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Long‑term durability of immune 
responses to the BNT162b2 
and mRNA‑1273 vaccines based 
on dosage, age and sex
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Mohammad Sajjad Ghaemi 4, Iain R. Moyles 1,2, Morgan Craig 5, Hsu Kiang Ooi 4 & 
Jane M. Heffernan 1,2*

The lipid nanoparticle (LNP)‑formulated mRNA vaccines BNT162b2 and mRNA‑1273 are a widely 
adopted multi vaccination public health strategy to manage the COVID‑19 pandemic. Clinical trial 
data has described the immunogenicity of the vaccine, albeit within a limited study time frame. 
Here, we use a within‑host mathematical model for LNP‑formulated mRNA vaccines, informed by 
available clinical trial data from 2020 to September 2021, to project a longer term understanding of 
immunity as a function of vaccine type, dosage amount, age, and sex. We estimate that two standard 
doses of either mRNA‑1273 or BNT162b2, with dosage times separated by the company‑mandated 
intervals, results in individuals losing more than 99% humoral immunity relative to peak immunity 
by 8 months following the second dose. We predict that within an 8 month period following dose 
two (corresponding to the original CDC time‑frame for administration of a third dose), there exists a 
period of time longer than 1 month where an individual has lost more than 99% humoral immunity 
relative to peak immunity, regardless of which vaccine was administered. We further find that age 
has a strong influence in maintaining humoral immunity; by 8 months following dose two we predict 
that individuals aged 18–55 have a four‑fold humoral advantage compared to aged 56–70 and 70+ 
individuals. We find that sex has little effect on the immune response and long‑term IgG counts. 
Finally, we find that humoral immunity generated from two low doses of mRNA‑1273 decays at a 
substantially slower rate relative to peak immunity gained compared to two standard doses of either 
mRNA‑1273 or BNT162b2. Our predictions highlight the importance of the recommended third 
booster dose in order to maintain elevated levels of antibodies.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first detected in December of 2019 has 
driven COVID-19 into a global  pandemic1–3. Recognizing the severity of this novel pneumonia outbreak, global 
research efforts were rapidly organized and the first viral sequence became publicly available on 26 December 
 20194. Immediately, various vaccine research groups began optimizing their current vaccine technologies to 
express the wildtype SARS-CoV-2 spike protein. SARS-CoV-2 vaccine candidates then resulted, including inac-
tivated virus, viral protein subunits, messenger RNA (mRNA) recombinant human adenovirus, and non-viral 
replicating vector vaccines. Among these vaccine candidates, mRNA vaccines had a head start in exploiting the 
viral sequence due to its inherent rapid prototyping (high yield in-vitro transcription reactions) and manufac-
turing  scalability5. The pre-clinical trial was initiated immediately in January 2020 and in April 2020, Phase I/
II of the clinical trials commenced. In less than 8 months, the mRNA vaccines BNT162b2 (manufactured by 
Pfizer-BioNTech) and mRNA-1273 (manufactured by Moderna) were approved for emergency use in several 
 countries6,7.

OPEN

1Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, 
ON M3J 1P3, Canada. 2Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, 
Toronto, ON M3J 1P3, Canada. 3Department of Mathematics, University of Manitoba, 186 Dysart Road, Winnipeg, 
MB R3T 2N2, Canada. 4Digital Technologies Research Centre, National Research Council Canada, 222 College 
Street, Toronto, ON M5T 3J1, Canada. 5Department of Mathematics and Statistics, Université de Montréal & 
Sainte-Justine University Hospital Research Centre, 3175, ch. Côte Sainte-Catherine, Montréal, QC H3T 1C5, 
Canada. *email: chapinSkorosec@gmail.com; jmheffer@yorku.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-25134-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21232  | https://doi.org/10.1038/s41598-022-25134-0

