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Recurrent connections facilitate 
symmetry perception in deep 
networks
Shobhita Sundaram 1,4*, Darius Sinha 2,4, Matthew Groth 1, Tomotake Sasaki 3 & 
Xavier Boix 1*

Symmetry is omnipresent in nature and perceived by the visual system of many species, as it 
facilitates detecting ecologically important classes of objects in our environment. Yet, the neural 
underpinnings of symmetry perception remain elusive, as they require abstraction of long-range 
spatial dependencies between image regions and are acquired with limited experience. In this paper, 
we evaluate Deep Neural Network (DNN) architectures on the task of learning symmetry perception 
from examples. We demonstrate that feed-forward DNNs that excel at modelling human performance 
on object recognition tasks, are unable to acquire a general notion of symmetry. This is the case even 
when the feed-forward DNNs are architected to capture long-range spatial dependencies, such as 
through ‘dilated’ convolutions and the ‘transformers’ design. By contrast, we find that recurrent 
architectures are capable of learning a general notion of symmetry by breaking down the symmetry’s 
long-range spatial dependencies into a progression of local-range operations. These results suggest 
that recurrent connections likely play an important role in symmetry perception in artificial systems, 
and possibly, biological ones too.

We inhabit a world wherein several entities that carry great ecological significance for us are bilaterally 
symmetric1–4. This includes faces, bodies, animals, and fruits, among many others. The genetic plans of many 
organisms define symmetric morphologies5. The prevalence of symmetric structures in the natural world is 
complemented by the exquisite sensitivity humans exhibit in detecting such patterns6,7, a fact that has long 
been noted by many researchers including Mach8 and the Gestalt psychologists9,10. Humans can discriminate 
symmetric from non-symmetric patterns even when they are presented tachistoscopically for a fraction of a 
second, and efficiently search for symmetric patterns amongst non-symmetric distractors11,12. Symmetry is an 
important determinant of the aesthetic rating we assign to a visual pattern, whether that is an abstract structure 
like the view through a kaleidoscope, or the physiognomy of a person’s face13. Sensitivity to bilateral symmetry 
is not unique to humans, but is widespread across the animal kingdom, manifest even in insects and birds14–17.

The learning of symmetry is particularly interesting in that it represents the acquisition of an abstraction—
there is no particular local structure that signals the presence or absence of symmetry, such that two images with 
very different pixel compositions can both be members of the ‘symmetric’ class. The criterion that confers class 
membership is the existence of a relationship between image regions, without imposing any requirements on 
the contents of the regions themselves. Thus, the classification of a pattern as symmetric requires the assessment 
of long-range relationships18–20.

Given the remarkable perceptual sensitivity we have to symmetric patterns, several neuroscientists and com-
puter vision researchers have sought to model the mechanisms underlying this ability21–28. However, these models 
did not investigate the possibility of learning the class of symmetric patterns. This is a significant shortcoming 
since humans and animals come to exhibit such sensitivity without being given an explicit rule for declaring a 
pattern symmetric; the ability to acquire symmetric pattern classification through limited experience is a key 
open avenue for modeling efforts.

The advent of deep networks presents a valuable opportunity in this regard. Convolutional neural networks 
have exhibited impressive performance on conventional image classification tasks such as object recognition 
and segmentation29. In addition to achieving performance comparable with that of humans in these settings, 
they are increasingly considered to be reasonable models of object recognition in the human visual system, and 
to potentially share processing mechanisms with humans30,31.
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An interesting test of this far-reaching assertion lies in determining whether DNNs are able to learn a rule for 
detecting symmetry with the same generalization capabilities that humans, or even simpler animals, exhibit. A 
positive answer would reinforce the claim of DNNs and humans sharing similar representational strategies, while 
a negative answer would indicate that there may be fundamental differences between the two, notwithstanding 
the similarities of their performance on conventional classification tasks. More broadly, this exploration will 
help to determine whether deep networks can learn symmetry, an abstract spatial concept, through exposure 
to multiple specific exemplars.

Given this state of affairs, we conduct two sets of experiments:

•	 Experiment Set 1: Symmetry perception by DNNs modelling brain areas for object recognition. Since brain areas 
involved in symmetry perception are shared with brain areas for object recognition32,33, our first investiga-
tion is designed to assess DNNs that have been shown to be effective at modeling the human visual system 
in terms of object recognition tasks30,31.

•	 Experiment Set 2: Symmetry perception by DNNs with dilated convolutions, recurrence, and transformer net‑
works. Our second analysis investigates three architecture components that have been designed for prob-
lems involving long-range relationships, and are thus especially promising candidates for general symmetry 
detection. These comprise feed-forward DNNs with dilated convolutions34, recurrent architectures35, and 
transformer networks36,37.

To evaluate whether the models have learnt a general rule of symmetry, independent of local image features, we 
test if the DNNs are capable of extrapolating from a limited distribution of training dataset families. We design 
datasets with varying levels of long-range dependencies and different local image features; we train on a subset of 
them and then test on the full suite of datasets. Our primary evaluation metric is accuracy on identifying pixel-
level symmetry for the out-of-distribution datasets.

We summarize the key differences between the tested architectures across all experiments, and their respec-
tive mechanisms for capturing long-range spatial relationships, in Fig. 1. To foreshadow the results, we find that 
only recurrent networks are able to capture long-range relationships and fully generalize out-of-distribution to 
novel image families. We also report the real-world applicability of these results by training recurrent networks 
to recognize symmetry in natural images that include background noise and foreground symmetry. In what fol-
lows, we describe both these sets of studies and discuss overall inferences from the compiled results.

Experiment Set 1: Symmetry perception by DNNs modelling brain areas for object 
recognition
We assess if feed-forward and recurrent DNNs for object recognition, that are deemed as models of human visual 
processing, are capable of learning a general rule for symmetry detection. This experiment is founded in previous 
studies showing that symmetry perception activates in brain areas that are shared with object recognition32,33. In 
particular, we evaluate the following state-of-the-art models: DenseNet, Xception, InceptionResNetV2, Incep-
tionV3, ResNet101, ResNet50, and RCNN-SAT.

