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The invariant ion‑acoustic waves 
in the plasma
E. Saberian 

The space plasmas have been found empirically to be separated into those residing far from the 
classical thermal equilibrium and those residing near equilibrium. The modern formalism of the kappa 
distributions explains this distinction under the value of the kappa index, the intensive parameter that 
characterizes thermodynamics together with temperature. Recent studies have suggested that by 
defining an invariant kappa index as the zero dimensionality spectral index, κ

0
 , which is independent 

of the dimensionality, the degrees of freedom, or the numbers of particles, one may separately 
consider the physical and thermodynamic feature of the kappa index in space plasmas by utilizing 
κ
0
 . This study extends the mentioned idea to the ion‑acoustic waves (IAWs) in the astrophysical 

plasmas in order to deriving an invariant formalism for the IAWs including the pure thermodynamic 
features of the background particles. This paper is based on the kinetic theory formalism and the 
hydrodynamic fluid description for extracting the characteristics of the invariant IAWs. Relying on the 
Vlasov–Poisson equations, considering a low‑frequency band for the weakly damped ion oscillations, 
we have derived the most generalized formalism of the ion‑sound speed in space plasmas in terms 
of the extended polytropic indices of the plasma species, γj , and also the generalized formalism of 
Landau damping for the invariant IAWs in terms of κ

0
 , wavelength, and temperatures of the plasma 

species. In the hydrodynamic description, we have normalized the fluid parameters in terms of the 
generalized quantities, including the extended formulations of the ion‑sound speed and Debye length. 
Then, by using the perturbation expansion in linear and nonlinear regimes, we may find some other 
issues in the formalism of the invariant IAWs, such as the effect of the perturbed potential degrees 
of freedom, d� , the isothermal/extended phase speed of the IAWs, and the combined effects of the 
wave steepening and dispersion of ion waves. We have also derived a generalized KdV equation and its 
solitary wave solutions in an invariant formalism. Based on the empirical evidences in space plasmas, 
the far‑equilibrium plasmas are characterized by 0 < κ

0
< 1 ( 0 < γj < 0.5 ), while the near‑equilibrium 

plasmas are labeled with κ
0
> 1 ( 0.5 < γj < 1 ). We have numerically analyzed our solutions from the 

anti‑equilibrium states at κ
0
→ 0 ( γj → 0 ) towards the equilibrium states at κ

0
≫ 1 ( γj → 1 ). Our 

theoretical study provides strong evidence, for the first time, about the distinction of plasmas under 
the value of the kappa index. Our analysis confirms the distinction of the involved IAWs diagrams in 
the two mentioned regions, where the transition from far‑equilibrium states to the near‑equilibrium 
states may occur in the vicinity κ

0
∼ 1 ( γj ∼ 0.5 ), denoting the escape state of the evolution.

Understanding the features and properties of the ion waves in space plasmas and laboratory-produced plasmas is 
one of the oldest and yet fundamental problems in plasma physics. The ion waves are low-frequency oscillations 
around a few kHz, which may propagate and transfer the energy in space if they have been excited by a source 
of energy. These modes have similarities with the sound waves in ordinary gases (e.g., the earth’s atmosphere 
at lower amplitudes) as they are the longitudinal oscillations and produce the rarefaction/compression in the 
plasma environment, but they have some differences from the ordinary sound waves: (a) the ions oscillate in 
phase in the wavefronts instead of the neutral molecules; (b) the electromagnetic forces are dominant instead 
of the head-on collision forces by the neutral atoms, so they are known as the ion-acoustic waves (IAWs). The 
essential features of the IAWs such as the propagation, the dispersion relation, Landau damping, etc., have been 
widely discussed in many textbooks and literature (see e.g.,1–7). However, there are yet some new and interesting 
aspects of the IAWs that have motivated us re-studying this problem by using more advanced formalisms that 
cover some subtle features of the IAWs. It may provide a deeper insight into the formalism of the IAWs and their 
features in the astrophysical plasmas.
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In recent years, applying the q-deformed stationary state in the Tsallis non-extensive  statistics8,9 or the κ dis-
tribution  formalism10 have been becoming very common for studying the plasma waves and the other aspects of 
the plasmas (see e.g.,11–14). The main idea behind applying these formalisms is providing the extended solutions, 
where we usually examine the deviation of our solutions from thermal equilibrium state by using the role of the 
spectral indices q or κ.

Here, we mention some studies on the electrostatic waves and oscillations using the Tsallis non-extensive 
statistics. The plasma oscillations in a collision-less electron-ion plasma have been studied by Lima et al.15 and 
also by Chen and  Li16 in the context of the non-extensive statistics, where the analytical formulas for the Bohm-
Gross waves and their Landau damping derived and discussed. Furthermore, Liyan and  Jiulin17 have investigated 
the dispersion relation and Landau damping of IAWs in a collision-less magnetic-field-free plasma, where a 
q-exponential distribution used in one dimension. There, it proved that the non-extensive parameter q is related 
to the temperature gradient and the potential energy. In the similar studies, the ion plasma waves in a pure pair-
ions plasma consisting of fullerenes C±

60
18,19 or correspondingly plasma oscillations in a collisionless electron-

positron plasma have studied by applying a 1-dimensional q-exponential distribution  function20–22. The nonlinear 
features of the IAWs had also discussed by some authors by using the canonical q-exponential distribution. 
For example, the arbitrary amplitude ion-acoustic solitary waves (IASWs) have addressed in a two-component 
plasma by considering a q-exponential distribution for the  electrons23; or the ion-acoustic double layers in a two-
component plasma have studied in the context of the q-nonextensive electron  distribution24, and many others.

In the mentioned studies (and many similar papers), the primary version of q-exponential probability distri-
bution (the ordinary or old formalism) have used, where it may be constructed by maximizing Tsallis q-entropy 
under some  constraints25,26. The ordinary version of the canonical probability distribution had some physical 
inconsistencies that have been covered later by introducing the notion of the escort probability distribution (the 
modern formalism) and some other  constraints27.

It has been proved that the spectral indices q or κ involve an inherent dimensional dependency to the num-
bers of degrees of  freedom28,29. For example, the connection of the kappa index with the number of degrees of 
freedom is so that the difference κd − d

2 is constant and independent of d, where d is the number of degrees of 
freedom and κd is d-dimensional spectral index. However, the fact is that the indices q and κ are not invariant, 
but they depend on the dimensionality. In this regard, we have recently discussed the dependency of the plasma 
oscillations on the numbers of degrees of freedom (dimensionality) involved in the spectral indices (q or κ ) of 
the non-extensive statistical  mechanics30.