www.nature.com/scientificreports/

As of July 22, 2022, 86.16% (31.3 million individuals) of the 5-year and older population in Canada has 
received a primary series of vaccinations, with Pfizer-BioNTech and Moderna comprising 50.54% (19.3 million 
people) and 14.13% (5.4 million people) of vaccinated individuals,  respectively8. Further, more than 357 and 
227 million doses of Pfizer-BioNTech and Moderna vaccines, respectively, have been administered in the United 
 States9. On July 29th, 2021, the Ministry of Health of Israel announced a third-booster-dose strategy based on 
preliminary report finding vaccine efficacy in prevention of infection via the Pfizer-BioNTech vaccine drops from 
75 to 16% seven months following the second  dose10. There is therefore urgency to understand and accurately 
predict waning immunity amongst individuals who received two-doses of the LNP-formulated mRNA vaccines, 
and to provide an estimate for a correlate of protection.

For acute SARS-CoV-2 infection, antibody and memory B-cell responses have been reported to be robust 
for up to 8  months11, and T-cell responses have been shown to be robust up 12 months following infection by 
the wild type  strain12. In comparison, two doses of mRNA-1273 and BNT162b2 have shown seroconversion in 
the short term that surpasses that of recovered patients: 1 month post second dose, antibody stimulation (IgG 
and IgM) is reported to be higher while neutralizing antibodies are shown to be similar to recovered patients for 
fully vaccinated  individuals13–15. In vaccinated SARS-CoV-2 naive individuals, studies of antibodies responses 
are predominantly short-(less than 60 days) and medium-term (less than 120 days)11,16–23, with one recent study 
examining antibody response out to day  21024. With the continued emergence of new variants of concern, there 
is a key gap in the understanding of the long-term (beyond 120 days) robustness of the two-dose LNP-formulated 
mRNA vaccines adopted by health authorities. To address this gap, we established an ODE-based mechanistic 
model that describes the humoral immune response of mRNA vaccines to predict long term immunity. We fit 
our model to reported antibody and cytokine levels to clinical trial data using two standard doses of mRNA-
1273 (100 µ g) or BNT162b2 (30 µg)18–23, as well as separately to two low doses of mRNA-1273 (25 µg)25. Our 
mechanistic modelling approach allows us to gain insight into the biological processes involved in the mRNA 
vaccine uptake process in humans. Model results show significant decay in antibody a few months after dose-two 
inoculation, with the decay rate depending on the vaccine type, dose size, and age of the vaccine recipient. We 
find little difference between male and female predicted vaccine response.

Results
The details of all standard two-dose BNT162b2 and mRNA-1273 IgG and cytokine data sets used in this study 
can be found in in Table 3. All two-dose data sets were simultaneously fit to our model (Eq. 9) (shown schemati-
cally in Fig. 1) using the non-linear mixed-effects algorithm ‘SAEM’ (Stochastic Approximation Expectation-
Maximization) in  Monolix26 (see “Parameter estimation, fitting assessment, and long-term simulations” section 
for further details). All model fits are biologically informed; fixed parameters are determined by literature-
informed sources, and parameter values found by the fitting routine lie within acceptable ranges found in the 
literature (see Table 1).

The population fit parameters for the two-standard-dose results are shown in Table S2, with all individual 
fit parameters shown in Tables S3 and S4. Plots of individual fits to each data set are shown in Figures S1–S4. 
Predictive checks and parameter distributions are included in Figs. S5–S6 and distributions of the random effects 
in Figures S7–S8. In this work we also consider a comparison to two low doses (25 µ g) of mRNA-1273. The 
population parameter fit values to the low dose data can be found in Table S5, while all individual fit values can be 
found in Tables S6–S7. Plots for individual fits to the two low doses of mRNA-1273 data can be found in Fig. S9, 
goodness of fit and predictive checks are shown in Fig. S10, and distributions of random effects are provided in 
Figs. S11–12. A Partial Rank Correlation Coefficient sensitivity analysis is performed to assess how model fit 
parameters affect the peak response from each state variable, the result of which is shown in Figure S13. We find 
the sensitivity analysis to reveal intuitive trends based on the model structure; peak state variable responses are 
sensitive to their respective source and removal terms.