Assessing whether a model has learned a general rule for symmetry.  We design dataset families 
that are differentiated by the presence and size of an uninformative band of pixels at the center of each image. 
Images with larger central bands place relevant information at the image edges, thus allowing us to evaluate 
network recognition of long-range relationships. Examples from each dataset family are visualized in Fig. 2. 
To assess if networks have learned a general rule for symmetry detection, and are capable of extrapolating to 
novel instances, we train on a limited distribution of families (band sizes 0 and 4), and test on unseen image 
families (band sizes {2, 4(dark), 6, 14, 16, 18} ); performance on these test families is the metric for assessing gen-
eralization. Testing on images with different band sizes ensures that the test images have visual properties that 
are absent from the training data. All images are constructed as matrices of random noise. Random noise is 
unbiased to particular shapes, allowing us to evaluate recognition of symmetry with less interference from other 
visual features.

We examine two training modalities. First, we assess if network representations for object recognition learned 
from ImageNet already capture symmetry, by transfer-training two fully-connected layers on top of each net-
work with the base layers frozen. We then assess if the networks are capable of learning a generalizable solution 
by fine-tuning the models end-to-end on our synthetic training families, allowing all layers to update. We find 
that neither method facilitates learning a general rule for symmetry detection; all trained models struggle to 
extrapolate to testing families with large band sizes.

Humans easily detect symmetry in our datasets.  Our first study serves as a simple replication of 
past studies showing rapid learning of symmetry concept. We test the performance of humans in a symmetry 
classification task. In the process of doing so, we verify that the concept of symmetry is extractable from our 
designed stimuli.

For training, ten observers are shown four positive and four negative exemplars with band size 4 (refer to 
Fig. 2). The positive and negative classes are referred to as ‘class 1’ and ‘class 2’, but no explanation is provided 
as to the class membership criterion, and no mention is made of symmetry. Following this training phase, 
subjects are shown 50 test images one at a time in five blocks (each block containing five symmetric and five 
non-symmetric images with band size 4). For each image presented, subjects indicate which class (‘1’ or ‘2’) 
it belongs to. The image stays on until the participant has responded. No feedback is provided during the test 
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session. After the initial training with two positive and two negative instances, subjects perform near ceiling 
when classifying the 50 test images. These results indicate that the symmetry property can be extracted with the 
stimuli that we have created.

Object recognition DNNs fail to generalize.  We first assess if object recognition representations 
learned from ImageNet already capture a generalizable notion of symmetry. For each network we freeze the base 
pre-trained layers and train a classification head for the symmetry detection task. To assess generalization we 
train on symmetric and non-symmetric images with a limited subset of band sizes {0, 4} and test on images with 
band sizes {2, 4 (dark), 6, 14, 16, 18} (hyper-parameters are tuned on the validation set of the training families in 
order to guarantee that the testing families are not used in any way for training, refer to Methods for details). 
The results are shown in Fig. 3a. We observe that the networks perform poorly across all dataset families, despite 
showing convergence in training. Performance on novel families is consistently lower than performance on fam-
ilies seen in training. We conclude that the learned representations for object recognition, for both feed-forward 
and recurrent networks, do not adequately extract features that are relevant to symmetry.

Note that as our DNNs are pre-trained on ImageNet (natural images), the base models may be unable to 
extract meaningful representations from our synthetic images without further training. Thus, next, we allow the 
networks to update end-to-end, and examine whether they learn a general rule for symmetry detection from 
the training distribution.

(a) convolutional (b) dilated convolutional

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Time step 1 Time step 2 Time step 3

(d) recurrent

(c) transformer
Pairwise similarity                     Projection

(Self-Attention)

Figure 1.   Overview of how the architectures evaluated in this work capture long-range spatial dependencies. 
We indicate in red and in blue the neurons that are influenced by two different, non-local image regions. Also, 
we indicate in green the neurons that are influenced by both regions and thus could capture dependencies 
between them. (a) The feed-forward convolutional network uses multiple layers to successively expand the 
receptive field of convolution operations. (b) The dilated convolutional network uses atrous convolutions 
to expand the receptive field with the same number of parameters. (c) Transformer architectures use self-
attention layers to conduct a pairwise comparison of pixel blocks. (d) Recurrent architectures break long-range 
dependencies into sequences of local operations that are repeated over many time steps (i.e. unrolling steps).
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Figure 2.   Datasets for evaluating learning of a general rule of symmetry detection. The test set images contain 
visual properties that do not appear in the training set (i.e. expanded central bands, different distances between 
flanks), thus enabling generalization testing. Note that in Experiment Set 1 we train only with synthetic images; 
in Experiment Set 2 we experiment with both synthetic and natural training.
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We train and test each network on the same respective datasets; results are shown in Fig. 3b. With the end-to-
end fine-tuning the networks demonstrate much stronger performance across the testing families, however are 
still unable to generalize. Observe that DenseNet, InceptionResNet, and InceptionV3 achieve ceiling accuracy in 
the training families (band sizes 0 and 4) and are capable of generalizing to some testing families (band sizes {2, 
4 (dark), 6}). However all networks perform poorly as the band size expands. For band sizes 14, 16, and 18, for 
which relevant information is localized to the edges of the images, performance drops by 20− 50% . We conclude 
that the networks learn some representation of symmetry, but do not fully capture long-range relationships.

Analysis of misclassifications.  We next analyze the outputs of the object recognition DNNs to further 
understand the lack of generalization. In Fig. 4 we examine the accuracy of the networks depending on the 
degree of non-symmetry of the images. We assess the degree of non-symmetry as the correlation between left 
and right image flanks (i.e. how close to symmetric an image is). We run this analysis on the fine-tuned networks 
on non-symmetric images with band size 14, as a representative failure mode of the models. If the networks had 

Figure 3.   Generalization performance of object recognition DNNs. (a) Accuracy for six transfer-trained DNNs 
(with frozen base models) when classifying new exemplars from training classes or instances of slightly different 
classes. (b) Accuracy for six pre-trained DNNs trained with end-to-end fine-tuning when classifying the same 
exemplars. For both (b, c) the DNNs do not generalize the categories with large {14, 16, 18} px band sizes.

