
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20886  | https://doi.org/10.1038/s41598-022-25163-9

www.nature.com/scientificreports

RBDtector: an open‑source 
software to detect REM sleep 
without atonia according to visual 
scoring criteria
Annika Röthenbacher 1, Matteo Cesari 2, Christopher E. J. Doppler 3,4, Niels Okkels 5,6,7, 
Nele Willemsen 3, Nora Sembowski 3, Aline Seger 3,4, Marie Lindner 3, Corinna Brune 3, 
Ambra Stefani 2, Birgit Högl 2, Stephan Bialonski 8,9, Per Borghammer 5, Gereon R. Fink 3,4, 
Martin Schober 1 & Michael Sommerauer 3,4,5*

REM sleep without atonia (RSWA) is a key feature for the diagnosis of rapid eye movement (REM) 
sleep behaviour disorder (RBD). We introduce RBDtector, a novel open‑source software to score 
RSWA according to established SINBAR visual scoring criteria. We assessed muscle activity of the 
mentalis, flexor digitorum superficialis (FDS), and anterior tibialis (AT) muscles. RSWA was scored 
manually as tonic, phasic, and any activity by human scorers as well as using RBDtector in 20 subjects. 
Subsequently, 174 subjects (72 without RBD and 102 with RBD) were analysed with RBDtector to show 
the algorithm’s applicability. We additionally compared RBDtector estimates to a previously published 
dataset. RBDtector showed robust conformity with human scorings. The highest congruency was 
achieved for phasic and any activity of the FDS. Combining mentalis any and FDS any, RBDtector 
identified RBD subjects with 100% specificity and 96% sensitivity applying a cut‑off of 20.6%. 
Comparable performance was obtained without manual artefact removal. RBD subjects also showed 
muscle bouts of higher amplitude and longer duration. RBDtector provides estimates of tonic, phasic, 
and any activity comparable to human scorings. RBDtector, which is freely available, can help identify 
RBD subjects and provides reliable RSWA metrics.

The hallmark of Rapid Eye Movement (REM) sleep behaviour disorder (RBD) is a failure to efficiently suppress 
motor activity during REM sleep, resulting in REM sleep without atonia (RSWA) and eventually the acting out 
of dream  content1,2. RBD is strongly associated with α-synucleinopathies, namely Parkinson’s disease (PD), 
dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), but can also occur in other neuro-
logical  disorders3,4. Patients with isolated RBD (= iRBD patients) are deemed to be in a very early stage of an 
α-synucleinopathy and are at high risk to phenoconvert to PD, DLB, or, rarely,  MSA5. This opens a unique 
window to study the processes during the early stages of these neurodegenerative  diseases6,7. Additionally, PD 
patients with RBD often show a more aggressive phenotype, reflected by faster motor progression, and a higher 
probability of cognitive impairment as well as autonomic  disturbances8,9. If RBD is present at PD diagnosis, 
this might even indicate a specific subtype of α-synuclein  spread10–14. Extending the approach of subtyping PD 
patients according to their RBD status, a growing number of reports have stressed the significance of RSWA 
quantification as a severity  marker5,10,15,16. Hence, correct diagnosis of RBD and reliable quantification of RSWA 
are paramount in the context of early PD and α-synucleinopathies in  general17.
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In 2012, the SINBAR (Sleep Innsbruck Barcelona) group published normative RSWA values for the diagnosis 
of RBD based on a study of 30 RBD patients and 30 matched controls. Their results have been incorporated into 
the current American Academy of Sleep Medicine (AASM) manual for scoring of sleep and associated events 
and into the video-polysomnography guidelines for RBD diagnosis of the International RBD Study  Group17–19. 
The SINBAR criteria constituted the first and fundamental approach to include electromyography (EMG) from 
multiple muscles. They particularly propose that EMG activity of the arms is specific for RBD, and better suited 
to identify RBD than chin EMG activity  alone17,18,20,21. However, visual assessments of RSWA are highly time-
consuming and ratings vary considerably across  scorers22. Therefore, computer-based automatized RSWA scoring 
methods have been  evaluated23,24. Unfortunately, these methods only show limited inter-method agreement, often 
require costly commercial software, and nearly exclusively focus on chin EMG activity, which is particularly 
vulnerable to  artefacts20.

Following recent International RBD Study Group  guidelines17, we aimed at developing a software algorithm 
that (i) implements a well-established visual scoring scheme to detect and quantify RSWA, (ii) allows for the anal-
ysis of EMG from multiple muscles including the chin, arm, and leg muscles, and (iii) provides an open-source 
tool in a free software package reading PSG data in the European Data Format (EDF) for best applicableness.

We compared the performance of RBDtector with visual scorings from a sleep expert and a doctoral can-
didate in sleep medicine (“novice scorer”) and provide RSWA values from a large dataset of controls, patients 
with iRBD, and PD patients with and without RBD (n = 174). We evaluated the effects of common artefacts 
on the different EMG channels and investigated additional RSWA metrics, such as amplitude and duration of 
muscle bouts. Finally, we compared RBDtector estimates to a previously published dataset of 80 subjects from 
the SINBAR  group25.

Methods
Participants and polysomnography recordings. All data were acquired from two case–control studies 
including control subjects, PD patients and iRBD patients who underwent overnight-video-polysomnography 
(PSG). All iRBD patients were recruited from the general population through newspaper advertisements. Fol-
lowing a structured telephone interview, subjects with a high likelihood of having RBD were invited to undergo 
PSG. Subjects in whom iRBD was excluded by video-PSG were considered control subjects in the further analy-
sis. PD patients were recruited via an advertisement in the German Parkinson’s disease magazine, from local 
self-help groups, and the outpatient clinic of the University Hospital Cologne. All PSGs were evaluated by a 
board-certified sleep expert (MS). Inclusion criteria comprised the following: age 40–80  years (PD patients 
50–80 years), no diagnosis of dementia, no severe comorbidity (e.g. cancer, end-stage renal or liver disease), no 
known stroke or traumatic brain injury. Medication was assessed and hypnotics, antidepressants or neuroleptics 
had to be discontinued two weeks before PSG in all non-PD subjects. PD was diagnosed according to the cur-
rent Movement Disorders Society  guidelines26. Both studies were approved by the local ethical committee (Eth-
ics Commission of Cologne University’s Faculty of Medicine). All participants gave written, informed consent 
before participating. The work was carried out under the Declaration of Helsinki.

All PSGs were undertaken at home or in a hotel room. We used a mobile SOMNOscreen™ plus device for 
overnight video-PSG including ten EEG recordings (according to the international 10/20 system: F3, F4, C3, C4, 
O1, O2, A1, A2, Fpz as grounding, and Cz as reference), electrooculography, surface EMG of the mentalis, the 
tibialis anterior (TA), and flexor digitorum superficialis muscles (FDS, acquired in n = 143 (= 85.1% of all) PSGs), 
electrocardiography, nasal pressure and flow monitoring, thoracic and abdominal respiratory effort belts, finger 
pulse oximetry, and synchronized audio-visual recording. Before turning the lights off, electrode impedances 
were checked to be lower than 10kΩ. All EMG channels were recorded at a sampling rate of 256 Hz. 10 Hz high 
pass, 100 Hz lowpass filters, and a 50 Hz notch filter were applied before analysis.