In the supplementary materials of this study, the formalisms of modern canonical probability distributions 
and their dependency on the d-dimensional spectral indices ( qd or κd ) have presented. There, we have also 
introduced the formalism of the invariant canonical distribution. In this formalism, by defining an invariant 
kappa index as of zero dimensionality spectral index, κ0 , which is independent of the dimensionality, the degrees 
of freedom, or the numbers of particles, one may separately consider the physical and thermodynamic features 
of the kappa index in space plasmas by utilizing κ0 . It’s the main significance of this formalism in space or lab 
plasma. Note that the d-dimensional index κd depends on the invariant index κ0 by the relation κd = κ0 + d

2 . 
Some evidence shows the success of this formalism in studying the specific phenomena in space  plasmas31–36. 
In summary, the modern version of the probability distribution has some advantages, as opposed to the old 
versions, such as it is independent of an energy level; it provides correct and consistent partition of the system’s 
internal energy to the subsystem’s partial internal energies, and it consistent with a meaningful  temperature37. 
Another feature (advantage) of the modern canonical distribution is that, by this formalism, the equipartition of 
degrees of freedom holds in the same way as in the classical case, i.e., 12m

〈

�u2
〉

= d
2 kBT , where d is the number 

of degrees of freedom. While considering the equipartition of the energy using the old versions of the canonical 
distribution, one may derive some additional coefficients in terms of κ or q indices.

Fortunately, the kappa distributions are connected to the zeroth law of thermodynamic and the thermal equi-
librium, the concept that reveals the thermodynamic definition of temperature. It has revealed that not only the 
kappa distributions are consistent with the concept of thermal equilibrium—so they are allowed to be parameter-
ized by temperature—but also the most generalized formalism consistent with the thermal equilibrium is that 
of kappa  distributions38. It has proved that when particle systems reach the thermal equilibrium, we have two 
thermodynamic integrals corresponding to the temperature and the kappa index, as two independent intensive 
thermodynamic quantities. Note that no correlations exist among the particles in thermal equilibrium via the 
Maxwell-Boltzmann distribution (the classical thermal equilibrium) while the kappa distributions correspond 
to the generalized thermal equilibrium, where correlations may  exist38.

In this paper, we want to study the celebrated problem of the IAWs by using the invariant kappa distribution 
formalism labeled with an invariant kappa index as of the zero dimensionality spectral index, κ0 . Our strategy 
in this paper is as follows: First, we will apply a kinetic theory formalism based on the Vlasov-Poisson equations 
at the low-frequency band of the ion waves, where we will derive the generalized formulations of the dispersion 
relation and Landau damping of IAWs in terms κ0 ; Then, the physical and thermodynamic features of the IAWs 
will be studied in terms of the extended polytropic indices of thermodynamic evolutions; In the next approach, 
we will use a hydrodynamic formalism for studying the linear/nonlinear characteristics of the invariant IAWs 
and the other missing issues, where we will derive a generalized KdV equation and its solitary wave solutions of 
the invariant IAWs; Finally, we will summarize the concluding remarks.

The model equations

• The Vlasov-Poisson equations
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  We assume that at the time t = 0 , a perturbation occurs in a field-free plasma. Then the initial dis-
tribution for the species α with mass mα , temperature Tα and thermal speed θα may be described as 
Pα(�r, �u; θα; t = 0) = Pα,0(�u; θα)+ Pα,1(r�, �u; θα , t = 0) , where Pα,0(�u; θα) is the unperturbed time-independ-
ent stationary state of the plasma and Pα,1(�r, �u; θα , t = 0) is the corresponding perturbation about the initial 
state, where Pα0 ≪ Pα1 . The time evolution of Pα,1(�r, �u; θα , t = 0) for the small amplitude perturbations may 
be described by the linearized Vlasov and Poisson equations as follows 

 where φ1(�r, t) is the electrostatic potential produced by the perturbation, α stands for the plasma species 
( α = e, i ), and qα and nα denote the charge and number density of the species α . By this model equations, 
we may extract the response dielectric function D(�k,ω) of the plasma to a typical perturbation, related to 
the assumed stationary state of the plasma, where it may give the related dispersion relation and Landau 
damping rate of plasma normal modes. Here, ω and �k are the wave frequency and wave vector of the plasma 
normal modes, respectively.

• The hydrodynamic equations
  For discussing the linear/nonlinear characteristics of the invariant IAWs by using the perturbation tech-

nique, we need the set of hydrodynamic equations in a warm plasma as follows 

 where without loss of the generality, we have considered the wave vector in direction to the x-axis. Here, 
ni , vi , and pi are the number density, fluid velocity, and the pressure of the ions, respectively, and ne is the 
number density of electrons in the propagation of the ion weaves. Note that the electronic distribution is a 
function of the potential as ne(φ) . In our notation, Zi denotes the number of charges of the ions that depends 
on the atomic number of the ions, e.g., Zi = 1 denotes a Hydrogen plasma ( H+1 ions) and Zi = 2 denotes a 
Helium plasma ( He+2 ions). Note that the coefficient γi in the pressure evolution equation is the polytropic 
index of the ions in compression/rarefaction of the longitudinal ion waves. For example, in the propagation 
of the ion waves in one dimension ( di = 1 ) we have γi = 3 , or in three dimensions ( di = 3 ) we have γi = 5

3.
• The invariant kappa distribution
  The best choice for studying the pure characteristics of the IAWs is utilizing the invariant kappa index κ0 , 

which is independent of the dimensionality, the degrees of freedom, or the numbers of particles, and also it 
contains the physical and thermodynamic features of the kappa index. The general formalisms of the escort 
canonical distributions and the features of the invariant spectral indices have been given in the supplementary 
material. The complete expression of d-dimensional canonical probability distribution for the species α in 
terms of κ0 is given as follows 

 where θα = ( 2kBTαmα
)
d
2 is the d-dimensional classical thermal speed of species α with the mass mα and tem-

perature Tα . We remind that Pα(�u; θα; κ0, d) satisfies the equipartition of energy as 
〈

1
2mαu

2
〉

= d
2 kBTα , in 

the same exact way of the classical distribution. In this formalism, the energetic particles may be distributed 
in one of two sub-regions, i.e., the particles far from thermal equilibrium states with the spectral indices 
κ0 < 1 ; and the particles near the equilibrium states with the spectral indices κ0 > 1 . Here, the stationary 
state with the spectral index κ0 = 1 denotes the escape state of the plasma, where the system can escape from 
the far-equilibrium toward the near-equilibrium  regions28. We also remind that two asymptotic limits in this 
notation are the equilibrium state ( κ0 → ∞ ) and the anti-equilibrium state ( κ0 → 0 ), where the distribution 
function collapses. In this formalism, the velocity distribution functions with lower κ0 indices are related to 
the distributions with more supra-thermal particles (high energy tails), so they have been distributed in a 
wider range of velocities.