Figure 4.   Analysis of misclassifications depending on the degree of non-symmetry. We assess the performance 
of the DNNs on non-symmetric images depending on their degree of non-symmetry. To obtain the degree of 
non-symmetry, we evaluate the correlation between left and (flipped) right image flanks. We plot the number of 
images correctly or incorrectly classified depending on such degree of non-symmetry, for images of band size 
14. Results indicates that for all DNNs, the probability score assigned to a non-symmetric image is independent 
of the degree of non-symmetry.
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learned a rule for symmetry detection, we might expect that incorrectly classified non-symmetric images would 
tend to have a lower degree of non-symmetry. However in Fig. 4 we see that this is not the case. For all fine-tuned 
networks, there is no discernible difference in distribution of the degree of non-symmetry (i.e., left-right correla-
tions) for correctly and incorrectly classified non-symmetric images.

To gain insight regarding the image features learned by fine-tuned DNNs to assess image symmetry, we 
perform an RSA of the ReLU layer before the network’s output38.

Representations are extracted from 500 symmetric and non-symmetric images for each of the 8 datasets. 
For every possible pair of images the cosine distance is calculated,  i.e.,  1− 1

�x�2�y�2
(xT · y) , and then rescaled 

to [0, 1] to score the dissimilarity between the respective representations. The dissimilarities are displayed in a 
representational dissimilarity matrix (RDM) in which the images are grouped into the 16 families. Recall that 
each family contains images that are either symmetric or non-symmetric, with a particular band size and bright-
ness. Thus, the RDM highlights the degree of homogeneity of the representation for each of these features. In 
Supplemental Fig. 1, we depict the RDM of the different architectures tested in the experiment.

Prototypical models of the RDM are also created to compare our tested DNNs with hypothetical ideal classi-
fiers for each image feature. These prototypical models have assigned dissimilarity scores of either 1 or 0 depend-
ing on the feature they classify, as depicted in Fig. 5a. Symmetry-2 is identical to Symmetry-1, except it does not 
specify the degree of homogeneity when comparing non-symmetric images to other non-symmetric images. 
This alternative model only needs a strong representation of symmetry, not asymmetry. It may perform just as 
well in classification tasks. Symmetry-Small-Band is a model which fails with large bands. Thus, the RDM is a 
function of whether images are symmetric only when comparing images that both have small bands.

We assess the similarity between each of the prototypical models and the neural networks. We do so by gath-
ering Pearson correlation coefficients between the RDMs of each neural network model and each prototypical 
model. The correlation results can be seen in Fig. 5b. These analyses also include the LSTM3, Dilated, and Trans‑
former models, which are introduced and analyzed in Experiment Set 2. The Symmetry-Small-Band prototype 
has the highest correlation with the majority of networks investigated in Experiment Set 1. Band-Presence has 
the highest correlation with InceptionResNetV2 and ResNet101. Thus, the DNNs models tested in this experi-
ment rely on the presence of the band rather than on a general rule of symmetry.

Discussion.  Our results indicate that state-of-the-art DNNs that have shown impressive performance on 
object recognition tasks find it challenging to learn a rule for bilateral symmetry detection that can then be 
applied to images with different visual contents. In our experiments, the networks struggle to extrapolate to 
images with larger band sizes when trained on images with a subset of possible band sizes. This limitation holds 
for networks trained both with and without end-to-end fine-tuning. Note that the accuracy drops as the band 
size increases, indicating that the DNNs do not learn to effectively evaluate long-range relationships. Therefore, 
it is plausible that our networks have taken shortcuts in the learning process to most efficiently and accurately 
distinguish between symmetric and non-symmetric images in our training dataset, but failed to extrapolate a 
general concept of symmetry.

These results are consistent with previous studies demonstrating that object recognition networks strug-
gle to generalize beyond the training distribution, such as object recognition with out-of-distribution object 
orientations39,40. Our study adds to the recent body of works that have suggested that DNNs fail to learn general 
solutions especially when long-range dependencies and abstract concepts are involved41.

The limited generalization capabilities of the networks may be attributed to the fact that the networks were 
initially trained for object recognition and as a result, the representations learned may be unable to encode 
the long-range dependencies required for symmetry perception. Another possible reason is that the network 
architectures are insufficient to capture long-range dependencies. Note that we evaluate one network with recur-
rent connections, i.e., RCNN-SAT, as recurrent architectures are better suited to learning representations that 
capture long-range dependencies than purely feed-forward architectures. RCNN-SAT performs on par with the 
feed-forward DNNs, suggesting that pre-training for object recognition may be the main cause of the networks’ 
limited generalization capabilities. Yet, the RCNN-SAT recurrent architecture may also not be suitable for sym-
metry perception.

Our results further call into question the adequacy of these systems as models of human visual perception. It 
is likely that generalization would improve if images with larger band sizes were included in the training data set. 
However, even if these object recognition networks were to be able to learn symmetry with much more diverse 
training sets than the ones we used, that would still not entitle them to be considered good models of biological 
vision, since animals are able to acquire the concept with very few training instances14,15,17.

Given the manifest limitation of object recognition networks to acquire the symmetry concept, we shift our 
focus from networks that are deemed as models of human object recognition to architectures that could allow 
the networks to gain sensitivity to long-range spatial relationships. The second set of experiments considers 
three such architectures.