Model is consistent with clinically‑observed humoral responses. In Fig.  2 we summarize our 
findings for the IgG responses from two standard doses of BNT162b2 or mRNA-1273. The average standard 
two-dose model IgG response for mRNA-1273 (determined by the individual fits to the clinical data obtained 
 from22,23, see Tables S3 and S4) and BNT162b2 (determined by the fits to the clinical data obtained  from19–21,24, 
see Tables S3 and S4) vaccines are shown in Fig. 2a and are denoted by green and red dots, respectively (average 
are determined using the appropriate studies corresponding to each vaccine—see Tables S3 and S4). The popula-
tion fit taking into account all standard two-dose data from BNT162b2 and mRNA-1273 is shown in blue. We 
show our long-term predicted response for each two-standard-dose vaccine type up to day 265, which marks 
the initial approximate date of the planned dose three, 8 months following dose  two27, which, however, was later 
adjusted to a 6 month post-dose-two  timeline28.

We show our long-term predicted response for each two-standard-dose vaccine type up to day 265, which 
marks the initial approximate date of the planned dose three, 8 months following dose  two27, however, was later 
adjusted to a 6 month post-dose-two  timeline28.

We note that for all IgG responses, the y-axes are in arbitrary units (A.U.) and depend on the methodology 
employed within each respective publication. In this work each clinical data set has not been re-normalized or 
adjusted. As such, direct comparison between the magnitude of the BNT162b2 or mRNA-1273 IgG responses 
can not be reasonably completed. However, the time dependence of the relaxation of each IgG response rela-
tive to their respective peak response can be directly compared. Each IgG fit is therefore normalized by its peak 
immunity determined through its respective fit. For Fig. 2b–d, the green to red colour sequence distinguishes 
25, 50, 75, 99 and >99 IgG% loss relative to peak immunity.We note that the percentage loss milestones are not 
intended to be relevant immune-correlate markers for vaccine efficacy, rather, they are used as fixed markers to 
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compare humoral loss through time amongst multiple studies. The time at which each percent loss occurs for 
each vaccine, as well as the humoral degradation rate, γA , fit from Eq. (9e), are shown in Table 2.

We find that the humoral degradation rate γA for the two standard dose population fit (which includes both 
Pfizer and Moderna vaccines) is 0.042 with a relative standard error of 27.2%. The average γA for mRNA-1273 
and BNT162b2 is found to be be 0.042± 0.003 and 0.043± 0.004 d

−1 , respectively. The time to reach the 25, 
50, 75, 99 and >99% loss milestones also varies substantially between vaccine types with 94, 114, 141, and 238 
days for mRNA-1273, and 72, 88, 110 and 190 days for BNT162b2. By day 265 following dose one, we find both 
mRNA-1273 and BNT162b2 are predicted to lead to antibody counts less than 99.5% peak loss.

Figure 1.  Schematic of the within-host model for inocculation and subsequent immunity generated from LNP-
formulated mRNA vaccines. The full model description and mathematical assumptions can be found in “Model 
for in-host mRNA vaccination” section.

Table 1.  Samples of literature-sourced half-lives to compare with our SARS-CoV-2 two-dose mRNA-vaccine 
values. Literature sourced values are not necessarily SARS-CoV-2-specific, rather are listed here to demonstrate 
that the model-determined values are correct to within an order of magnitude of other values found in the 
literature. ∗ This value is not a half life, but is the total observed time of translation. † These values are SARS-
CoV-2 specific.