(1a)
∂Pα1

∂t
+ �u · ∂Pα1

∂�r + qα

mα

∂φ1

∂�r · ∂Pα0
∂�u = 0,

(1b)∇2φ1 = −4π
∑

α

nαqα

∫

Pα1 d�u,

(2a)
∂ni

∂t
+ ∂(nivi)

∂x
= 0,

(2b)
(

∂vi

∂t
+ vi

∂vi

∂x

)

= −Zie

mi

∂φ

∂x
− 1

mini

∂pi

∂x
,

(2c)
∂pi

∂t
+ vi

∂pi

∂x
+ γi pi

∂vi

∂x
= 0,

(2d)ε0
∂2φ

∂x2
= −e(Zini − ne),

(3)Pα(�u; θα; κ0, d) =
(

πκ0θ
2
α

)− d
2
Ŵ(κ0 + 1+ d

2 )

Ŵ(κ0 + 1)
·
[

1+ 1

κ0
· u

2

θ2α

]−κ0−1− d
2

,
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Results and discussion
Dispersion relation: the generalized ion‑sound speed. For solving the linearized Vlasov-Poisson 
equations, with no loss of generality, we may consider the wave vector �k to be in the direction of the x-axis and 
use the 1-dimensional canonical distribution (by choosing d = 1 ), where �r → x and �u → ux . Note that in an 
ordinary electron-ion plasma, both the electrons and ions contribute to the dynamics of the IAWs. So, the real 
part of the dielectric function may be written as

where ωpe(i) =
(

4πn∞,e(i)e
2

me(i)

)
1
2 is the electronic (ionic) plasma frequency, and n∞,e(i) is the number density of the 

electrons (ions) at the unperturbed state (at the infinity). In our notation, the subscripts r and i denote the real 
and imaginary parts of the parameters, respectively, and P denotes the Cauchy principal value. Here, Pe(i)0 is the 
1-dimensional stationary state of the electrons (ions), where we consider the formalism of the invariant kappa 
distribution for them as given in Eq. (3), where d = 1.

The phase speed of IAWs with Timi
≪ Te

me
 lies between thermal velocities of the ion and electron as θi < vφ ≪ θe , 

where vφ denotes the phase speed and θi(e) =
√

2kBTi(e)
mi(e)

 stands for the ion (electron) thermal speed. Then, by 
appropriate Taylor expanding of the integrands in Eq. (4), and by calculating the Cauchy principal values we 
may find the real part of the dielectric function as follows

where �De(i) =
(

kBTe
4πn∞,e(i)e2

)
1
2 is the electronic (ionic) Debye screening length. Here, we have used the parametric 

relation θ2i(e) = 2ω2
pe(i) · �2De(i) in our simplifications. Note that the last term of Eq. (5) may be more simplified as 

3
ω4
pi

ω4
r
(k�Di)

2 , but we have retained it in terms of the ion temperature for our next plan. The methods for calcula-
tion of the real part of the dielectric function, i.e., Eq. (5), is given in the supplementary material.

The dispersion relation of the invariant IAWs may be derived by solving the relation Dr(k,ωr) = 0 . The full 
solution of Dr(k,ωr) = 0 gives a quartic equation in terms of ωr as follows

where the coefficients a, b and c are given as follows

The solution of Eq. (6) may be simply derived in terms of ω2
r  by using the quadratic formula as 

ω2
r = −b±

√
b2−4ac
2a  . Then, by algebraic simplifying and rearranging the solution, we may find the following 

expression

where we have used ω2
pi · �2De = kBTe

mi
 . Note that the minus branch is not accepted because it doesn’t satisfy a real 

phase speed.
By considering TiTe ≪ 1 in an ordinary electron-ion plasma and by using the celebrated binomial approxima-

tion as (1+ ε)n ≈ 1+ nε , where ε ≪ 1 , the positive (acceptable) branch of Eq. (8) may be simplified as

and then, we may derive the generalized dispersion relation of the invariant IAWs as follows

One of the interesting results of Eq. (10) is providing an alternative context for revisiting the generalized for-
mulation of the ion-sound speed in a kappa distributed plasma, besides the hydrodynamics approach as shown 

(4)Dr(k,ωr) = 1−
∑

α

ω2
pe

k2
P

∫ ∂Pe0
∂ux

ux − ωr
|k|

dux +
∑

α

ω2
pi

k2
P

∫ ∂Pi0
∂ux

ux − ωr
|k|

dux,

(5)Dr(k,ωr) = 1+
(

κ0 + 1

κ0

)

· 1

(k�De)2
−

ω2
pi

ω2
r

−
ω2
pi

ω4
r

·
(

3kBTi

mi

)

k2,

(6)a ω4
r + b ω2

r + c = 0,

(7)a =
(k�De)

2 + κ0+1
κ0

(k�De)2
, b = −ω2

pi , c = −ω2
pi

(

3kBTi

mi

)

k2.

(8)
ω2
r

k2
= kBTe

mi















1±
�

1+ 12
�

(k�De)2 + κ0+1
κ0

�

· Ti
Te

2
�

(k�De)2 + κ0+1
κ0

�















,

(9)
ω2
r

k2
= kBTe

mi







1+ 1+ 6
�

(k�De)
2 + κ0+1

κ0

�

· Ti
Te

2
�

(k�De)2 + κ0+1
κ0
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,

(10)ωr

k
=

(

kBTe

mi
· 1

(k�De)2 + κ0+1
κ0

+ 3kBTi

mi

)
1
2
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in Ref.36. By using the definition of the sound speed as cs = limk→0
ωr
k  , we may find a generalized formula for 

the ion-sound speed of the space plasmas in terms of the invariant kappa index as follows

We may rewrite this solution in terms of the generalized polytropic index of kappa distributed  plasmas39, 
where its formalism is

where d� is the potential degrees of freedom in the plasma, with the definition as the ensemble average of the 
potential energy, � , i.e., d� = <�>

kBT
 . It has emphasized that the polytropic index satisfies the thermodynamic 

evolutionary relationship, where p(r̄) is the thermal pressure and n(�r) denotes the number density of kappa 
distributed  particles39.

Here, we have implicitly neglected the potential energy in the canonical probability distribution of Eq. (3). 
So, the potential degrees of freedom is d� = 0 , when other source of potential energy in the plasma don’t exist, 
such as the electromagnetic and gravitational fields. Then, the polytropic index of kappa distributed particles 
is given only in terms of the spectral index κ0 as γ = κ0

κ0+1 . In the next section, we will employ a perturbation 
theory for deriving the nonlinear aspects of the invariant IAWs, where the potential degrees of freedom via the 
perturbation appear in our formalism.