Experiment Set 2: symmetry perception by DNNs with dilated convolutions, 
recurrence, and transformer networks
In this second set of experiments, we investigate three architectures that may enable capturing long-range 
dependencies. These are: the Dilated Convolutional Neural Network (Dilated)34, a three stacked Convolutional 
LSTM (LSTM3)35, and a Transformer37. To our knowledge, none has previously been applied to learning-based 
symmetry detection. In Fig. 1 and Methods, we describe how these networks are able to accomplish long-range 
comparisons.
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We analyze the Dilated and LSTM3 architectures directly trained for symmetry perception, without pre-
training for object recognition. This facilitates studying the learning of symmetry in isolation, independent of 
visual cues related to object recognition that may inhibit symmetry perception. Thus we can effectively evaluate 
the impact of introducing various architectural components. The Transformer network could not be trained 
from scratch in symmetry perception, as it requires hundreds of millions of training examples and an inacces-
sible amount of computational resources. We use the standard transfer-training procedure for the CLIP model, 
which is pre-trained using 400 million text-image pairs, leading to the acquisition of powerful general-purpose 
representations (see Methods). Namely, we freeze the pretrained weights, and train a linear classifier on the 
symmetry task to evaluate if the pretrained representations capture a general notion of symmetry. In37 this 
procedure enables successful zero-shot and few-shot transfer to a plethora of tasks, including those that CLIP 
was not specifically pretrained for.
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(a)

Pearson Correlation between DNN’s RDM and Prototypes’ RDM
Small-

Sym-1 Sym-2 Band Dark Width Band

InceptionResNetV2 0.13 0.11 0.34 -0.14 0.13 0.33
InceptionV3 0.24 0.33 0.12 0.01 0.05 0.43
ResNet101 0.09 0.2 0.51 -0.04 0.18 0.26
Xception 0.23 0.36 0.37 -0.04 0.15 0.44
DenseNet 0.25 0.39 0.38 -0.02 0.2 0.54
Dilated 0.32 0.34 0.3 0.09 0.04 0.51
Transformer 0.21 0.11 0.31 0.03 0.39 0.49
LSTM3 0.81 0.85 0.05 0.07 0.02 0.53

(b)

Figure 5.   Results of representational similarity analysis (RSA). (a) Hypothetical patterns showing how the 
RDMs would look like from perfect classifiers of different features (symmetry, presence of a band, brightness 
level, or band width). The white area in Symmetry-2 is not included in any correlation calculations. (b) Pearson 
Correlation Coefficients between the RDM of each model (displayed in Supplemental Fig. 1) and the RDM of 
each prototype.
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Assessing whether a model has learned a general rule for symmetry.  We first assess our networks 
on the same synthetic datasets as the previously-described object recognition models to compare their respec-
tive performances. We then further assess our networks’ generalization capabilities by testing them on further 
novel dataset families (denoted as Stripe datasets) that differ more significantly from the training data. Finally, 
to assess if the networks are capable of extrapolating to detecting symmetry in the natural world (“in the wild”), 
we introduce and evaluate on the Natural Mirrored and Natural datasets. For examples from each test dataset 
refer to Fig. 2.

Synthetically‑trained LSTM3 achieves high generalization accuracy on synthetic test sets.  To 
demonstrate a systematic improvement in generalization, we first evaluate the performance of the Dilated, 
LSTM3, and Transformer networks on the Band datasets used in Experiment Set 1. Recall that all networks are 
trained on symmetric and non-symmetric images with band-sizes 0 and 4, and tested on images with band-sizes 
{2, 6, 4(dark), 14, 16, 18} to assess generalization accuracy (recall that the hyper-parameters are tuned on the 
validation set of the training families to guarantee that the testing families are not used in any way for training).

The accuracies across these categories are shown in Fig. 6a. Recall that the object recognition models achieve 
relatively poor testing accuracies in images with large central bands despite achieving 100% accuracies in train-
ing categories, thus demonstrating overfitting. In striking contrast, our LSTM3 achieves near-perfect accuracy 
across both training and testing categories. The Dilated and Transformer networks demonstrate similar trends 
as the object recognition networks. The LSTM3 results demonstrate a massive improvement in generalization 
accuracy (on the same synthetic datasets) compared to Experiment Set 1.

We next evaluate all three networks on test datasets that differ even more greatly from the training distribu-
tion. We test on the Stripe family of datasets, for which each image has just a single column of varying pixels on 
either flank. The Stripe datasets allow us to further evaluate the relationship between network accuracy and the 
distance between image flanks, thus examining how well the learned solutions evaluate non-local relationships.

The accuracies of the networks for Stripe images are shown in Fig. 6b. Note that across all of these categories, 
similarly to the Band datasets, the Dilated and Transformer networks perform worse on categories where the 
informative image regions are restricted to the edges of the image. This trend is particularly evident for Dilated. 
We conclude that the Dilated network’s accuracy is dependent on the distance between image flanks, despite its 
expanded receptive field. While the Transformer does not exhibit such a clearly interpretable pattern, it is also 
clearly does not learn a general rule. In contrast, the LSTM3 achieves near-perfect accuracy across all categories. 
The performance of the LSTM3 is essentially invariant to the distance between image flanks, or the location of 

Figure 6.   Generalization performance of synthetically trained LSTM3, Dilated, Transformer. (a) Cross-dataset 
evaluation accuracies on the Band datasets. (b) Accuracies on the Stripe datasets. (c) Accuracies on natural 
image datasets. (d) LSTM3 accuracy on Band datasets for different training data sizes. Across all datasets, only 
the LSTM3 fully generalizes.
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informative regions of the image, providing further evidence that based on the limited distribution of training 
data it learns a solution that effectively captures long-range relationships.

Synthetically‑trained LSTM3 generalizes to natural mirrored images.  We next test the syntheti-
cally trained LSTM3, Dilated, and Transformer on datasets of natural images, denoted as the Natural Mirrored 
and Natural test datasets (1200 natural images with mirrored left-right flanks and 1200 fully natural images 
respectively). The difference between these two datasets is that the Natural Mirrored contains symmetric pat-
terns at the pixel level, as there is a one to one correspondence between pixels at corresponding positions of 
the respective flanks. All datasets previously evaluated in the paper also contain such pixel-level symmetry. In 
contrast, the Natural dataset evaluates perceived symmetry, as the objects in the image may be symmetric but 
due to other visual factors (noise, illumination, background, etc.) there may not be a one to one correspondence 
between pixels at corresponding positions of the respective image flanks.