Visual PSG scoring was performed on 30-s epochs including sleep efficiency, total sleep time, the absolute 
amounts of stage 1 (N1), stage 2 (N2), stage 3 (N3), and REM sleep, the apnea–hypopnea index (AHI, number of 
apnea plus hypopnea events per hour of sleep), and the periodic limb movement index (PLMI, number of peri-
odic leg movements per hour of sleep) according to the AASM Manual for the Scoring of Sleep and Associated 
Events Version 2.619. Diagnosis of RBD was made according to the International Classification of Sleep Disorders 
(ICSD)-3  criteria27. Visual PSG scoring and diagnosis of RBD was done by MS, who is a board-certified sleep 
expert. The evaluation was blinded from the visual RSWA scorings of NO and NW as well as from the RBDtec-
tor results. RBD diagnosis of the sleep expert was used as the gold standard for assessments of classification 
performance. Final diagnosis could not be achieved in five subjects due to technical failure of video-recording 
(n = 1), increased RSWA without anamnestic or video-recorded enactment of dream content (n = 1), or severe 
REM-associated sleep apnea making it impossible to judge muscle activity (n = 3). These PSGs were discarded 
from further analysis.

Visual RSWA scoring. Rules for RSWA scoring were adopted from the original publication of the SINBAR 
group from 2012 and applied to all EMG channels in the same  way18: Increased muscle activity was defined as 
EMG activity with an amplitude of at least twice the background muscle tone (= baseline) for at least 100 ms. An 
interval of more than 250 ms with baseline activity defined the end of increased EMG activity. Depending on 
the duration of increased muscle activity, we scored ‘phasic’ bouts for activity lasting between 0.1 and 5.0 s and 
‘intermediate’ bouts for activity lasting between 5.1 and 15 s (needed to calculate any activity). Each 30 s sleep 
epoch was subdivided into ten 3 s mini-epochs and each mini-epoch was counted as phasic if it contained at 
least one ‘phasic’ bout. Each mini-epoch was scored as comprising any activity if any ‘phasic’, ‘intermediate’, or 
‘tonic’ bouts were present. We scored a 30 s epoch with tonic activity if increased EMG activity was present in 
more than 50% of the total 30 s epoch—this could be achieved by a sustained increase of EMG activity for more 
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than 15 s without an interruption of 250 ms of baseline activity (= ‘tonic’ bout) and by ‘phasic’ and ‘intermediate’ 
bouts exceeding 15 s during a 30 s epoch. To identify a ‘phasic’ or ‘intermediate’ bout superimposing a sustained 
tonic activity, it was required that the ‘phasic’ or ‘intermediate’ bout had at least twice the amplitude of the back-
ground tonic activity.

Visual scoring was performed by a sleep expert (NO, “expert scorer”) with multiple years of experience in 
clinical sleep medicine and by a doctoral candidate in sleep medicine (NW, “novice scorer”), who was introduced 
to the SINBAR scoring system and scored EMGs of 20 PSGs supervised by MS. We included two scorers with 
different levels of training to acknowledge that visual RSWA scoring is not only scorer-dependent but might 
also be dependent on the expertise of an individual  scorer22. To ensure a common understanding of the rating 
system, both scorers were allowed to rate 5 PSGs with, and 5 PSGs without RBD, unblinded to RBD-status and 
to the scorings of the other scorer. Ratings were jointly discussed with MS as an independent referee to agree 
on judgements between scorers.

We randomly selected 10 iRBD patients and 10 controls for blinded visual RSWA scoring on mentalis, FDS, 
and TA EMG for comparison with the algorithm’s results. Additionally, both human scorers rated EMG activity 
as artefacts, if they did not consider the activity as caused by physiological muscle activity (examples of artefacts 
include snoring, technical issues, respiration, and electrocardiography). The combined artefact intervals of both 
human scorers were excluded from the inter-rater comparisons. Arousals had been identified during routine PSG 
scoring and were excluded. Ratings were executed using DOMINO software (SOMNOmedics, Randersacker, 
Germany) and exported for further analysis.

Implementation of RSWA scoring to a computer algorithm. RBDtector is based on Python 3.8 
(including Python libraries pandas and PyEDFlib) and reads EMG data in European Data Format (EDF). The 
sleep profile, arousal events, and optionally respiratory events as well as snoring artefacts are gathered from plain 
text files. For this study specifically, data were exported from DOMINO software.

EMG data are resampled to 256 Hz using spline interpolation if not already recorded at this sampling rate. 
REM sleep periods are extracted from the sleep profile. Previously identified arousals and respiratory events 
are handled as artefacts and discarded in all EMG channels, whereas periods of snoring are only considered for 
(and excluded in) mentalis EMG.

Subsequently, automated baseline detection of each ‘REM sleep period’ is performed separately. By definition, 
a ‘REM sleep period’ must contain continuous REM sleep for ≥ 150 s. REM sleep with EMG activity with a root 
mean square (RMS) < 0.05 mV is handled as an artefact (i.e. electrode detachment) and excluded from further 
analysis. Next, each ‘REM sleep period’ is assigned the amplitude with the lowest RMS of a 30 s rolling window 
from a continuously artefact-free (without arousal and respiratory events as well as snoring) REM period as 
‘baseline amplitude’. Periods of REM sleep that do not meet these criteria are assigned to the ‘baseline amplitude’ 
of the previous REM period or the following if no previous one is available. If no ‘baseline amplitude’ can be 
estimated, the process is repeated with a rolling window size of 15 s. If this process is unsuccessful, the affected 
channel is discarded from further analysis. REM bouts shorter than 150 s are assigned the ‘baseline amplitude’ 
of the nearest REM period.

After excluding artefacts and determining ‘baseline amplitudes’, the SINBAR RSWA scoring rules are applied 
to all EMG channels stepwise. First, amplitudes for individual 30 ms bouts are defined. For that purpose, RBDtec-
tor calculates the RMS of the EMG amplitudes within a sliding window of 30 ms length, beginning at an artefact-
free REM bout. The sliding window is shifted with a step size of 15 ms, yielding RMS values at a temporal resolu-
tion of 15 ms. 30 ms REM bouts with amplitudes exceeding two times the ‘baseline amplitude’ are considered 
‘activity bouts’. Next, connected ‘activity bouts’ lasting longer than 0.1 s are identified and considered as an ‘activ-
ity event’. To those ‘activity events’, preceding and following ‘activity bouts’ are added, if no interruption occurs 
that has less activity than twice the ‘baseline amplitude’ for ≥ 0.25 s. This process is repeated until interruptions 
of ≥ 0.25 s with activity less than twice the ‘baseline amplitude’ are eventually identified (= ‘increased activity’).