In the propagation of the IAWs, the inertial ions oscillate in one-dimensional compressions/rarefactions along 
with the propagation of the wave, as we have considered in our model equations by choosing d = 1 . It implies 
that the polytropic index of the ions takes the value γi = di+2

di
= 3 , where di = 1 is the number of degrees of 

freedom for the ions. In our kinetic model, the solution of the Vlasov-Poisson equations for the IAWs implies 
correctly the adiabatic index γi = 3 for the ions (see, e.g., Eqs. (10) and (11)). On the other hand, the inertialess 
electrons are pulled along with the ion waves and they contribute to the screening of the electric fields arising 
from the bunching of the ions. Here, the thermal distribution of the electrons is the invariant kappa formalism. 
As we mentioned, the polytropic index of the electrons takes the values γe = κ0

κ0+1 in terms of κ0.
Then, our generalized formulation for the ion-sound speed may be re-written in terms of the polytropic 

indices of the electrons and ions as follows

This result confirms the recent finding of the generalized ion-sound speed in space and astrophysical  plasmas36, 
where the hydrodynamic equations had employed. The main idea is that the ion-sound speed is a sensitive func-
tion of the thermodynamic state of the plasma and it may vary between the near/far-from-equilibrium states 
of the plasma.

The dispersion relation of Eq. (10) may be re-written in terms of the normalized parameters as

where ω′
r = ωr

ωpi
 is the frequency of IAWs normalized to the ion plasma frequency, k′ = k

kDe
 is the normalized 

wave number, where kDe = 1
�De

 , and σie = Ti
Te

 is the fractional ion to electron temperature. Here, we have used 
γi as the general polytropic index of the ions to improve the generality of our formalism. Then, we may compare 
the dispersion relation of IAWs in different thermodynamics states of typical space plasmas, where the sub-
isothermal processes may occur, or when the thermodynamics processes are very close to the anti-equilibrium 
state, or when they are very close to the thermal equilibrium, or even when the transitions between the near/
far-equilibrium states take place. We have depicted the variation of dispersion relation in terms of the spectral 
index κ0 (equivalently in terms of γe ), and also in terms of σie , as given in two panels of Fig. 1.

In panel (a) in Fig. 1, we have considered a fixed fractional ion to electron temperature as σie = 0.1 , the 
polytropic index of the ions as γi = 3 (corresponding to the one-dimensional compressions/rarefactions of 
the ion waves), and some invariant spectral indices from the far-equilibrium regions ( 0 < κ0 < 1 ) to the near-
equilibrium regions ( κ0 > 1).

Our analysis shows that the ion-sound speed (the slope of the tangent line to the dispersion relation at the 
point k → 0 ) increases for the higher κ0 indices, where it tends to the maximum phase speed of IAWs at the 
Maxwellian limit κ0 → ∞ , or equivalently at the isothermal limit γe → 1 . This picture confirms the results in 
Ref.36, where the ion-sound speed had analyzed using the hydrodynamics formalism. In terms of the generalized 
polytropic index ( γe = κ0

κ0+1 ), the chosen polytropic indices in Fig. 1 are respectively γe = 0.17 when κ0 = 0.2 , 
γe = 0.33 when κ0 = 0.5 , γe = 0.5 when κ0 = 1 (the escape state), γe = 0.67 when κ0 = 2 , and γe = 0.91 when 
κ0 = 10.

We have to note that the selected kappa and polytropic indices for the electrons/ions have been chosen to be 
close to the observational data in space physics environments. For example, the spectral index in the ambient 

(11)cs,κ0 =
(

κ0

κ0 + 1
· kBTe

mi
+ 3kBTi

mi

)
1
2

.

(12)γ = κ0 + 1
2d�

κ0 + 1
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,
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γekBTe

mi
+ γikBTi

mi
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2
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(14)ω
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1
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solar wind (SW) regions is reported to be on the order κ3 ∼ 1.5± 0.1 ( κ0 ∼ 0)40, where the extended polytropic 
index is very close to the anti-equilibrium state γe ∼ 0.

On the other hand, the kappa index in the outer heliosphere regions has reported to be on the order 
κ3 ∼ 1.63± 0.05 ( κ0 ∼ 0.13)41, where the polytropic index is on the order γe ∼ 0.11 ; or the kappa index in the 
inner heliosheath (IH) regions has been reported to be on the order κ3 ∼ 1.75± 0.10 ( κ0 ∼ 0.25)42, where the 
extended polytropic index is on the order γe ∼ 0.2 . These are examples of the far-equilibrium regions, where 
γe < 1 , and the related thermodynamic processes are sub-isothermal.

Moreover, the spectral kappa index in the slow solar wind e− (Ulysses) plasmas has reported to be on the 
order κ3 ∼ 2.4± 0.1 ( κ0 ∼ 0.9)43, where the polytropic index is on the order γe ∼ 0.47 ; or the kappa index in the 
fast solar wind He+ plasmas has reported to be on the order κ3 ∼ 2.65± 0.27 ( κ0 ∼ 1.15)44, where the polytropic 
index is on the order γe ∼ 0.53 . In these plasmas, the thermodynamics processes are very close to the escape 
state, where the transitions between the near/far-equilibrium states may be happen.

Furthermore, the hotter and denser space plasmas residing close to the thermal equilibrium, e.g., the kappa 
index in the lower solar corona e− has reported to be on the order κ3 ∼ 17± 7 ( κ0 ∼ 15.5)45, where the poly-
tropic index is on the order γe ∼ 0.94 ; or the kappa index in the HII e− regions has reported to be on the order 
κ3 ∼ 12± 7 ( κ0 ∼ 10.5)46, where the polytropic index is on the order γe ∼ 0.91 ; or even the kappa index at the 
planetary nebulae has reported to be on the order κ3 ∼ 100± 50 ( κ0 ∼ 100)47, where we have the polytropic 
index very close to γe ∼ 1 . These are very close to the thermal equilibrium, where the related thermodynamics 
processes are isothermal.

Panel (b) in Fig. 1 shows the effect of the fractional ion to electron temperature on dispersion relation, where 
it has plotted for the fixed parameters κ0 = 2 and γi = 3 , and for the typical values of the fractional ion to electron 
temperatures as σie = 0 (cold plasma), σie = 0.1 , and σie = 0.2 . It shows that the phase speed of IAWs increases 
with the temperature of the plasma ions, as is expected from the thermal pressure of the ions in the propagation 
of IAWs. Note that in our numerical analysis, we have considered the finite temperatures for the ions such as 
σie = T∞,i/T∞,e = 0, 0.01, 0.1, 0.2.

We have to note that the Debye length in the typical space plasmas varies in different ranges, e.g., at the 
order �D,e ∼ 10−3 m in the earth ionospheric plasmas; at the order �D,e ∼ 10 m in the solar wind plasma and 
the interstellar medium; at the order �D,e ∼ 102 m in the magnetosphere plasmas; to the order �D,e ∼ 105 m in 
the intergalactic  medium48.