The results are shown in Fig. 6c. For Natural Mirrored images LSTM3 achieves near perfect (97%) accuracy 
while Dilated and Transformer performs worse, with 70% and 89% accuracy, respectively. These results further 
strengthen the evidence that the synthetically-trained LSTM3 captures a solution to detecting pixel-level sym-
metry, as it even generalizes to distributions of pixels found in the natural world.

All networks perform poorly on the Natural dataset; this result is expected given that the networks were only 
trained on pixel-level symmetry, while natural images incorporate additional factors that prevents the image 
flanks from being exactly equal at the pixel-level but that are perceived equal. Later in the paper, we further ana-
lyze this phenomenon by training the networks for symmetry detection with natural factors. Next, we analyze 
the strategies learned by the LSTM3 network to generalize from a restricted training distribution in pixel-level 
symmetry detection.

LSTM3 learns a visual routine for solving symmetry.  We now analyze why the synthetically-trained 
LSTM3 is the only network that succeeds in capturing long-range relationships. A theoretical explanation is 
that Dilated solely incorporates an expanded receptive field through atrous convolutions, and such large recep-
tive fields may lead to more complex models that overfit. Meanwhile, the pre-trained representations for visual 
inputs in the Transformer may not capture symmetry, thus preventing transfer-training from learning a general 
solution. In contrast, LSTM3 not only expands the receptive field size, but is also capable of breaking long-range 
dependencies into a sequence of local operations. Recall that the architecture of the LSTM3 involves applying 
a feed-forward architecture repeatedly over many time steps steps; the unrolled version of the LSTM3 is a deep 
network with shared weights across layers. Thus, with recurrent connections we achieve large-receptive fields 
while controlling network complexity.

We examine how the distance between image flanks affects the number of time steps required to correctly 
classify the image as symmetric or non-symmetric. The presence of such a relationship provides crucial insight 
regarding the mechanism of the LSTM3’s learned solution, indicating that it has learned a visual routine com-
posed of local operations that involves expanding outwards from the image center.

To elucidate this relationship, we examine the LSTM3 testing accuracy across the Stripe categories for different 
numbers of time steps. Recall that each Stripe image has a single column of varying pixels in either flank that is 
x ∈ {2, 4, 6, 8, 10} pixels from the midline. In Fig. 7a we show the testing accuracy vs. number of time steps for 
each Stripe category. We observe that when the image flanks are close together (image stripe 0-2 pixels from the 
midline) the LSTM3 requires less than 30 time steps to achieve a high accuracy > 99% . When they are the further 
apart (image stripe 8 pixels from the midline) 50 timesteps are needed. This result suggests that the LSTM3 may 
handle long-range dependencies by propagating information outwards from the center of an image over time.

We gain further insight into the mechanism of the LSTM3 learned solution by visualizing the neural activa-
tions. In particular, for symmetric and non-symmetric images with a band size of 6, we extract the activations 
of the final LSTM3 cell. We then perform KMeans clustering on the aggregated activation maps from the same 
class (with 10 clusters) to elucidate any common patterns. The KMeans clustering algorithm groups the activation 
maps together into clusters based on each map’s Euclidean distance to the nearest cluster centroid. We choose 10 
because with this number we observe some redundancy between cluster centroids, indicating that we are seeing 
a representative range of activity.

The 10 representative activity maps for symmetric and non-symmetric samples respectively are depicted in 
Fig. 7b. We depict the clusters for activations extracted at 3 different LSTM3 time steps. Note that the activations 
taken at the last time step are considered the “output” activations used to decide whether the image is symmetric 
or not. We observe that at time step 10, the symmetric and non-symmetric activation maps are indistinguish-
able. At time step 30 the center regions are highlighted more. At the final time step the midline emerges as the 
primary highlighted region for symmetric centroids, while for non-symmetric centroids the representation 
patterns propagate uniformly across the whole map. For symmetric samples, by the final time step the centroids 
are visually homogenous whereas for non-symmetric images the activations do not demonstrate any such pat-
tern. These observations suggest that the identification of the axis of symmetry is important for the LSTM3, and 
support the hypothesis that the network propagates from the center.

These visualizations affirm key differences in how the LSTM3 represents symmetric and non-symmetric 
images, and provides further evidence that recurrent connections allow the network to handle long-range 
dependencies by propagating information over many time steps.

In Experiment Set 1, we introduce the RSA analysis (Fig. 5). We find that most networks except LSTM3, have 
the highest correlation with prototypical classifiers of band presence or symmetry only at small band sizes. In 
contrast, LSTM3 has a representation that correlates most with a prototypical symmetry classifier (Symmetry-2).
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Introducing natural factors inhibits symmetry perception.  Finally, we investigate if the LSTM3, 
Dilated, and Transformer networks are capable of learning to capturing symmetry in natural images. This task is 
more complex due to the additional factors (such as noise, background, different illuminations in different parts 
of the image, etc.) present in natural images that may interfere with the detection of symmetry. Thus, this task 
requires acquisition of a more general notion of symmetry than a pixel-level one.

We train the LSTM3, Dilated, and Transformer networks on 10800 augmented natural images, using the same 
learning and hyper-parameter search procedure as synthetic-training experiments (refer to Methods). We then 
perform cross-dataset evaluation, testing the naturally-trained networks with the highest validation accuracies 
on all of the test datasets (Band, Stripe, Natural Mirrored, Natural).