In the next step, RSWA is classified as tonic, phasic or any. For scoring tonic activity, each 30 s epoch of 
REM sleep is examined for containing ≥ 50% of ‘increased activity’. If tonic activity is scored in one epoch, the 
baseline value of this 30 s epoch is elevated to the RMS of the period of tonic activity. Subsequently, if tonic 
activity is identified, ‘increased activity’ to identify phasic activity is recalculated in this channel to account for 
the changes in the baseline.

Phasic activity is detected if ‘increased activity’ persists ≤ 5 s. Phasic events are calculated by subdividing 30 s 
macro epochs into ten 3 s mini epochs and each mini epoch containing ‘increased activity’ is scored as phasic 
activity. Mini epochs with any activity are detected by combining all 30 s macro epochs with tonic activity and 
all 3 s mini epochs containing ‘increased activity’ between 0.1 and 15 s.

For phasic and any activity, the maximum amplitude and duration of “increased activity” bouts are deter-
mined and the respective arithmetic mean of all bouts per channel is computed.

Finally, a CSV file with the exact event timestamps and two xlsx files containing the SINBAR event evaluation 
data are created. The first xlsx file includes phasic, tonic and any (mini-) epochs per evaluated EMG channel, both 
in absolute numbers and in percent of the channel’s artefact-free REM sleep (mini-)epochs. Additionally, the 
mean values of maximum amplitude and duration for the phasic and any events are given, and the total amounts 
of REM sleep (mini-)epochs with and without the relevant artefacts. The second xlsx file depicts the percentage 
of RSWA events on combined channels relative to the amount of artefact-free REM sleep.

RBDtector is available at: https:// github. com/ aroet hen/ RBDte ctor. A compressed file of RBDtector is also 
part of the supplement.

https://github.com/aroethen/RBDtector
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Statistical analysis. We explored the data with Statistical Package for the Social Sciences (SPSS) version 28. 
Group data are presented as mean ± standard deviation or relative frequencies unless otherwise stated. Normal 
data distribution was assessed with the Shapiro–Wilk test, Q-Q plots, and box plots. Group comparisons were 
calculated using Student’s t, Mann–Whitney U, and chi-square tests as well as analyses of variances and Kruskal–
Wallis tests as appropriate. Univariate correlation analyses were calculated using Spearman’s rho. Coefficients 
of determination  (R2) were used to compare inter-rater variability on a subject level (= amount of RSWA as a 
percentage of total REM sleep of the given subject) and Cohen’s kappa on a single epoch level (= binary single 3 s 
mini-, and 30 s epoch scorings, respectively). We analysed discrimination performance with receiver operating 
characteristic (ROC) curves. Areas under the curve (AUC) were calculated for each analysis and cut-off thresh-
olds are given for the highest specificity. Additionally, we calculated sensitivity and accuracy at that threshold. 
Significance was accepted at p < 0.05.

We also compared RBDtector RSWA estimates on data from a previous study of the SINBAR  group25. Inclu-
sion and exclusion criteria, acquisition of PSG data and analysis as well as methods for RSWA quantification 
are described  elsewhere25.

Results
Comparison of human scorings and RBDtector results. Clinical and demographic data as well as 
PSG characteristics of the arbitrarily selected 10 RBD-positive patients and 10 controls for inter-scorer and 
RBDtector comparison are reported in Table 1.

After the elimination of arousal events, 1769 30 s epochs (= 74.7% of all REM epochs) and 21,289 3 s mini-
epochs (= 89.9% of all REM mini-epochs) were evaluated for tonic, phasic, and any activity as well as for non-
physiological artefacts in the chin, FDS, and TA EMG by two human scorers. Most artefacts were identified in 
the mentalis channel (24.2 ± 28.9% of 3 s mini-epochs, range 0–94.0%; H(4) = 29.636, p < 0.001), whereas artefacts 
in the arm and leg electrodes were infrequent (average of all channels: 1.2 ± 1.2%, range 0 – 6.8%). Agreement 
between scorers on artefacts was poor, and κ values ranged between 0.21 – 0.30 across all channels.

After the elimination of the combined artefacts from both scorers, the amount of RSWA in patients and con-
trols did not differ between the scorings of the human expert and RBDtector across all channels at group level. 
However, we observed lower estimates of RSWA of the novice scorer compared to RBDtector for any activity at 
the mentalis, right FDS, and right TA as well as for right TA phasic activity. Human scorings did not differ sig-
nificantly across scorers, but again estimates of RSWA based on the analysis of the novice scorer were numerically 
lower (Table 2). On average, the ten RBD-positive patients showed elevated muscle activity in the mentalis and 
FDS, whereas TA EMG scorings showed only minor differences between groups (Table 2).

At the subject level, we observed the highest agreement for phasic and any activity of the FDS between 
RBDtector and human scorings with  R2 values above 0.9. Agreement of mentalis EMG scorings ranged from 
 R2-values of 0.41/0.57 (tonic activity) to 0.82/0.75 (any activity) with a higher agreement between RBDtector 
and the expert scorer. Scorings of the TA EMG showed only minor agreement between RBDtector and human 
scorers (Fig. 1, Table 3).

At the single epoch level, concordance between human scorers and RBDtector was substantial for most EMG 
channels as indicated by Cohen’s κ values above 0.6. Again, the highest agreement was obtained for phasic and 
any activity of the FDS (Table 3), and agreement of RBDtector results was higher with the human expert (all κ 
values > 0.63) than with the novice (lowest agreement for tonic activity at mentalis EMG, κ = 0.38). The concord-
ance of RBDtector results with the human expert was higher than the concordance between human scorers.

Table 1.  Demographics and polysomnography data of 10 + 10 subjects for comparing human scorings. 
BMI body mass index, N1/2 non-rapid eye movement sleep stage 1/2, SWS slow wave sleep, REM rapid eye 
movement sleep, RBD REM sleep behaviour disorder, AHI apnoea hypopnea index, PLMSI periodic limb 
movements in sleep index. Statistics: *Student’s t test, §Mann–Whitney U test, #Chi-square test.