Landau damping. Here, we may discuss the Landau damping of IAWs in space plasmas, where its formal-
ism may be derived in terms of the invariant spectral index κ0 . Note that the formulation of the Landau damping 

Figure 1.  Dispersion relation of IAW: (a) for some typical invariant spectral indices when σie = 0.1 and γi = 3 ; 
(b) for some typical values of the fractional ion to electron temperature when κ0 = 2 and γi = 3.
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may only be derived using the kinetic model equations (here, the Vlasov-Poisson’s equations), nor by using the 
hydrodynamics formalism. The main picture is the effective interaction/resonance of the IAWs and the plasma 
particles, where the ions may be accelerated by the wave and then the amplitude of the wave is decreased by 
losing its energy. This is the physical mechanism of Landau  damping49. Here, the problem is understanding the 
effect of the supra-thermal particles in different thermodynamic states related to the typical space plasmas.

The imaginary part of the dielectric function of the IAWs reads as

then, by calculating the expressions ∂Pi(e)0
∂ux

|ux= ωr
|k|

 for the electrons (ions) and considering the solution of ωr as 
given in Eq.  (10), we may find the complete solution of Di(k,ωr) for the invariant IAWs as follows

The imaginary part of the plasma normal modes has been derived by solving the relation ωi = − Di(k,ωr )
∂Dr (k,ωr )/∂ωr

1. In the plasma with finite ion temperature, we may find the damping rate of the invariant IAWs for the long 
wavelength modes ( k�De < 1 ) as follows

We have to note that our solutions are valid for the longitudinal waves with the constraint of weak damping, 
i.e., ωi ≪ ωr.

In Fig. 2, some features of the Landau damping of IAWs have numerically analyzed, where we have used the 
damping rate, as given in Eq. (17), normalized to the real part of the wave frequency. In panel (a), the normalized 
damping rate has plotted in terms of the wave number, for some typical invariant spectral indices and the fixed 
σie = 0.1 . It shows that the (absolute value of) damping rate increases for the lower spectral indices, i.e., for the 
plasmas with more supra-thermal particles. So, the minimum damping of IAWs occurs in the equilibrium space 
plasmas, where the thermodynamic evolution of the system is isothermal ( γe ∼ 1 ). Furthermore, it is found that 
the effective resonance of the supra-thermal particles and the IAWs increases for the space plasmas closer to the 
anti-equilibrium stare, i.e., when the thermodynamic processes are sub-isothermal ( γe < 1 ). We have to note 
that our detailed comments in the prior subsection on different types of thermodynamic evolutions hold here, 
where it depends on the values of the spectral indices κ0 and γe in typical space plasma, as we have retained the 
same values as discussed in Fig. 1.

In panel (b) of Fig. 2, the variation of the damping rate with respect to the invariant spectral index has 
depicted for three typical wave numbers ( k�De = 0.1, 0.2, 0.3 ) and for a fixed fractional temperature as σie = 0.1 . 
It shows that the damping rate of IAWs decreases for the longer wavelength modes. Furthermore, it tends to 
the minimum damping at the limit of κ0 → ∞ (isothermal evolution of the plasma processes). The panel (c) of 
Fig. 2 shows the effect of fractional ion to electron temperature on the damping rate of IAWs, where it has been 
plotted for the fixed wave number k�De = 0.1 and three typical fractional temperatures as σie = 0.1 , σie = 0.15 , 
and σie = 0.2 . It shows that the damping rate increases with the temperature of the ions in the plasma, and so 
the warmer space plasmas exhibit more effective Landau damping.

Interestingly, two panels (b) and (c) of Fig. 2 show that a critical spectral index exists in the vicinity κ0 ∼ 1 , 
in which the behavior of the IAWs has been distinguished for the lower/higher values of κ0 ∼ 1 . As we noted 
earlier, the stationary state with κ0 = 1 corresponds to the escape state of the plasma, where the system can escape 
from the far-equilibrium regions ( κ0 < 1 ) towards the near-equilibrium regions ( κ0 > 1)28, passing from the 
state with the critical polytropic index as γe ∼ 0.5.

In Fig. 3, we have analyzed the Landau damping time (in the period of the ion plasma oscillation), i.e., ( 1/ωi
2π/ωpi

 ), 
in terms of the wave number for three typical invariant spectral indices as κ0 = 1, 5, 10 and the fixed fractional 
temperature as σie = 0.1 . It shows that at a fixed wavelength, the damping time decreases for the plasmas with 

(15)Di(k,ωr) = − π

k2

[

ω2
pi

∂Pi0

∂ux
+ ω2

pe

∂Pe0

∂ux

]

ux= ωr
|k|

,

(16)

Di(k,ωr) = −
√

π

2

ωr

|k3| ·
Ŵ(κ0 + 5

2 )

κ
5/2
0 Ŵ(κ0)

×
{

ω2
pi

(

mi

kBTi

)
3
2

[

1+ 1

κ0
·
(

1
2
Te
Ti

(k�De)2 + κ0+1
κ0

+ 3

2

)]−κ0− 5
2

+ ω2
pe

(

me

kBTe

)
3
2

[

1+ 1

κ0
·
(

1
2
me
mi

(k�De)2 + κ0+1
κ0

+ 3

2

me

mi
· Ti

Te

)]−κ0− 5
2}

.

(17)

ωi = −
√

π

8
|ωr |

[

1

(k�De)2 + κ0+1
κ0

+ 3
Ti

Te

]
3
2

· Ŵ(κ0 +
5
2 )

κ
5/2
0 Ŵ(κ0)

×
{(

Te

Ti

)
3
2

[

1+ 1

κ0
·
(

1
2
Te
Ti

(k�De)2 + κ0+1
κ0

+ 3

2

)]−κ0− 5
2

+
(

me

mi

)
1
2

[

1+ 1

κ0
·
(

1
2
me
mi

(k�De)2 + κ0+1
κ0

+ 3

2

me

mi
· Ti

Te

)]−κ0− 5
2}

.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21766  | https://doi.org/10.1038/s41598-022-25233-y

www.nature.com/scientificreports/

more supra-thermal particles (for the lower kappa indices). This confirms again the more prominent resonance 
of the supra-thermal particles and the IAWs in the space plasmas near the anti-equilibrium state. Moreover, the 
damping time of IAWs is considerable for the long wavelength modes, i.e., longer IAWs may survive more time 
in space.