In Fig. 8c we show the cross-dataset accuracy for the natural-trained networks on natural images, and observe 
that the LSTM3, Dilated, and Transformer networks achieve high accuracies ( 91% , 88% , and 92% respectively for 
natural data and > 95% for natural mirrored data). In contrast, as seen in Fig. 8a and b, all three networks fail to 
generalize back to the synthetic test sets. Unlike the results for synthetically-trained networks, the LSTM3 does 
not demonstrate a significant performance improvement over either Dilated or Transformer. Both the LSTM3 and 
Dilated networks appear to gain some notion of symmetry, performing well above chance accuracy for almost 
every test dataset, however the full generalization seen with the synthetically-trained LSTM3 is not evident.

We gain additional insight by examining the accuracy of the network depending on the correlation between 
left and right (flipped) image flanks (i.e. the degree of non-symmetry of an image) for symmetric natural images 
that are correctly and incorrectly classified; the results are shown in Fig. 8d. The correctly classified images tend 
to have a higher left-right correlation (i.e. are more symmetric), while incorrectly classified images have a much 
wider spread of correlations. These results imply that the networks have picked up some notion of symmetry, 
and that factors that decrease the visual presence of pixel-level symmetry (evident in decreased left-right cor-
relations) can inhibit the networks’ performance.

These results are likely due to the external factors in natural images (noise, illumination, etc) that interfere 
with the presentation of symmetry, thus making it more difficult to learn symmetry perception from these “in 
the wild” images. While all networks perform well for test images that are similar to the training set, they struggle 
with the synthetic data that requires recognition of purely pixel-level symmetry—a visual feature that is more 
difficult to glean from the natural data.

Figure 7.   Analysis of LSTM3 representations. (a) Plot of the accuracies achieved by the LSTM3 with restricted 
numbers of time steps for different categories of Stripe datasets (indicated with the number of pixels between 
stripes). (b) Visualization of 10 representative activation maps from the last LSTM3 cell at various timesteps, 
for symmetric and non-symmetric images. Each pixel represents the degree of activation of a neuron in the 
activation map (darker colors mean values closer to 0 while lighter colors mean larger values). Note that as the 
timesteps progress, the center axis becomes highlighted for symmetric samples.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20931  | https://doi.org/10.1038/s41598-022-25219-w

www.nature.com/scientificreports/

Discussion
Symmetry perception presents two primary challenges. First, it is an abstract feature, indicated by the relation-
ships between pixels, such that a symmetric image with unfamiliar local content should still be recognizable as 
symmetric. Second, these relationships can be long-range. These challenges are present for both computational 
and human visual systems; thus symmetry is an excellent assay for studying computational models of human 
perception.

Our experiments show that only the LSTM3 model is capable of generalizing to detecting mirror symmetry 
in novel dataset families. Analysis of the network activations indicate that the LSTM3 may have learned a routine 
for symmetry detection that decomposes the long-range dependencies in a sequence of local steps. The Dilated 
and Transformer networks, in contrast, struggle with image classes that stress long-range dependencies, and 
images with different pixel distributions (i.e. natural mirrored images).

These results are consistent with existing works that study the importance of recurrence in modelling long-
range dependencies41–43. Villalobos et al. have also indicated that recurrent architectures are of critical impor-
tance to enable generalization beyond the training distribution in problems with long-range dependencies, in 
particular for the problem of determining the inside and outside of a closed curve41. Our results provide further 
evidence for the importance of recurrence in enabling DNNs for vision to learn generalizable representations of 
fundamental visual features that involve long-range relationships. Our results carry implications for downstream 
tasks, as symmetry in particular is a fundamental visual attribute that has been implicated in facilitating tasks 
such as pose estimation and depth estimation44,45.

Furthermore, a body of works in the neuroscience literature argues that recurrence is a crucial component for 
object recognition46–50. Our results demonstrate that recurrent networks enable generalized symmetry perception 
in a simulated setting. These indicate a possible role for recurrence in human neural processing of long-range 
dependencies, and in particular symmetry. Such a hypothesis could be experimentally investigated with human 
EEG readings. If the human brain detects symmetry through a purely feed-forward process, an EEG might 
take a shorter time to show settled brain activity than if recurrent computations were involved. Our suggested 
investigation could confirm a functional role of recurrent connections that has not been previously considered, 
i.e. in handling long-range dependencies given a restricted distribution of training exemplars.

Figure 8.   Generalization performance of naturally trained LSTM3, Dilated, Transformer. (a) Accuracies on the 
Band datasets. (b) Accuracies on the Stripe datasets. (c) Accuracies on natural image datasets. (d) An analysis of 
symmetric images correctly/incorrectly classified by LSTM3 and Dilated. The histograms show the number of 
images correctly or incorrectly classifoed depending on the degree of non-symmetry, which is evaluated as the 
correlation between the left and right (flipped) halves of the images, where a higher correlation indicates that an 
image is more symmetric.
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The superior generalization performance observed for the synthetically trained LSTM3, however, is not 
apparent for the LSTM3 trained on natural images. The natural-trained LSTM3 successfully generalizes to natural 
images from a similar distribution, however fails to generalize back to synthetic data, indicating that it has not 
learned to generally discern symmetry. We also observe that incorrectly classified symmetric natural images 
tended to have a lower degree of symmetry. These results indicate that while the networks represent some notion 
of symmetry, natural factors make learning symmetry more difficult. While learning to perceive symmetry in 
isolation appears to require recurrence -as evidenced by our synthetic-training experiments- learning symmetry 
detection from “in the wild” images may require other modes of visual processing to account for background 
asymmetries, noise, different illuminations, and other such factors. Evidently, more investigation of generalizable 
detection of symmetry in natural images is needed. Future work may involve an architecture search for a model 
that combines the advantages of recurrence with the advantages of an object recognition model. A promising 
approach could build upon RCNN-SAT51, which models to a substantial extent the temporal dynamics of human 
object recognition with recurrent connections. As suggested by our results, changes in the RCNN-SAT archi-
tecture may be required to enable symmetry perception (e.g., the usage of LSTM recurrent connections) and 
also changes in the training procedure (e.g., training in a richer dataset than ImageNet that requires taking into 
account long-range dependencies). Additionally, note that this work focuses solely on the detection of bilateral, 
reflectional symmetry. Further works may investigate other visual phenomena, as well as other forms and axes 
of symmetry, such as rotational and translational.