Parameter Definition Fitted value ( d−1) Equivalent half life Half life value sourced from the literature

γA IgG degradation rate 0.042 (mRNA-1273), 0.043 (BNT162b2) ∼ 16 days 36 days (IgG) †29, 21 days (IgG) †30, 20.4 days (NAb) †31, 68.8 
days (anti-S titres)32

γV Antigen presenting cell decay rate 0.07 10 days 10 days (mice)∗ †33

γF IFN-γ clearance rate 201.24 5 min 30 min (human)34, less than 3 min (mice)35, 40 min (mice)36

γI Interleukin clearance 0.027 25.7 days 15.5 h (IL-6, mice)37, 2.5-5 h (IL-15, human)38, 5 h (IL-8, 
human)39

γB Plasma B cell degradation rate 0.071 9.8 days 11.6 days (human)†40, 7-8 weeks (mice)41, 18 days (human)42
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In Table 1 we compare our model determined decay rates, and subsequent half-life values, to those found 
in the literature. Discussion on the values determined by our fits and their agreement with the literature can be 
found below.

Long term predictions for two standard doses of mRNA‑1273 depending on age. The model 
fits to data including population delineation by  age22 allow for analysis of specific study age cohorts. Whereas in 
Fig. 2a we plot the overall response from all age cohorts, in Fig. 3a we separate the age cohorts into 18–55, 55–70, 
and 70+ aged individuals and plot the model predicted responses. Reported errors are the standard deviations 
of the determined fit values. We find nearly identical long-term (post peak) behaviour between the 56–70 and 
70+ individuals with γA of 0.045± 0.014 d

−1 and 0.045± 0.015 d
−1 , respectively. While for the 18-55 cohort 

we find µBA and γA to be 0.74 and 0.040± 0.015 d
−1 , respectively. We find slight differences in the plasma B 

cell removal rates, γB ; younger individuals have a γB of 0.05± 0.05 d
−1 while 70+ individuals have a larger γB 

of 0.06± 0.05 d
−1 . Thus, our results suggest little differences in Plasma B cell maintenance across age cohorts, 

however, antibodies are found to degrade faster in older cohorts. This age-dependent differences is leading to a 
higher IgG response in younger individuals by day 265 compared to older individuals.

To better illustrate the differences between the predicted responses from 18–55 and 70+ individuals, we 
compared the ratio of 18-55 and 70+ fitted responses (Fig. 3b). We find that by day ∼ 50 the ratio is ∼ 1, however, 
as time progresses an advantage for the 18–55 cohort emerges, such that by day 265 the 18–55 age group has 
roughly four-fold more IgG compared to the 70+ age group. We also find a much stronger initial IgG response 
in the 18–55 age cohort, where by day ten these individuals have 3 times more IgG, however, this advantage 
quickly decays. All fitted Eq. (9) model parameters for all age-specific predictions can be found Tables S3 and S4.

Figure 2.  Predicted IgG response based on fits to clinical data for two standard doses of BNT162b2 or mRNA-
1273. (a) IgG as a function of time since dose one for two standard doses of mRNA-1273 (green line, green 
squares represent actual data), BNT162b2 (red line, red triangles represent actual data), and the population 
fit which uses both mRNA-1273 and BNT162b2 two-dose data (blue line, combines all available data). (b) 
Predicted IgG remaining, normalized by the peak IgG count, for the population fit (panel a, blue line) as a 
function of days since the first dose. (c) Predicted IgG remaining for the two-dose BNT162b2 fit (corresponding 
to red line in Fig. 1a) as a function of days since the first dose. (d) Predicted IgG remaining for the two-dose 
mRNA-1273 fit (corresponding to green line in Fig. 1a) as a function of days since the first dose.

Table 2.  Summary of IgG predictions presented. Time to reach respective loss values are measured as time 
since the day of first dose.