For comparing our solutions here with the ones given in the classical plasmas, by considering me
mi

≪ 1 and 
Ti
Te

≪ 1 , we may find the following estimation for the damping rate of IAWs in an ordinary electron-ion plasma as

(18)
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Figure 2.  Damping rate of IAWs (a) with respect to the wave number for some typical invariant spectral indices 
when σie = 0.1 ; (b) with respect to the invariant spectral index for some typical wavelengths when σie = 0.1 ; (c) 
with respect to the invariant spectral index for some typical values of the fractional ion to electron temperature 
when k�De = 0.1.
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Furthermore, at the asymptotic limit κ0 → ∞ , our solutions are reduced to the classical IAWs solutions in a 
Maxwellian distributed electron-ion plasma, as follows 

 which are in agreement with the classical solutions as addressed in Ref.17. It is reminded that in many textbooks 
and  literature1–7, by neglecting the ion temperature in comparison with the electron temperature, i.e., when 
Ti ≪ Te , the classical formulations of the IAWs have been summarized as 

 where cs = ( kBTemi
)
1
2 is the effective ion-sound speed of the isothermal plasma, i.e. when γe = 1.

The perturbation expansion. In this section, we discuss the linear/nonlinear characteristics of the invari-
ant IAWs and also the solitary wave solutions of a generalized Korteweg-de Vries (KdV) equation. It is empha-
sized that the KdV equation is a celebrated integrable equation in the nonlinear  physics50 which describes the 
long waves in a dispersive media such as the  plasma51.

By considering the potential energy of the electrons as �e = −eφ(x) in the canonical distribution function, 
where φ(x) is the electrostatic potential of the ion waves, one may find the number density of the invariant 
kappa distributed electrons by calculating the statistical moments of the canonical distribution over the velocity 
as  follows52

where n∞,e and T∞,e are respectively the number density and the temperature of the electrons at zero potential; 
and γe is the generalized polytropic index of kappa distributed electrons which is given by the formula 
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 . Here d�,e is the potential degrees of freedom for the electrons in the presence of the ion waves’ 
potential and it is given by 12d�,e = − e�φ(x)�

kBT∞,e
 . It is emphasized that if d�,e is positive, then γe is less than one, and 

if it is negative, then γe can be either larger or smaller than  one53. Noting that the ion waves’ potential (with 
respect to the potential at infinity) is positive, φ > 0 , so d�,e is negative and then γe may be either larger or smaller 
than one.
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Figure 3.  Landau damping time of IAWs with respect to the wave number for three typical invariant spectral 
indices when σie = 0.1.
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By using the generalized formulation of the ion-sound speed and Debye length, we use a set of well-defined 
normalized parameters as follows

where, �D,γe =
√

γe
ε0kBT∞,e

e2n∞,e
 is the generalized Debye length via the kappa distributed  electrons34, ωpi =

√

Z2
i e

2n∞,i

ε0mi
 

is the ion oscillation frequency, and cs,γe =
√

γe
ZikBT∞,e

mi
 is the generalized ion-sound speed of the plasma by the 

kappa distributed  electrons36. Furthermore, n∞,i is the number density of the ions at infinity, which satisfies the 
quasi-neutrality conditions of the plasma as Zin∞,i = n∞,e . There exist a simple relation between the ion oscil-
lation frequency, the generalized Debye length, and the generalized ion-sound speed as ωpi · �D,γe = cs,γe

36. 
Furthermore, in the asymptotic limit κ0 → ∞ or γe → 1 (Maxwellian plasma), the classical relation 
ωpi · �D,∞ = cs,∞ has been retained between the classical parameters, where the �D,∞ =

√

ε0kBT∞,e

e2n∞,e
 and 

cs,∞ =
√

ZikBT∞,e

mi
 are the classical Debye length and the ion-sound speed, respectively. Then, the normalized 

equations for propagation of the invariant IAWS may be written as 

For deriving the KdV equation and its solitary wave solutions, we use the stretched space and time coordinates 
ξ and τ as  follows51,54–58 

 where �′ is the extended phase velocity of the ion waves in terms of the generalized ion-sound speed as defined 
in our normalization, i.e., �′ = Vphase
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 , and δ is a small parameter for expanding the physical parameters about 

the equilibrium values as follows 

The lowest order of perturbation: the phase speed. By considering the boundary conditions as n, p → 1 and 
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 where the solution leads to the extended phase speed of the IAWs as follows

Noting that cs,γe =
√
γecs,∞ , we may also find an explicit expression for the normalized phase speed of the 

IAWs with respect to the isothermal ion-sound speed, i.e., �∞ = Vphase

cs,∞  as follows

We see that the (extended/isothermal) phase speed is a function of the generalized adiabatic index γe and so 
it is a sensitive function of the stationary state of the plasma. This confirms that the ion-sound speed varies in 
different thermodynamic states of the plasmas, in agreement with the results of Ref.36.

Nothing to our extended normalization process, we may find that the isothermal formulation of the phase 
speed as given in Eq. (28) may describe the pure effect of the adiabatic index γe on the phase speed of the IAWs 
without any redundancy.

In Fig. 4, we have depicted the variation of the isothermal phase speed �∞ with respect to the generalized 
adiabatic index γe for some fractional ion to electron temperatures, when the polytropic index of the ions is 
γi = 3 (corresponding to the one-dimensional compression/rarefaction of the ion waves). It shows that the 
phase speed of the IAWs increases with γe towards its maximum values in the vicinity of the isothermal states 
( γe ≈ 1 ). This may be explained by the fact that the ion-sound speed takes its maximum value for an equilibrium 
Maxwellian  plasma36.

We remember that we may have γe either larger or smaller than one, because of the perturbations of the 
potential in the ion waves. As we noted earlier, here we have the positive potentials ( φ > 0 ) and the potential 
degrees of freedom for the electrons with negative values ( d�,e < 0 ). So, we have considered the super-isothermal 
stationary states with some adiabatic indices larger than one in our numerical analysis. Furthermore, Fig. 4 shows 
that the phase speed of the IAWs increases with the temperature of the plasma ions.

For comparing our results here with the previous ones, we have expanded the isothermal phase speed of the 
IAWs in the limit Ti ≪ Te ( σie ≪ 1 ) as

where it takes its maximum value in the case of an isothermal plasma (by considering γe → 1 ) and when the 
polytropic index of the ions is γi = 3 (the one-dimensional propagation of the IAWs), as �∞ ≃ 1+ 3σie

2Zi
 . This is 

in agreement with the reported results of Refs.54,59, and also it confirms that the small amplitude ion-acoustic 
solitons in a Maxwellian plasma may propagate with the speeds around 1  Mach50.