RBD n = 10 controls n = 10 p-value

Demographics

Age [y] 69.0 ± 5.7 60.0 ± 12.3 0.061*

Sex [m/f] 7/3 9/1 0.582#

BMI [kg/m2] 25.6 ± 2.1 25.3 ± 2.8 0.796§

Polysomnography

Total bedtime [min] 439.4 ± 67.7 422.0 ± 90.2 0.649*

Sleep efficiency [%] 85.4 ± 9.6 86.1 ± 8.3 0.912§

Sleep latency (N2) [min] 14.6 ± 16.4 10.5 ± 5.2 1.000§

N1 [min] 90.2 ± 65.8 71.0 ± 43.8 0.796§

N2 [min] 160.5 ± 36.6 184.6 ± 54.6 0.278*

SWS [min] 57.9 ± 26.4 46.4 ± 24.3 0.336*

REM [min] 56.8 ± 25.8 57.8 ± 25.1 0.931*

AHI [/h] 6.2 ± 8.0 10.6 ± 13.3 0.393§

PLMSI [/h] 43.7 ± 32.2 29.7 ± 34.7 0.315§
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Performance of RBDtector. In a second step, we evaluated 174 PSGs including 72 PSGs of subjects with-
out RBD and 102 with RBD by RBDtector. Demographics, PSG characteristics, and RSWA indices are sum-
marized in Table 4. For better readability, we only present merged left and right RSWA indices of FDS and TA 
EMG and reported only the combination of mentalis and FDS EMG with the highest discriminatory perfor-
mance (= mentalis any + FDS bilateral any) as well as the combination originally proposed by the SINBAR group 
(= mentalis any + FDS bilateral phasic).

We analysed RSWA indices after removing arousal events, mentalis EMG channels affected by snoring arte-
facts, and EMG channels corrupted by technical artefacts. That reassessment led to the exclusion of mentalis EMG 
channels in 29 PSGs (= 16.7% of all recordings), FDS EMG channels in 8 PSGs (= 6.3% of recordings—only 143 
PSGs included FDS recordings), and TA EMG channels in 11 PSGs (= 6.3% of all recordings).

RBDtector results with the removal of REM (mini) epochs containing arousals, snoring, and technical artefacts. In 
addition to Table 4, Fig. 2 illustrates the distribution of the amount of RSWA within the groups. After merging 
the subjects without RBD and subjects with RBD, RBD was associated with significantly elevated muscle activity 
in all EMG channels examined (all p-values < 0.003, Mann–Whitney U tests). Table 5 summarizes the accuracy 
metrics of RBDtector at 100% specificity and selected ROC curves are provided in Fig. 3. Estimations of RSWA 
with FDS EMG were superior in AUC, sensitivity, and accuracy to mentalis EMG (Table 5). A combination of 
both mentalis and FDS EMG channels provided the highest performance, specifically, the combination of any 
activity of the mentalis plus any activity of the FDS with 96% sensitivity (at 100% specificity) and 97% accuracy 
at a cut-off of 20.6% RSWA (Table 5). Applying the previously published cut-off value of 32% from the SINBAR 
group of any activity of the mentalis phasic plus phasic activity of the  FDS18, RBDtector had a sensitivity of 86% 
(at 100% specificity). Additional metrics at the original SINBAR cut-offs are given in Supplementary Table 1.

Poorest performance was observed with TA EMG estimations of RSWA, and PLMI correlated significantly 
with phasic and any activity of the TA (rho > 0.4, p < 0.001).

RBDtector results with removal of arousals only. In addition to Table 4, Fig. 4 illustrates the distribution of the 
amount of RSWA within the groups, when only REM (mini-) epochs containing arousals were discarded. After 
merging the subjects without RBD and subjects with RBD, RBD was associated with significantly elevated mus-
cle activity in all studied EMG channels (all p-values < 0.001, Mann–Whitney U tests). Table 5 summarizes the 
accuracy metrics of RBDtector at 100% specificity. Apart from one outlier with overt technical artefacts (example 
given in Fig. s1), estimations of RSWA with FDS EMG were again superior in AUC, sensitivity, and accuracy 

Table 2.  RSWA indices of RBD-positive patients and controls evaluated by human scorers and the RBDtector. 
RBD rapid eye movement sleep behaviour disorder, FDS flexor digitorum superficialis muscle, TA tibialis 
anterior muscle. Statistics: *significant difference between RBD and controls, 1significant difference between 
RBDtector and novice scorer, no significant difference found between RBDtector and expert scorer and expert 
and novice scorer. Significance was accepted at p < 0.05 uncorrected, Student’s t tests and Mann–Whitney U 
tests were applied as appropriate.

RBDtector Expert scorer Novice scorer

RBD controls RBD controls RBD controls

Mentalis

Tonic [%] 11.5 ± 16.1* 0.0 ± 0.0 11.7 ± 16.3* 0.0 ± 0.0 2.7 ± 4.2 0.2 ± 0.6

Phasic [%] 19.9 ± 9.7* 4.6 ± 3.4 20.6 ± 9.8* 5.0 ± 4.0 16.2 ± 8.6* 3.0 ± 3.3

Any [%] 31.0 ± 18.1*,1 4.7 ± 3.6 30.6 ± 16.0* 5.1 ± 4.2 17.8 ± 7.1* 2.2 ± 1.4

FDS right

Tonic [%] 1.1 ± 1.2* 0.0 ± 0.0 1.1 ± 1.3 0.0 ± 0.0 1.3 ± 2.0 0.0 ± 0.0

Phasic [%] 20.6 ± 5.8* 3.0 ± 1.8 18.1 ± 7.0* 3.2 ± 1.7 16.0 ± 5.8* 2.0 ± 1.5

Any [%] 23.8 ± 6.4*,1 3.0 ± 1.8 20.4 ± 7.7* 3.2 ± 1.7 17.2 ± 6.0* 2.0 ± 1.5

FDS left

Tonic [%] 2.7 ± 2.5* 0.0 ± 0.0 2.7 ± 3.3* 0.0 ± 0.0 1.9 ± 1.4* 0.0 ± 0.0

Phasic [%] 20.1 ± 7.4* 3.5 ± 1.9 20.2 ± 7.9* 3.5 ± 1.9 16.1 ± 6.1* 2.2 ± 1.4

Any [%] 24.1 ± 9.4* 3.5 ± 2.0 23.5 ± 10.0* 3.6 ± 1.9 17.8 ± 7.1* 2.2 ± 1.4

TA right

Tonic [%] 0.3 ± 0.6 0.0 ± 0.0 0.4 ± 0.8 0.0 ± 0.0 0.5 ± 0.5 0.0 ± 0.0

Phasic [%] 13.5 ± 5.21 10.2 ± 6.4 13.6 ± 10.1 6.7 ± 3.9 8.8 ± 4.6 6.7 ± 6.9

Any [%] 14.2 ± 5.41 10.4 ± 6.3 14.4 ± 10.5 6.9 ± 3.7 9.2 ± 4.6 6.8 ± 6.9

TA left

Tonic [%] 0.1 ± 0.3 0.0 ± 0.0 0.2 ± 0.6 0.0 ± 0.0 0.2 ± 0.3 0.0 ± 0.0

Phasic [%] 15.4 ± 6.3 11.4 ± 6.9 12.4 ± 5.2 7.6 ± 6.4 10.8 ± 5.7 5.9 ± 5.9

Any [%] 16.0 ± 6.5 11.8 ± 6.52 12.9 ± 5.3 7.7 ± 6.4 11.1 ± 5.8 5.9 ± 5.9
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Figure 1.  Correlation plots of the RBDtector scorings of the percentage of tonic, phasic, and any muscle activity 
in five different muscles during REM sleep against two human scorers (triangle, expert scorer and circles, novice 
scorer). Line of unity in light grey. FDS flexor digitorum superficialis muscle, TA tibialis anterior muscle, R right, 
L left.