Vaccine type and dosage γA ( d−1)

Time to reach respective 
percent loss (d)

Loss by day 265 (%)25% 50% 75% 99%

Two standard dose population fit 0.042 83 101 125 212 99.90

Two standard dose BNT162b2 0.043 72 88 110 190 99.96

Two standard dose mRNA-1273 0.042 94 114 141 238 99.67

Single low dose mRNA-1273 0.067 109 134 168 N/A 97.3
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Sex dependant long term predictions for two standard doses of BNT162b2. Amongst the clini-
cal data used for our fit to two standard doses of BNT162b2 is a data set where IgG response is separated by  sex24. 
In Fig. 4a we plot the sex-dependent predictions as well as the corresponding clinical data separated by sex. In 
Fig. 4b we plot the ratio of the male and female predicted response. A higher initial IgG advantage emerges for 
males that peaks on day 30, however, the immunity advantage slowly dissipates such that by day 265 the ratio of 
male to female IgG response is ∼1.

Long term predictions for two low doses of mRNA‑1273. Figure 5a displays the IgG population 
model prediction for two low-doses of mRNA-127 (25 µ g as opposed to 100 µg). The clinical data for these fits 
was sourced from ref.25 (this data set was not included in the standard dose fits described above). Individual fits 
to the RBD and spike IgG can be found in Fig. S9, all individual fit parameters can be found in Tables S6 and 
S7, and the two-low-dose population fitted parameters can be found in Table S5. The population fit for two-
low-doses mRNA-1273 yields γA = 0.067± 0.003 d

−1 . The time to reach a percent loss of 25, 50, 75%, relative 
to peak IgG value is 109, 134, 168 days, and by day 265 we find 97.3% of the peak response has waned (Fig. 5b).

Discussion
We have developed a novel within-host mathematical model (Eq. 9) to describe the vaccine dynamics from 
LNP-formulated mRNA vaccines. An in-depth description of our novel model for LNP-based mRNA vaccines 
is provided in the “Methods” section. We curated data from 8 previously published two-dose mRNA-1273 and 
BNT162b2 antibody and cytokine clinical trials, comprising a total of 22 data sets (antibody and cytokine meas-
urements). We then utilized the SAEM fitting algorithm in  Monolix26 (described further in “Parameter estima-
tion, fitting assessment, and long-term simulations” section) to simultaneously fit the data to our model for two 
standard doses of mRNA-127322,23 and  BNT162b218–21,23 (comprising a total of 20 data sets), and also separately 
fit to 2 datasets for two low doses of mRNA-1273 (obtained  from25). For all clinical data used in this work, the 
time between doses is the vaccine developer’s recommended dose interval time. In line with the initial planned 
dose three interval set out by the  CDC27, 8 months following dose two, we extend all of our fits to predict the 
response out to day 265 following dose one.

Table 2 summarizes our long-term predictions shown in Fig. 2a–d. We find humoral immunity gained from 
two standard doses of mRNA-1273 and BNT162b2 to peak on days 63 and 47 following dose one, respectively. We 
normalize our curves by the peak IgG value to then determine the milestones for percent loss relative to the peak. 
A number of modelling studies predicting waning immunity caution SARS-CoV-2 resurgence upon inadequate 
administration of a booster dose, depending on the severity of how quickly immunity  wanes43–45. Before the third 
dose of the vaccine is administered, we predict a significant window of time where individuals will have greater 

Figure 3.  (a) IgG response as a function of time since dose one for two standard doses of mRNA-1273, 
separated by age groups 18–55 ( n = 15 ), 56–70 ( n = 9 ), and 70+ ( n = 10 ) years of age, with data sourced from 
Ref.22. (b) Ratio of predicted IgG response of 18–55 age cohort to the 70+ age cohort.
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Figure 4.  (a) IgG response as a function of time since dose one for two standard doses of BNT162b2 for male 
( n = 22 ) and female ( n = 24 ) data  sets24. (b) Ratio of male to female predicted IgG response from panel (a).