A similar method for deriving the phase speed of the IAWs and the ion-sound speed in the context of the 
hydrodynamics formalism is referring to the linear dispersion relation. We assume that the perturbed variables 
oscillate as exp[i( �k′ · �R − ω

′
t)] , where �k′ and ω′ are the normalized wave vector and wave frequency, respectively, 

and �R is the position vector. Then by simultaneously solving the Eqs. (23) and neglecting the terms of the second 
and higher orders, we may find a generalized linear dispersion relation for the IAWs as follows
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Figure 4.  The variation of the isothermal phase speed of IAWs with respect to the generalized adiabatic index 
γe for some fractional ion to electron temperatures when Zi = 1 and γi = 3.
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Then, the extended phase speed of the IAWs may be re-derived by using the formula �′ = limk
′→0

ω
′

k
′  as that 

given in Eq. (27).
It is informative to come back to the non-normalized variables by using the transformations as

Then, the linear dispersion relation takes the following form

By this formalism, we may re-derive the explicit formulation of the generalized ion-sound speed as 
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 and γi = di+2
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 , which is in agreement with the results 

given in Ref.36 and also in agreement with the Eq. (13) in the previous section, where a kinetic approach had 
been used in the special case when Zi = 1 and di = 1 (the one-dimensional propagation of the IAWs).

For avoiding the misunderstanding, we have to note that the linearized dispersion relation given in Eq. (30) 
is similar to the one as given in Eq. (14), with a minor difference in defining the normalized wave number k′ , 
where k′ in Eq. (30) is an extended parameter as defined in Eq. (31). By defining the relevant normalized wave 
number as k′∞ → k�D,∞ , the Eq. (30) may be transformed as

which is quite identical to the Eq. (14) when Zi = 1 and d�,e = 0.
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Figure 5.  The linear dispersion relation diagram: (a) for some adiabatic indices in accordance with the data in 
Fig. 1a when σie = 0.1 , γi = 3 and Zi = 1 ; (b) for the Hydrogen and Helium plasmas.
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In panel (a) of Fig. 5, we have depicted the variations of the linear dispersion relation as given in Eq. (33) 
for some adiabatic indices in accordance with the data on panel (a) in Fig. 1 when σie = 0.1 , γi = 3 and Zi = 1 . 
As is expected the results of the hydrodynamics approach are in agreement with the ones in the kinetic theory 
formalism. Furthermore, the panel (b) of Fig. 5 is for the sake of comparison of the dispersion relation diagrams 
in two cases, i.e., the plasmas with Hydrogen ions ( Zi = 1 ) and Helium ions ( Zi = 2 ) when σie = 0.1 , γe = 0.7 
and γi = 3 . As it is expected, it shows that the phase speed is slower for the plasmas with heavier ions.

The second order of perturbation: the KdV equation. The normalized Eq. (23) in the next order of the pertur-
bation (the order δ5/2 in the continuity equation, the momentum transfer equation, and the pressure evolution 
equation, and the order δ2 in the Poisson equation) may result in the following set of partial differential equations 

 where our solutions in the first order of the perturbation have been also used. By simultaneously solving these 
equations and also by using the resultant formula for the extended phase speed, i.e., Eq. (27), we may derive an 
evolution equation for propagation of the invariant IAWs as a generalized KdV equation as follows

where U stands for the first-order perturbed variables, i.e., n1, v1, p1,φ1 . Here, α(γe , γi) is the generalized disper-
sion coefficient that describes the spreading of the wave packet because of the phase relations between different 
components of the wave, and β(γe , γi) is the generalized nonlinear coefficient that is related to the steepening of 
the wave when it propagates in the plasma, where its physical reason is that the higher amplitude components 
of the wave travel with more speeds in comparison with the lower amplitude ones. As we see, the generalized 
dispersion and nonlinear coefficients are the functions of γe and γi , where they are as follows 

 
These generalized formulas are valid for the d-dimensional IAWs, e.g., for the propagation of the IAWs in 

one dimension, where di = 1 and the ions polytropic index is γi = 3 , or for the propagation of the IAWs in three 
dimensions, where di = 3 and the ions polytropic index is γi = 5

3.
In Fig. 6, we have numerically depicted the variations of the generalized dispersion coefficient (the panel(a)) 

and the generalized nonlinear coefficient (the panel(b)) in terms of the generalized adiabatic index γe for two 
typical fractional temperatures when γi = 3 and Zi = 1 . As we see the dispersion coefficient increases with γe 
but the nonlinear coefficient decreases with γe and also both of them decrease with σie . We emphasize that for 
having a stable solitary wave, the effects of the two terms, i.e., α(γe , γi) and β(γe , γi) have balanced.

In the special case of the isothermal electron populations ( γe → 1 ) and one-dimensional evolution of the 
adiabatic ions ( γi = 3 ), our generalized dispersion and nonlinear coefficients are in agreement with the results 
given in Refs.54,57. Furthermore, in the limit of cold ions ( σie → 0 ), the isothermal electrons ( γe → 1 ), and one-
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normalized wave speed and ξ ′ is the positional variable of the soliton in the reference frame of the wave, we have 
the following transformed KdV equation in terms of the single variable ξ ′ as

By integrating the Eq. (37) and considering the boundary conditions for having a localized solitary pulse as 

U(ξ
′
), dU(ξ

′
)

dξ
′ , d

2U(ξ
′
)

dξ
′ 2 → 0 when |ξ ′ | → ∞ , we may have the following differential equation

Then, by integrating the Eq. (38) and considering the boundary conditions, we have the solitary wave solu-
tion in terms of ξ ′ as

or in terms of the positional parameter ξ in the original reference frame as

where Umax(γe, γi) and �(γe , γi) are respectively the maximum amplitude and the pulse width of the soliton. 
They have the following expressions in terms of the polytropic indices γe and γi as 

(37)−c
dU

dξ
′ + α(γe , γi)

d3U

dξ
′ 3 + β(γe , γi)U

dU

dξ
′ = 0.

(38)

(

dU(ξ
′
)

dξ
′

)2

= β(γe , γi)U(ξ
′
)
2

3α(γe , γi)

(

3c

β(γe , γi)
− U(ξ

′
)

)

.

(39)U(ξ
′
) = 3c

β(γe , γi)
sech2

(√

c

4α(γe , γi)
ξ
′
)

,

(40)U(ξ − cτ) = Umax(γe, γi)sech
2

[

(ξ − cτ)

�(γe, γi)

]

,

Figure 6.  The variations of (a) the generalized dispersion coefficient and (b) the generalized nonlinear 
coefficient with respect to the extended adiabatic index γe for two typical fractional temperatures of ions to 
electrons when γi = 3 and Zi = 1.
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In two panels of Fig. 7, we have numerically plotted the variations of the maximum amplitude and the pulse 
width of the solitary wave solution in terms of the spectral index γe for two typical fractional temperatures as 
σie = 0.1, 0.2 when γi = 3 and Zi = 1 . Figure 7 shows that both the maximum amplitude and the pulse width of 
the soliton increase with γe and they decrease with σie . At the cold plasma regime ( σie → 0 ), the maximum 
amplitude of the ion-acoustic soliton is given by Umax(γe) = 6c