Table 3.  Metrics of agreement between RBDtector and human scorers. iRBD idiopathic rapid eye movement 
sleep behaviour disorder, FDS flexor digitorum superficialis muscle, TA tibialis anterior muscle, n/a not 
applicable (not enough events).

RBDtector versus RBDtector versus Expert versus

Expert scorer Novice scorer Novice scorer

Mentalis

Tonic r = 0.76,  R2 = 0.57, κ = 0.68 r = 0.64,  R2 = 0.41, κ = 0.38 r = 0.67,  R2 = 0.44, κ = 0.41

Phasic r = 0.78,  R2 = 0.61, κ = 0.65 r = 0.91,  R2 = 0.83, κ = 0.59 r = 0.87,  R2 = 0.76, κ = 0.55

Any r = 0.87,  R2 = 0.75, κ = 0.76 r = 0.90,  R2 = 0.82, κ = 0.64 r = 0.82,  R2 = 0.68, κ = 0.62

FDS right

Tonic r = 0.79,  R2 = 0.62, κ = 0.63 r = 0.38,  R2 = 0.15, κ = 0.58 r = 0.73,  R2 = 0.53, κ = 0.61

Phasic r = 0.97,  R2 = 0.94, κ = 0.78 r = 0.98,  R2 = 0.96, κ = 0.72 r = 0.96,  R2 = 0.92, κ = 0.74

Any r = 0.97,  R2 = 0.93, κ = 0.83 r = 0.96,  R2 = 0.93, κ = 0.78 r = 0.95,  R2 = 0.91, κ = 0.78

FDS left

Tonic r = 0.90,  R2 = 0.82, κ = 0.79 r = 0.83,  R2 = 0.69, κ = 0.65 r = 0.78,  R2 = 0.61, κ = 0.61

Phasic r = 0.97,  R2 = 0.94, κ = 0.80 r = 0.99,  R2 = 0.97, κ = 0.72 r = 0.97,  R2 = 0.94, κ = 0.75

Any r = 0.97,  R2 = 0.94, κ = 0.84 r = 0.97,  R2 = 0.93, κ = 0.78 r = 0.95,  R2 = 0.90, κ = 0.80

TA right

Tonic r = 0.94,  R2 = 0.88, κ = 0.80 r = 0.67,  R2 = 0.44, κ = 0.57 r = 0.62,  R2 = 0.38, κ = 0.50

Phasic r = 0.48,  R2 = 0.70, κ = 0.65 r = 0.74,  R2 = 0.55, κ = 0.61 r = 0.54,  R2 = 0.30, κ = 0.65

Any r = 0.72,  R2 = 0.52, κ = 0.67 r = 0.74,  R2 = 0.55, κ = 0.63 r = 0.54,  R2 = 0.29, κ = 0.67

TA left

Tonic r = n/a,  R2 = n/a, κ = n/a r = n/a,  R2 = n/a, κ = n/a r = n/a,  R2 = n/a, κ = n/a

Phasic r = 0.45,  R2 = 0.20, κ = 0.67 r = 0.54,  R2 = 0.29, κ = 0.61 r = 0.88,  R2 = 0.78, κ = 0.70

Any r = 0.45,  R2 = 0.20, κ = 0.68 r = 0.53,  R2 = 0.29, κ = 0.62 r = 0.87,  R2 = 0.75, κ = 0.71
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compared to mentalis EMG (Table 5). A combination of both mentalis and FDS EMG channels provided com-
parable performance to FDS EMG alone (Table 5). ROC curves are provided in Fig. 3.

Comparison of amplitude and duration of muscle activity. Subjects with RBD showed not only 
an increased amount of RSWA but bouts of non-tonic activity (= phasic and any activity) had higher ampli-
tudes in all EMG channels (subjects without RBD vs. with RBD: mentalis, 11.8 ± 4.7 mV vs. 15.5 ± 4.5 mV; FDS 
right, 21.0 ± 10.6 mV vs. 31.3 ± 12.2 mV; FDS left, 19.4 ± 8.5 mV vs. 29.8 ± 11.0 mV, TA right, 30.0 ± 15.5 mV vs. 
43.6 ± 18.6 mV; TA left, 30.5 ± 14.7 mV vs. 43.5 ± 18.6 mV; all p < 0.001, Mann–Whitney U tests). AUC to dis-
criminate between RBD-positive and -negative subjects was below 0.8 for all EMG channels.

Similarly, phasic muscle bouts showed longer duration in the context of RBD (subjects without RBD vs. sub-
jects with RBD: mentalis, 614.5 ± 218.0 ms vs. 941.5 ± 227.5 ms; FDS right, 514.2 ± 221.3 ms vs. 954.4 ± 199.7 ms; 
FDS left, 512.0 ± 206.0 ms vs. 914.3 ± 176.1 ms, TA right, 501.8 ± 220.1 ms vs. 667.3 ± 208.8 ms; TA left, 
578.9 ± 291.6 ms vs. 646.6 ± 187.8 ms; all p < 0.003, Mann–Whitney U tests). AUC to discriminate between 

Table 4.  Demographics, polysomnography data, and RSWA metrics of subjects evaluated by RBDtector. 
BMI body mass index, N1/2 non-rapid eye movement sleep stage 1/2, SWS slow wave sleep, REM rapid eye 
movement sleep, AHI apnoea hypopnea index, PLMSI periodic limb movements in sleep index. Statistics: 
*ANOVA, §Kruskal Wallis test (post-hoc testing with Mann Whitney U test: 1different to PD noRBD, 2different 
to iRBD, 3different to PD + RBD at p < 0.05 uncorrected), #Chi square test. Significant values are in bold.

Total n = 174 Controls n = 56 PD noRBD n = 16 iRBD n = 81 PD + RBD n = 21 p-value

Demographics

Age [y] 62.1 ± 11.22,3 64.4 ± 8.3 66.9 ± 6.4 68.4 ± 6.7 0.031§

Sex [m/f] 42/14 13/3 69/12 14/7 0.220#

BMI [kg/m2] 25.8 ± 0.0 28.1 ± 4.6 25.3 ± 3.3 25.1 ± 4.3 0.068§

Polysomnography

Total bedtime [min] 457.6 ± 66.0 440.6 ± 71.8 465.3 ± 66.7 472.2 ± 63.5 0.273§

Sleep efficiency [%] 82.3 ± 11.7 77.1 ± 22.2 82.3 ± 9.5 81.3 ± 12.9 0.965§

Sleep latency N2 [min] 15.2 ± 15.53 28.5 ± 70.72 18.4 ± 15.63 8.7 ± 7.4  < 0.001§