In summary, the results presented here compare learned representations of symmetry in object recognition 
networks, and also DNNs that incorporate mechanisms to tackle long-range dependencies such as dilated con-
volutions, LSTMs, and Transformer architectures, and evaluate how well these networks learn a generalizable 
rule for symmetry detection. We concluded that DNNs based on LSTMs facilitate learning a generalized model 
of symmetry from a limited distribution of training data. Our work motivates future investigations into archi-
tectures that incorporate LSTMs to facilitate learning general representations of symmetry from “in the wild” 
images where symmetry coincides with other visual phenomena.

Methods
Experiment Set 1.  Datasets.  We use specially designed synthetic test datasets that rigorously assess 
whether trained networks are capable of recognizing pixel-level symmetry—in which the image flanks are per-
fectly mirrored—for families of images that contain visual properties not apparent in the training dataset. We 
introduce several families of datasets, split between training and testing families to enable generalization testing.

We train and test on subsets of the Band dataset families. All images are characterized by the size of a central 
uninformative band. The inclusion of a central band ensures that there are no local features (such as short hori-
zontal segments created by the juxtaposition of identical pixels on the two sides of the axis of symmetry) that 
can be used to classify patterns as symmetric or non-symmetric.

In particular, for symmetric images with a bandsize b, the algorithm fills a 20× (10− b

2
) matrix L with ran-

dom values drawn from the range [1, 256] to represent the full grayscale spectrum. The matrix is then duplicated 
and flipped to create matrix R. We then create a matrix B of size 20× b , with all values set to 128, that represents 
the band. The three matrices are concatenated in the order L+ B+ R . For non-symmetric images, we gener-
ate separate random matrices of size 20× (10− b

2
) and follow the band-creation and concatenation procedure 

described above. Each individual image is composed of 20× 20 pixel blocks, where the pixels within each block 
take the same values. The block size is adjusted for each network to suit the required input size.

Training image families.  Our training set is composed of two families of images: one with a central band of 
size 4, and the other without. In this way, we train on a limited subset of the full distribution (i.e. the full range 
of band sizes). Each image family is equally split between symmetric/non-symmetric samples. We created a 
training set with 4000 total images (2000 from each family). We use 90% of the images for training and 10% for 
validation to tune the hyper-parameters.

Testing image families.  Our test set for Experiment Set 1 is composed of six additional image families. The first 
five feature band sizes {2, 6, 14, 16, 18} , and the sixth features a band size of 4 with a lower average luminance, 
achieved by restricting the range of pixel values to [0, 128]. Note that each of these families are significantly dif-
ferentiated from the training families. Different band sizes enable us to evaluate whether the networks are capa-
ble of capturing differing sized spatial dependencies, while the last dataset allows us to evaluate if the networks 
generalize to different luminances.

Human participants.  The study was approved by the Institutional Review Board at the Massachusetts Institute 
of Technology (protocol number 0403000050) and all methods were carried out in accordance with relevant 
guidelines and regulations. All subjects (and their legal representatives, for underage subjects) gave informed 
consent.

Networks.  We use 6 feed-forward convolutional DNN architectures, namely DenseNet52, Xception53, Incep-
tion ResNet V254, Inception V355, ResNet101, and ResNet5056. Each of these networks was originally trained 
on the ImageNet dataset57. These models have been shown to match to a remarkable degree the neural activity 
and recognition accuracy in primates31. We also use RCNN-SAT51 as it has been shown to mimic human object 
recognition timing by incorporating recurrent connections, and thus improve previous brain models. We use the 
pre-trained models that are publicly available.
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Training and hyper‑parameter tuning.  We train each network separately for the binary classification problem 
of symmetry detection. A particular image is classified as 1 if it is symmetric and 0 if it is non-symmetric. For 
all training procedures we tune the learning rate across {1e−2, 1e−3, 1e−4, 1e−5} . We use a batch size of 32 
and train for a minimum of 15 epochs. We perform cross-dataset evaluation using the hyper-parameter set that 
achieved the highest validation accuracy. In the following, we describe the two different procedures used to train 
the networks: transfer-training and fine-tuning.

Transfer‑training with frozen base models.  For all object recognition DNNs we freeze the pre-trained layers 
and train only the classification head (1 fully-connected 128-node layer) of each network on the training dataset 
composed of images with band sizes 0 and 4. We then test whether a rule for symmetry is learned using the 
representations for object recognition. For the RCNN we run the network for eight time steps and average the 
aggregated outputs, using a single dense classification layer, as described in51.

End‑to‑end  fine‑tuning.  We also train end-to-end the networks with the classification head for symmetry 
detection, such that the weights are initialized as the learned weights from ImageNet, and subsequently all layers 
are allowed to update based on the synthetic training set. Thus, we follow the same procedure as for transfer-
training except that we allow training of all layers in the network.

Experiment Set 2.  Datasets.  We introduce more datasets to train the networks in more natural images 
and also to test the networks in more challenging images. Since we train the networks from scratch, we use an 
image size of 20× 20 pixels, which is the smallest possible for our datasets in order to facilitate training as fast 
as possible.

Training image families.  Since we are training the networks from scratch, we use a larger number of training 
examples than in Experiment Set 1, namely, we use 1e5 training examples. We use the following families to train 
the networks:

–	 Band: This is the same distributional makeup as the training dataset used in Experiment Set 1. All networks 
are trained on a dataset composed of symmetric and non-symmetric images with band size 0 and band size 
4.