1+γe
 , so it decreases from the asymptotic limit 

Umax(γe → 0) = 6c to the minimum value Umax(γe = 1) = 3c for a Maxwellian distributed plasma. At this 
regime, the variation of the soliton amplitude with respect to the extended adiabatic index γe is opposite of the 
one for the warm ions. Furthermore, when σie → 0 is considered, the width of the soliton pulse is only dependent 

on the inverse of the square root of the soliton speed ( � =
√

2
c  ), as it is expected from the nonlinear classical 

KdV  theory50.
Finally, in three panels of Fig. 8, we have numerically depicted the two-dimensional profiles of the solitary 

wave pulses in the co-moving wave frame, where we have shown the effects of the adiabatic index variation 
(panel (a)); the fractional ion to electron temperature (panel (b)); and the soliton speed variation (panel (c)) on 
the profiles of the soliton pulses. Panel (a) shows that close to the equilibrium state ( γe → 1 ), the amplitude and 
the pulse width of the solitary wave increase. Panel (b) shows the amplitude and the width of the solitary wave 
pulse decrease related to the temperature of the ions. Panel (c) confirms the celebrated feature of the nonlinear 
wave propagation that more speed solitons have more amplitude and narrower pulse  width50.

As a supplementary note, we have to emphasize that the positional parameters x′ and ξ and also the velocity 
parameters v′ and c in our analysis of the solitary wave solutions are the extended parameters, where they have 

(41a)Umax(γe, γi) =
6c
√

1+ γiσie
Ziγe

1+ γe + γi(1+γi)σie
Ziγe

,

(41b)�(γe , γi) =
√
2/c

(

1+ γiσie
Ziγe

)1/4
.

Figure 7.  The variations of (a) the maximum amplitude and (b) the pulse width of the solitary waves with 
respect to the generalized adiabatic index γe for two typical fractional temperatures of the ions to electrons when 
γi = 3 and Zi = 1.
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been defined in terms of the generalized Debye length and the generalized ion-sound speed, respectively, as 
given in Eqs. (22) and (24). So, we have to anticipate that by using the relevant non-extended parameters such 
as ξ∞ and c∞ , where they may be defined in terms of the isothermal Debye length and ion-sound speed, the 
variation of the solitary wave as U∞(ξ∞ − c∞τ) in terms of the generalized adiabatic index γe may be different 
from our results here. To our knowledge, the best and more generalized expressions for the normalization of 
the parameters are the ones we have used in this study. Especially, the normalization of the wave speed in terms 
of the true ion-sound speed becomes very important for deriving the well-defined Mach number values in the 
propagation of the large amplitude solitons, shocks, and double layers in the  plasma60–62 or analysis of the Mach 
number domains in the plasma  sheaths52.

Conclusion
In this paper, we discussed the linear and nonlinear features of the invariant IAWs in astrophysics and space 
plasmas. Our formulations were developed in the modern kappa distribution formalism in terms of an invariant 
kappa index, κ0 , as of zero dimensionality spectral index, and also in terms of the extended adiabatic indices of 
the plasma species, γj , where we discussed the pure effect of the thermodynamics evolutions on the propagation 

Figure 8.  The profiles of the solitary wave pulses in the co-moving wave frame: (a) for some typical adiabatic 
indices when c = 1 and σie = 0.1 ; (b) for some typical fractional ion to electron temperatures when c = 1 and 
γe = 0.7 ; (c) for some typical normalized soliton speeds when γe = 0.7 and σie = 0.1 . Here, it is assumed that 
Zi = 1 and γi = 3 for all the profiles.
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of the IAWs. The kinetic Vlasov-Poisson equations were used in the linear regime and the hydrodynamic fluid 
equations were used both in the linear and nonlinear regimes for the invariant ion waves. We derived the most 
generalized formulations of the dispersion relation, the ion-sound speed, the Landau damping, and the solitary 
wave solutions in an extended co-moving frame of the wave, in terms of κ0 , γj , the wavelength, the fractional ion 
to electron temperature σie , and the atomic number of the ions Zi . In this formalism, the far- and near-equilib-
rium regions are characterized by 0 < κ0 < 1 ( 0 < γj < 0.5 ) and κ0 > 1 ( 0.5 < γj < 1 ), respectively, where we 
analyzed the behavior of IAWs from the anti-equilibrium state towards the equilibrium state.

The summary of our results is as follows:

• The ion-sound speed varies in different thermodynamic states of the plasmas. Equivalently, the (extended/
isothermal) phase speed of the IAWs relates to κ0 or γj , and so it is a sensitive function of the stationary state 
of the plasma. Especially, the phase speed of the IAWs increases with κ0 and γj towards its maximum values in 
the vicinity of the isothermal states at γj → 1 or when we have the Maxwellian distributed plasmas ( κ0 ≫ 1).

• The phase speed of the IAWs increases with the temperature of the plasma ions, as is expected from the more 
thermal pressure of the ions. Furthermore, it is slower for the plasmas with heavier ions.

• The (absolute value of) damping rate increases for the lower spectral indices κ0 , i.e. for the plasmas with more 
suprathermal particles. The minimum damping of IAWs occurs for a Maxwellian-distributed plasma.

• The damping rate of IAWs decreases for the longer wavelength modes. Furthermore, it tends to the minimum 
damping at the limit κ0 → ∞ (the Maxwellian distributed plasma).

• The damping rate increases with the temperature of the plasma ions, and so the plasmas with warmer ions 
exhibit more prominent Landau damping.

• It was confirmed that a critical spectral index exists in the vicinity κ0 ∼ 1 ( γj ∼ 0.5 ), in which the behavior 
of the IAWs diagrams is distinguished for the lower/higher values of this spectral index. The corresponding 
stationary state is the escape state of the plasma, where the system can escape from the far-equilibrium regions 
( 0 < κ0 < 1 or 0 < γj < 0.5 ) towards the near-equilibrium regions ( κ0 > 1 or 0.5 < γj < 1).

• The damping time of IAWs decreases for the plasmas with more suprathermal particles (for the lower values 
of κ0 ). Moreover, the damping time is considerable for the long wavelength modes.

• In the generalized KdV equation for propagation of the invariant solitary IAWs, the dispersion/nonlinear 
coefficient increases/decreases with γe (towards the equilibrium states), and also they decrease with the 
temperature of the ions.

• On the propagation of the solitary waves, we found that: (a) Toward the equilibrium states (when γe → 1 
corresponding to the isothermal electron distribution) the maximum amplitude and the pulse width of the 
solitary wave increase; (b) The amplitude and the width of the solitary wave pulse decrease with the tem-
perature of the ions; (c) The soliton pulses with more speeds have higher amplitudes and narrower width, in 
accordance with the classical nonlinear wave theory.

Data availability
The methods and the mathematical tools used during this study are included in the “Supplementary Material” file.
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