N1 [min] 76.2 ± 46.6 63.1 ± 31.2 78.7 ± 41.7 62.7 ± 24.1 0.385§

N2 [min] 180.0 ± 50.7 171.9 ± 84.7 173.8 ± 43.4 189.9 ± 61.3 0.604*

SWS [min] 56.2 ± 26.1 57.1 ± 40.9 58.7 ± 26.6 52.8 ± 36.1 0.865*

REM [min] 59.3 ± 24.9 47.8 ± 30.7 59.3 ± 23.2 69.1 ± 40.0 0.132*

AHI [/h] 13.3 ± 13.72 16.1 ± 14.72 7.1 ± 9.5 11.4 ± 11.9 0.008§

PLMSI [/h] 35.4 ± 39.2 36.9 ± 49.0 45.4 ± 41.4 28.6 ± 29.5 0.051§

RSWA metrics (removal of arousals, snoring and technical artefacts)

Mentalis, tonic 0.3 ± 1.12,3 0.0 ± 0.02,3 10.4 ± 12.7 14.9 ± 12.8  < 0.001§

Mentalis, phasic 5.7 ± 3.72,3 4.6 ± 2.72,3 23.6 ± 11.3 25.8 ± 7.8  < 0.001§

Mentalis, any 6.0 ± 4.32,3 4.7 ± 2.72,3 33.9 ± 18.7 40.8 ± 17.0  < 0.001§

FDS bilat, tonic 0.1 ± 0.32,3 0.1 ± 0.32 7.0 ± 8.4 4.9 ± 7.3  < 0.001§

FDS bilat, phasic 7.4 ± 4.72,3 4.9 ± 4.12,3 33.5 ± 11.33 25.6 ± 8.8  < 0.001§

FDS bilat, any 7.5 ± 4.62,3 5.1 ± 4.22,3 39.1 ± 15.0 31.4 ± 13.6  < 0.001§

TA bilat, tonic 0.3 ± 0.81,2,3 2.6 ± 4.1 1.7 ± 3.0 2.4 ± 5.6  < 0.001§

TA bilat, phasic 20.1 ± 12.52,3 18.3 ± 9.72,3 29.9 ± 12.3 25.9 ± 9.9  < 0.001§

TA bilat, any 20.5 ± 12.52,3 21.7 ± 13.42 31.3 ± 12.9 28.9 ± 14.1  < 0.001§

Mentalis, any + FDS, any 11.2 ± 4.12,3 10.1 ± 5.92,3 54.2 ± 18.5 51.5 ± 15.3  < 0.001§

Mentalis, any + FDS, phasic 11.1 ± 4.02,3 9.9 ± 5.72,3 51.4 ± 17.2 49.0 ± 14.8  < 0.001§

RSWA metrics (removal of arousals events only)

Mentalis, tonic 0.7 ± 1.92,3 0.4 ± 1.52,3 10.8 ± 13.2 13.7 ± 12.5  < 0.001§

Mentalis, phasic 8.9 ± 7.52,3 6.7 ± 5.52,3 24.8 ± 10.6 25.7 ± 7.5  < 0.001§

Mentalis, any 9.7 ± 8.32,3 7.2 ± 6.32,3 35.4 ± 17.9 39.4 ± 16.1  < 0.001§

FDS bilat, tonic 0.3 ± 1.52,3 0.2 ± 0.32,3 7.1 ± 8.4 11.4 ± 13.7  < 0.001§

FDS bilat, phasic 9.0 ± 8.42,3 8.0 ± 8.02,3 33.2 ± 11.33 25.2 ± 8.7  < 0.001§

FDS bilat, any 9.3 ± 8.62,3 8.3 ± 8.32,3 38.8 ± 15.0 36.8 ± 14.8  < 0.001§

TA bilat, tonic 0.7 ± 3.21,2,3 2.4 ± 4.0 2.1 ± 5.3 2.4 ± 5.5  < 0.001§

TA bilat, phasic 21.1 ± 13.82 18.0 ± 9.52 31.3 ± 14.0 24.7 ± 10.3  < 0.001§

TA bilat, any 22.1 ± 14.82,3 21.2 ± 13.12 32.9 ± 15.0 27.7 ± 14.2  < 0.001§

Mentalis, any + FDS, any 18.1 ± 11.82,3 15.9 ± 10.92,3 56.6 ± 17.7 57.6 ± 16.1  < 0.001§

Mentalis, any + FDS, phasic 17.9 ± 11.72,3 15.7 ± 10.82,3 53.8 ± 16.4 50.1 ± 14.3  < 0.001§
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RBD-positive and -negative subjects was below 0.8 for both TA channels, 0.87 for mentalis, and 0.943 for FDS 
right as well as 0.935 for FDS left.

RSWA estimations of RBDtector on a previously published dataset. We also evaluated the per-
formance of RBDtector on the same dataset where a commercially available integrated software, which scores 
according to the SINBAR criteria, has been previously  validated25. This dataset included 20 patients with RBD 
and 60 controls. RBDtector was not applied to 3 recordings from controls due to technical issues (one had frag-
mented REM sleep, and two EDF files were discontinuous). In all recordings, muscular activity related to manu-
ally scored arousals was removed. To allow a fair comparison with the previous manual and automatic scorings 
performed in this dataset, RBDtector processed the data without any further artefact management at a sampling 
frequency of 1000 Hz with a bandpass filter between 50 and 300 Hz and a 48 to 52 Hz notch filter, which were 
applied in the previous study. RBDtector showed comparable quantifications of RSWA with the SINBAR sleep 
expert (Spearman rho values ranging from 0.62 to 0.96, best comparability with scorings of the FDS EMG, see 
Fig. s2). These values are similar to the correlation achieved by the integrated software used by  SINBAR25. When 
using the thresholds proposed by the SINBAR  group18, RBDtector achieved RBD classification sensitivity and 
specificity in the 95% confidence intervals of the ones achieved by the commercially available validated software 
(Table 6).

Discussion
We introduce RBDtector, an open-source software algorithm to quantify RSWA following the established SINBAR 
scoring scheme. We compared the RBDtector scorings to human evaluations and tested its performance on a 
large dataset. RBDtector showed robust comparability to human scorings with the best performance for EMG 
analysis of the flexor digitorum superficialis. Furthermore, the concordance of RBDtector results with the human 
expert was higher than the agreement of the less trained human scorer with the sleep expert. Even in the absence 
of artefact removal, RBDtector could detect RBD-positive subjects with high accuracy by combining RWSA 
indices of the mentalis and flexor digitorum superficialis in our dataset. RBD-positive subjects not only showed 

Figure 2.  Dot plots of individual tonic (upper row), phasic (middle row), and (any) percentage of rapid eye 
movement (REM) sleep without atonia after removal of arousals, snoring and technical artefacts in mentalis 
EMG and combination of FDS and TA EMG channels of both sides as well as the combination of mentalis EMG 
and combined FDS EMG channels. Subjects without RBD (RBD-, patients with Parkinson’s disease marked 
as black dots) are presented on the left, and subjects with RBD on the right (RBD +). FDS flexor digitorum 
superficialis muscle, TA tibialis anterior muscle, R right, L left.
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a higher quantity of muscle activity, but activity bouts also displayed higher amplitude and duration on average. 
Eventually, RBDtector showed high comparability with sleep expert scorings in an independent dataset and could 
identify RBD patients with similar sensitivity and specificity to a comparable commercial integrated  software25.