Figure 5.  (a) IgG as a function of time since dose one for two low doses of mRNA-1273. Blue line is the model 
prediction fit from the clinical data ( n = 33 ) shown as orange points. (b) Predicted IgG remaining, normalized 
by the peak IgG count, for the two low doses of mRNA-1273 shown in panel (a).
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than 99% humoral loss relative to peak immunity of 105 and 27 days for BNT162b2 and mRNA-1273, respec-
tively. Our predictions are therefore in agreement with the CDC’s adjusted timeline of 6 months post dose two for 
the third dose of the  vaccine28, as opposed to the initial 8 month post dose two  plan27. Overall, we find that two 
doses of mRNA-1273 to decay slower relative to peak immunity compared to two doses of BNT162b2 (Table 2).

The modest humoral advantage as a function of time for mRNA-1273 recipients is in line with the recent 
CDC MMWR report which found vaccine effectiveness in preventing hospitalization was higher for Moderna 
recipients compared to  Pfizer46. Furthermore, individuals who received two-doses of mRNA-1273 have been 
found to have dramatically reduced neutralizing antibody activity 6 months following dose  two47; suggesting a 
6 month timeline for dose three post dose  two28.

It is known that statistical power in model data fitting is decreased when study cohort populations are  small23. 
We have curated and simultaneously fit 22 datasets of mRNA vaccine clinical trials from previously published 
studies (see Table 3). The power of the SAEM algorithm employed by Monolix thus provides greater statistical 
power in the current study. A better perspective on SARS-CoV-2 vaccine-elicited within-host antibody half-lives 
(and generation and decay of other components of the immune reponse) can then be obtained. Table 1 sum-
marizes the fit-determined decay rates and equivalent half-lives, and compares our fitted values to those found 
in the literature. We note that the values are mRNA-vaccine specific; we have not analyzed vaccinated recipients 
who have been challenged by SARS-CoV-2, and we have not analyzed SARS-CoV-2 naive individuals challenged 
by SARS-CoV-2. We find that the half-life elicited from two doses of BNT16b2 and mRNA-1273 to be 16.1 days 
and 16.5 days, respectively. The IgG half life values compare well to previously determined SARS-CoV-2 IgG 
half-life values of 36  days29 and 21  days30. A study tracking anti-S titres for BNT162b2 vaccines found a signifi-
cantly longer half life of 68.8 days for  BNT162b232, suggesting that other components of the antibody response 
may have a much longer half-life. However, in the individual fit to the Suthar et al. data set, which tracked anti-
body waning for 6 months in 56 healthy volunteers who received two doses of the BNT16b2 vaccine, we find the 
model fit to have good agreement with the data (Fig. S1j,n) and determine a half-life on that fit of 17.8 days. Thus, 
a fit to data extending out to 6 months post dose 1 reveals results in agreement with antibody waning timescales 
on the order of t 1

2
∼ 20 days, similar to previous  reports29–31.

A slight decline in Spike+ Memory B cells has been observed for SARS-CoV-2 recovered individuals (Fig-
ure 2B  from18), however, a half-life or decay rate was not provided. We estimate plasma B cells actively producing 
IgG to have a half-life of ∼ 10 days, however, we stress that this value does not include IgG+ Memory B cells that 
are maintained within the body and activated upon a SARS-CoV-2 challenge. This predicted decay in antibody-
producing Plasma B cells may reflect the fact that upon no SARS-CoV-2 challenge primed plasma B cells may 
be transitioning to a memory B cell state.

We are unable to find SARS-CoV-2-specific cytokine half lives from the literature. Cytokines are, however, 
known to have quick in vivo half-lives. Our population fit to the mRNA-vaccine IFN-γ data sets from Berga-
maschi et al.20 and Camara et al.21 reveal an IFN-γ decay rate ( γF ) of 201.24 d −1 , corresponding to a half-life of 
∼ 5 min. The individual fits, however, show a larger spread in half-life values; Bergamaschi et al.20 and Camara 
et al.21 individual-fit-determined half-lives vary between 3.7 and 83 min, respectively, suggesting that significant 
variability can occur between cytokine data sets containing varied numbers of individuals. Nonetheless, the 
resulting SARS-CoV-2 vaccine-specific IFN-γ half-lives compare well to values determined in studies of both 
humans and mice (Table 1). We note that a large variability in half-life response is not found for our antibody 
fits (see Tables S3 and S4).

