||
2
2[z

∗]m . By Fatou’s lemma,

similarly we can write

also by lower semi-continuity of total variation, we have

From Eqs. (44), (45) and (50), we have

thus z∗ ∈ � (this complete the proof).
Therefore, the minimizer of our proposed model has a global minimum. 	�  �
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