Relevance of selected muscles to detect RSWA. The SINBAR criteria for RSWA is the only scoring 
scheme that considers muscles of the face, arms, and  legs18,28,29. We selected this scheme to be implemented in 
RBDtector to allow for high flexibility in the analysis of EMG channels. Additionally, as already reported in the 
initial SINBAR  publication18,20 and recently supported by the new guidelines from the International RBD Study 
 Group17, we confirmed the usefulness of adding arm EMG to the standard PSG montage for detection of RBD 
in our large sample. FDS EMG was beneficial in multiple ways: (i) these channels showed the lowest frequency 
of artificial signals compared to mentalis and TA EMG, (ii) the congruency of human scorings among each 
other and with RBDtector was the highest, and (iii) the discriminatory value to detect RBD was superior to all 
other individual channels for the quantity of RSWA and for metrics of single activity bouts (i.e. amplitude and 
duration). Accordingly, we strongly concur with the recommendations to use arm EMG when screening for 
or evaluating RBD in  subjects21. This recommendation is further supported by the high specificity, sensitivity 
and accuracy provided by the combination of RSWA estimations from mentalis and FDS EMG (i.e. mentalis 
any + FDS any), which was superior to classification performance when only EMG channels from a standard 
PSG montage were used.

Oppositely, the assessment of leg EMG, i.e. TA EMG, as part of the standard PSG montage, did not add 
relevant information to discriminate RBD-positive subjects on an individual level, even though TA activity was 
higher in RBD-positive subjects on a group level. TA EMG might especially be confounded by (periodic) limb 
movements unrelated to RSWA in  RBD30. Correspondingly, we found a positive correlation between PLMI and 
phasic as well as any activity of TA.

Hitherto, studies on RSWA primarily focused on the evaluation of increased muscle activity on the 
 chin17,23,24,28,29,31,32. The high relevance of chin EMG is also displayed by the fact that the highest accuracy to 
detect RBD-positive subjects was achieved when combining RSWA metrics of the chin and arms consistent 

Table 5.  Metrics of the accuracy of RBDtector. AUC  area under the curve, bilat bilateral, FDS flexor digitorum 
superficialis muscle, TA tibialis anterior muscle. Values in parentheses represent cut-off values after the 
exclusion of a single RBD-negative subject, which exhibited technical artefacts on both FDS channels (example 
given in Figure s1).

AUC 
Cut-off value with 100% 
specificity Sensitivity at 100% specificity Accuracy at 100% specificity

Removal of arousals, snoring and technical artefacts

Individual muscles

 Mentalis, tonic 0.848 7.1 50% 70%

 Mentalis, phasic 0.942 19.0 71% 83%

 Mentalis, any 0.945 23.5 72% 83%

 FDS bilat, tonic 0.885 2.2 66% 78%

 FDS bilat, phasic 0.989 23.7 79% 86%

 FDS bilat, any 0.990 23.8 82% 89%

 TA bilat, tonic 0.673 13.9 3% 42%

 TA bilat, phasic 0.739 59.0 2% 42%

 TA bilat, any 0.733 62.5 3% 42%

Muscle combinations

 Mentalis, any + FDS, any 0.994 20.6 96% 97%

 Mentalis, any + FDS, phasic 0.993 20.6 96% 97%

Removal of arousal events only

Individual muscles

 Mentalis, tonic 0.833 10.4 41% 66%

 Mentalis, phasic 0.902 36.8 13% 48%

 Mentalis, any 0.916 41.5 41% 66%

 FDS bilat, tonic 0.876 9.8 25% 52%

 FDS bilat, phasic 0.959 51.8 (27.1) 6% (69%) 40% (80%)

 FDS bilat, any 0.964 51.3 (28) 21% (76%) 50% (85%)

 TA bilat, tonic 0.688 24.3 2% 43%

 TA bilat, phasic 0.732 59.3 3% 43%

 TA bilat, any 0.721 63.9 5% 44%

Muscle combinations

 Mentalis, any + FDS, any 0.957 59.2 (48.8) 51% (73%) 69% (83%)

 Mentalis, any + FDS, phasic 0.952 59.2 (48.7) 37% (67%) 60% (79%)
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with the recommendations in the initial SINBAR  publication18. However, the quantification of chin EMG might 
potentially be affected by artefacts, which could lead to biased estimates of RSWA.

Relevance of artefact management. A thorough artefact removal did increase the accuracy of RBD-
tector results in our analysis. However, a current consensus on optimal artefact management is  lacking17. Chin 
EMG is highly prone to a wide variety of different artefacts: snoring, air flow-mediated movements of the lips/
chin, ECG artefacts, and electrode dysfunction in bearded subjects. Furthermore, in our comparison of two 
human scorers, congruency was poor on an individual epoch level, which is in line with a previous  study20. 
We, therefore, decided to discard the complete EMG channel instead of selected epochs from the analysis if an 
extensive amount of potential artefacts were present. This conveniently shortens the manual labour for artefact 
elimination, as the decision for channel exclusion can be made during routine PSG evaluation. However, this 
rigorous step leads to the exclusion of the chin EMG in many subjects.

Particularly, when evaluating RSWA to detect iRBD patients, who are mostly male and older, the likelihood 
of sleep-related breathing disorders is  increased33, which impacts the occurrence of chin EMG  artefacts20. This 
might implicate false RSWA estimations and subsequently potential misclassification. Surprisingly, normative 
data for RSWA in subjects with AHI ≥ 15/hour are  sparse18,28,29,31,34, even though an AHI of 15.5/hour is consid-
ered normal in healthy adults at the age of 65–79 years according to a recent meta-analysis33. This is, however, 
precisely the age span to expect, when screening for RBD in the context of α-synucleinopathies as neurodegen-
erative disorders are classical age-related diseases showing increasing prevalence and incidence in the ageing 
population. Interestingly, we also found a correlation of age with RSWA in the FDS in RBD-positive and RBD-
negative subjects. This finding needs further validation in future studies.

We did not exclude subjects by a given AHI cut-off. Hence, our data likely depict clinical reality. At best, 
an automated artefact detection system covering multiple potential artefacts at different EMG channels (e.g. 
snoring, respiration, and technical malfunction) should be implemented on a mini-epoch level. However, such 
a system was out of the scope of our current study. Including machine-learning approaches or adding infor-
mation from acoustic recordings might help to specifically reduce the influence of snoring artefacts on RSWA 
 quantification35,36. As for the modular structure of RBDtector, the future addition of such an artefact-detection 
module to improve the interpretability of mentalis EMG is feasible and might be desirable for sleep laboratories 
without access to arm muscle EMG.