The novel mathematical model (Eqs. 9a–h) developed in this work represents the complex physiological 
response elicited by mRNA-based vaccination in humans, from the initial vaccine dosage through to humoral 
and cellular immune responses. To understand and validate the model, as well as validate the fitted parameter 
estimates, we performed both structural and practical identifiability analyses. Structural identifiability methods 
are used to determine whether each model parameter has an effect on the model  output48.

Table 3.  Summary of clinical data used in this work. Some publications listed studied in-host vaccine 
dynamics from both Sars-CoV-2 naive and previously infected indivduals, in this work we only digitized those 
data that are in the naive category and report the associated population size.

Reference Quantities used in this work Vaccine Dosage Population size

18 RBD IgG, Spike IgG BNT162b2 &mRNA-1273 2 dose, 30 µ g or 100 µg 33 (32 BNT162b2 & 1 mRNA-
1273)

19 Spike IgG BNT162b2 2 dose, 30 µg 124 for dose 1
69 for dose 2

20 Spike-RBD IgG, IFN-γ,IL-6, IL-8, 
IL-15, IL-16 BNT162b2 2 dose, 30 µg 63

21 Spike IgG, IFN-γ BNT162b2 2 dose, 30 µg 20
22 RBD IgG mRNA-1273 2 dose, 100 µg 34
25 Spike IgG, RBD IgG mRNA-1273 2 dose, 25 µg 33

23 Spike IgG, RBD IgG BNT162b2 &mRNA-1273 2 dose, 30 µ g or 100 µg 20 (6 BNT162b2 & 14 mRNA-
1273)

24 Spike IgG BNT162b2 2 dose, 30 µg 46 (24 females, 22 males)
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Since, we focused on state variable peak values and subsequent decay, we performed PRCC sensitivity analysis 
with LHC sampling on every Eq. (9) parameter and determined the parameter’s influence on variable peak values 
(the model output), as shown in Figure S13. We found that the vaccine absorption rate µLV and decay rate γL 
(Eq. 9a) had little to no sensitivity on all model outputs, suggesting these parameters may not be identifiable 
in our fitting approach. The vaccinated cell decay rate, γV (Eq. 9b), represents the rate vaccinated cells cease to 
influence CD4+ T cell priming; model outputs were found to be highly sensitive to γV . Without imposing prior 
assumptions or boundary conditions on γV , we fit this value to be 0.07 d−1 , which equates to a halflife of ∼ 10 
days, demonstrating remarkable consistency with the length of time that mRNA vaccines have been found to 
actively translate at the site of injection in  mice33. CD4+ T cell dynamics were also found to have a strong influ-
ence on the model output; for this reason, given we are not fitting to CD4+ T cell data specifically, we fixed the 
CD4+ decay rate to γT = 0.055 as previously  estimated49 to avoid structural (and practical) non-identifiable 
issues. Our sensitivity study unveiled some intuitive influences of parameter values on the model’s outputs. For 
example, cytokine peak values were determined to be sensitive to their respective cytokine parameters as well 
as CD8+ T cell dynamics. Likewise, antibody peak values were found to be sensitive to antibody parameters as 
well as plasma B cell parameters, consistent with physiological truths.

To gain further structural model insight, we also performed a model complexity reduction analysis (sup-
plementary section 6). There, we demonstrated that the model can be decomposed into two distinct phases: the 
first is a priming phase which represents a cascade of interactions from vaccinated cells through to CD4+ and 
CD8+ T cells, and the second a complex activator-inhibitor phase between plasma B cells and interleukin. We 
simulated both the full model and reduced model under the same parameter estimates and uncovered nearly 
identical solutions (Figure S14).