–	 Natural: We additionally conduct experiments for networks trained on image crops from natural images. We 
combine 176 annotated symmetric images from the NYU Symmetry Database58 with 75 symmetric images 
from the CVPR 2013 Symmetry Challenge59, and 250 non-symmetric images from the ImageNet database57. 
The NYU and CVPR datasets are well-known benchmark datasets for symmetry detection. Using standard 
data augmentation techniques (cropping, blurring, and rotations) we generate 24 augmented variations of 
each raw image, leading to a total dataset size of 12000 images. Dividing the dataset with a 90− 10% split 
yields a 10800-image training set, and 1200-image testing set. Sample Natural images with data augmenta-
tions applied are depicted in Figure 2.

Testing image families.  All synthetic datasets contain 1e4 images, and the natural image dataset contains 1200 
images.

–	 Band: We test on all of the same testing families introduced in Experiment Set 1 (band sizes { 2, 6, 14, 16, 18, 
4 (dark)}).

–	 Stripe: In addition, we introduce the Stripe family of datasets to further elucidate how the distance between 
image flanks impacts perception of pixel-level symmetry, and thus how well the networks capture long-range 
relationships. A Stripe image contains one column of varying pixels on each flank; the rest of the image pixels 
are set to the constant value 128 (and are thus uninformative). The dataset subcategories are differentiated by 
the positions of the two “stripe” columns, as shown in Fig. 2. For a Stripe image with the left-side “stripe” at 
column x ∈ {2, 4, 6, 8, 10} (where the left-most column is column 0) we fill in a 20× 20 matrix with value 128. 
We then replace columns x and 20− x with the same randomly-generated 20× 1 vector (symmetric images) 
or different vectors (non-symmetric images). For each possible position of x we generate both a symmetric 
and non-symmetric dataset.

–	 Natural Images: We additionally test on the test set of natural crops (1200 images).
–	 Natural Mirrored dataset: We create a dataset of images that are derived from the Natural dataset, but are mir-

rored to have identical left-right flanks. For each image in the 1200 Natural test dataset described above, the 
right half was replaced by the mirrored left half of that image. Thus these images have the pixel distribution 
of natural images, but are precisely pixel-level symmetric (unlike fully natural images which symmetry is 
perceived even though there are variations between the flanks). Sample Natural Mirrored images are shown 
in Fig. 2.

Networks.  We explore the following architectures that incorporate mechanisms to tackle long-range depend-
encies, which are depicted in Fig. 1.
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Dilated convolutional neural networks.  It is an architecture that employs convolutions with “expanded”, i.e., 
upsampled, kernels34. The dilation rate parameter l indicates how much the kernel is expanded, introducing l − 1 
spaces between kernel elements. By increasing the dilation rate monotonically throughout the network layers, 
the receptive field of the network is expanded while maintaining the same number of parameters, thus facilitat-
ing the learning of long-range relationships. We use 3× 3 kernels, 7 layers, and a dilation rate of 4, following the 
parameters used in41 as we also found that this architecture works best for symmetry detection.

Transformers.  The Transformer model uses a self-attention mechanism to learn long-range dependencies 
between inputs. Namely, the self-attention mechanisms take as input a set of image patches represented in an 
embedded space and compare them in a pairwise manner, such that relations across all pairs of image patches 
can be taken into account, independently on the distance between them. Then, the pairwise similarities between 
patches are projected into a set of vectors. The transformers stack many layers with self-attention and also stand-
ard fully connected layers possibly with skip connections. We use OpenAI’s CLIP model, pretrained with 400 
million text/image pairs to predict text labels for image inputs37.

Three stacked Convolutional LSTM35.  LSTM is a recurrent network that alleviates the well-known issues of 
training recurrent networks with a large number of unrolling steps. Since it is convolutional, it is suitable for 
vision problems. A recurrent network can be thought of as a feed-forward network applied repeatedly over many 
time steps, with shared weights between time steps. For each time step the same image is fed as an input, and 
the hidden state from the previous time step is carried forward. In the “unrolled” version of the network, time 
steps are applied as subsequent layers. Here, we stack three convolutional LSTM cells (of 64 channels each) to 
better facilitate learning a multi-step visual routine for symmetry detection (this was found through an initial 
pilot experiment in which we assessed architectures with one, two or three cells). In general, recurrent networks 
are capable of capturing long-range dependencies by breaking them up into sequences of local operations that 
are repeated over time. Previous research has demonstrated that for some visual problems involving long-range 
dependencies, a stacked Convolutional LSTM with several cells is capable of learning a simple visual routine that 
is generalizable to images outside the training distribution41.

Training and hyper‑parameter tuning.  We train Dilated and LSTM3 from scratch and transfer-train the Trans‑
former from the pre-trained architecture on 400 million text/image pairs (we could not train it from scratch on 
our symmetry datasets, possibly because we did not have enough computational resources to train it with a large 
number of training examples). Separate experiments are conducted for training all networks on synthetic and 
natural image sets (as described above). For all experiments we use a 95%/5% split for training/validation. For 
both synthetic and natural training, we perform cross-dataset evaluation using the network and hyper-parame-
ter set that achieved the highest validation accuracy.

For the Dilated and LSTM3 networks, we test the following hyper-parameters. The convolutional layers use 
zero-padding, the batch-size is 32, and we explored learning rates { 1e−1 , 1e−2 , 1e−3 , 1e−4 , 1e−5 }. For natural 
training, each network is trained on a 10,800 dataset of natural images, using the training/validation split. For 
the LSTM3 we try different numbers of unrolling steps: {5, 10, 20, 30, 50}.

For the Transformer architecture, we transfer-train using the standard procedure37. Namely, we train a logistic 
regressor from the representations of the layer before the output using the default parameters (1000 iterations, 
and regularizer parameter C = 0.316 , with the Transformer weights frozen).

Data availability
Our datasets are available at https://​datav​erse.​harva​rd.​edu/​datav​erse/​symme​try. A demo of experiment 1 can be 
found here: https://​tinyu​rl.​com/​symme​tryde​mo.

Code availability
The code to reproduce the experiments is available at https://​github.​com/​ssund​aram21/​symme​try.
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