The exclusion of artefacts on the other EMG channels, i.e. FDS, was less relevant as their frequency was 
considerably lower and artefacts mostly stemmed from obvious technical dysfunction of the EMG channel with 
a complete lack of interpretability for the channel.

Comparison to other computerized RSWA detection algorithms. Visual scoring of RSWA is still 
the gold standard of RSWA  quantification17,19. Accordingly, we aimed to implement an established visual scoring 
scheme including various EMG channels in RBDtector. Multiple visual scorings schemes have been introduced 
by several groups with high expertise in RSWA and RBD  assessments18,28,29, and the SINBAR system as well as 

Figure 3.  Receiver operating characteristic (ROC) curves of selected electromyography channels: from left to 
right: mentalis, any; flexor digitorum superficialis (FDS) bilateral (bilat), any; tibialis anterior (TA) bilateral, 
any; combination of mentalis, any + FDS, any. Upper row provides ROC curves of RBDtector performance after 
removal of arousals only and lower row provides ROC curves after removal of arousals, snoring and technical 
artefacts (“full artefact removal”).
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the criteria introduced by McCarter and colleagues were implemented in commercial software  solutions23,25. 
However, SINBAR criteria exclusively are included in the AASM scoring manual, thus likely constituting the 
most widely used in clinical practice. Additionally, SINBAR is the only visual scoring scheme validated on arm 
EMG channels.

In contrast, multiple computerized RSWA quantifications including fully-automated and semi-automated 
algorithms exist, which show moderate comparability between each  other24,32,34,37. These algorithms, however, 

Figure 4.  Dot plots of individual tonic (upper row), phasic (middle row), and (any) percentage of rapid eye 
movement (REM) sleep without atonia after removal of arousals only in mentalis EMG and combination of 
FDS and TA EMG channels of both sides as well as the combination of mentalis EMG and combined FDS EMG 
channels. Subjects without RBD (RBD-, patients with Parkinson’s disease marked as black dots) are presented 
on the left, and subjects with RBD on the right (RBD+). FDS flexor digitorum superficialis muscle, TA tibialis 
anterior muscle, R right, L left.

Table 6.  Comparison of performance detection for RBD achieved in a previously published  dataset25. The data 
obtained from the publication of Frauscher et al.25 are shown as mean and 95% confidence interval.

Performance Manual25
Automatic without artefact 
 correction25

RBDtector without artefact 
removal

Mentalis, phasic
Sensitivity 0.90 (0.68–0.99) 0.90 (0.68–0.99) 0.80

Specificity 0.68 (0.55–0.79) 0.47 (0.33–0.60) 0.40

Mentalis, tonic
Sensitivity 0.64 (0.38–0.82) 0.75 (0.51–0.91) 0.80

Specificity 1.00 (0.92–1.00) 0.98 (0.91–1.00) 0.93

Mentalis, any
Sensitivity 0.85 (0.62–0.97) 0.90 (0.68–0.99) 0.85

Specificity 0.73 (0.60–0.84) 0.45 (0.32–0.58) 0.39

FDS, phasic
Sensitivity 0.94 (0.73–1.00) 0.95 (0.72–1.00) 0.94

Specificity 0.87 (0.75–0.94) 0.81 (0.69–0.90) 0.82

Mentalis, any + FDS, phasic
Sensitivity 0.83 (0.59–0.96) 0.94 (0.73–1.00) 0.83

Specificity 0.87 (0.75–0.94) 0.72 (0.59–0.83) 0.60
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mostly lack the validation on arm EMGs, which are less prone to artefact contamination than the mentalis 
 EMG32,38, especially in patients with airway-related sleep disorders. As artefact management is a big distinguish-
ing factor in such automated  quantifications20,31, direct comparison without arm EMG is often inconclusive. In 
a recent comparative study on six different  algorithms24, sensitivity, specificity, and accuracy were in the range 
of 60–70%, which is lower than the metrics we could obtain with RBDtector when applying a brief elimination 
of severely artefact-affected EMG channels. The detection of RSWA events of all SINBAR categories, as opposed 
to approaches that only classify whether a subject has RSWA or not, facilitates further research on differences 
in disease characteristics depending on specific EMG presentations. More direct comparative research on the 
different quantitative RSWA detection algorithms is necessary to achieve a fully conclusive view. Meanwhile, 
modern machine-learning approaches and the inclusion of arm EMG might overcome existing caveats of previ-
ous automated RSWA algorithms in the future.

The second goal of RBDtector was to provide a software tool free of charge with open-source code and the 
possibility to modify the tool to centre-specific conditions. This significantly distinguishes RBDtector from 
previously published computerized solutions for RSWA estimation. We aimed for a computer algorithm with a 
modular architecture with separated import and analyses modules to be readily customized to import data of 
varying systems and hope that this unique combination will facilitate the use and future adaptation of RBDtector.

Limitations. Our sample for initial validation of human and RBDtector scorings comprised only 10 PSGs of 
subjects with and 10 PSGs without RBD. Still, more than 20,000 mini epochs were analysed by two independ-
ent human scorers, which should provide sufficient data to estimate the parameters of RBDtector’s accuracy. 
Additionally, we could compare RBDtector scorings to an independent, previously published dataset, and could 
achieve high comparability to human scorings comparable to a commercial software  solution25. However, the 
congruency among human scorers and compared to RBDtector was only modest for tonic activity of the chin. 
This finding is in line with a recent report evaluating the inter-scorer agreement of tonic and phasic activity 
assessment, showing considerable differences among scorers, especially for tonic  activity22. Hence, all estima-
tions of tonic activity on the chin have a high intrinsic variability even when artefacts are handled carefully.

Our RBD-positive subjects were all most likely affected by an α-synucleinopathy, and we did not test RBDtec-
tor performance in other disorders related to RBD and RSWA. Future studies are warranted to evaluate RBDtector 
for these entities. Finally, RBDtector is currently optimized to one commercial PSG system and using it with 
another system might imply minor changes in the code to import sleep stages and EMG data. However, due to its 
modular architecture, the RSWA-scoring part of RBDtector does not need to be changed. We provide thorough 
annotations in the supplementary material to facilitate importing other formats.

Conclusion and outlook. RBDtector is an open-source tool to quantify RSWA according to an established 
visual scoring scheme and can separate RBD-positive from RBD-negative subjects with high accuracy—even in 
the presence of potential artefacts. We hope that this tool will facilitate RSWA quantification for researchers and 
might allow for higher comparability of RSWA quantifications between different centres as potential human bias 
can be minimized. As RBDtector is open-source and has a modular architecture, researchers may further cus-
tomize it, e.g. including automated artefact detection, which is still an unsolved issue hampering the reliability 
and comparability of RSWA estimates.

Data availability
Data are available from the corresponding author upon reasonable request. Because the subject’s consent is 
required for data disclosure, we may disclose data conditionally through internal discussions, contact with the 
subjects, and the local ethical committee.
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