Practical identifiability attempts to quantify whether the estimated model parameters are well-constrained 
by the various data sets to which they are being  fit48. In this vein of practical identifiability, we estimated random 
effects (REs) via a nonlinear mixed effect model  Monolix26. This method is particularly useful for interpreting 
experimental  heterogeneity50. With respect to two-standard doses, the resulting REs are summarized in Table S2. 
Following the structural identifiability outcomes described above, we found the dosage dynamics (Eq. 9a) had 
high random effect values with large relative standard error (RSE), implying parameters in Eq. (9a) have practical 
non-identifiability, in agreement with our previous sensitivity results. Similarly, the model complexity reduction 
(supplementary section 6) was found to be robust to parameters γL , αFC , and αCF in that the model solutions 
both with zero and non-zero values were nearly identical (Figure S14). Therefore, non-identifiability in these 
parameters is likely due to their lack of influence on model structure rather then practical identifiability. Fur-
ther, we found reliable REs and RSEs on the antibody production and degradation parameters, suggesting our 
reported antibody dynamics are well-constrained to the data sets used in this work. Generally, for non-fixed 
parameters where REs were employed in the fitting algorithm, we were able to estimate all random effects, but 
not always the relative standard error of the random effects (denoted by ‘NaN’ in Table S2). As determined by the 
model complexity reduction (explored in much further detail in ref.51), many of these parameters decouple into 
quickly-dissipating timescales that are of no practical use to measuring antibody dynamics or cellular immunity. 
Altogether, these identifiability analyses serve as a strong foundation for employing our model for future data-
driven work where the relationship between model parameters and identifiability can be used to derive a more 
simple well-behaved model structure to determine robust parameter estimates for various serological features 
beyond those studied in this work.

An immunologic correlate of protection against SARS-CoV-2 has not yet been  established52. However, pre-
vious modelling and statistical studies have considered NAb antibody responses as correlates of protection to 
estimate vaccine efficacy, where modelled predictions were able to successfully capture efficacies from clinical 
 trials53, and furthermore a robust correlation between IgG and NAb has been found between titre response and 
vaccine  efficacy54. Our modelling approach allows us to make a clinically-guided qualitative prediction for a 
humoral-based immunologic correlate of protection. For example, it has been found that 7 months following 
dose two of Pfizer/Biontech efficacy in preventing infection drops from 75 to 16%10. At 7 months past dose two 
for BNT162b2 we predict IgG levels to drop to 0.16% of the peak response; suggesting that 0.16% of the peak 
response correlates to 16% efficacy. In another BNT162b2 study, efficacy against infection was found to decline 
to 47% five months post dose two, with efficacy against the delta variant found to be 53% four months after full 
 vaccination55. We find that following two standard doses of BNT162b2 the IgG counts have dropped to 2.1 and 
7.2% of peak, 5 and 4 months following the second dose, respectively.

An antibody study of mRNA-1273 found vaccine efficacy as low as 50.8%, and as high as 96.1%, 28 days past 
dose two, and further found vaccine efficacy to increase throughout day 29–57 past dose  one56. We find that 28 
days past dose two mRNA-1273 IgG levels are predicted to be at 99% of their peak value, and from days 29 to 57 
past dose one the IgG levels are predicted to increase towards the peak value, which occurs on day 63 (Fig. 2d).

It is known that as individuals age, they can develop numerous possible molecular immunological impair-
ments that lead to an inability to maintain humoral  immunity57,58. A decline as a function of age for Ab and B-cell 
SARS-CoV-2-specific responses from two doses of mRNA vaccines has been previously  observed18. Therefore, 
we expanded our study to predict humoral immune loss as a function of age for two-standard-dose mRNA-1273 
where data was available to do so. We find that over the first 20 days post dose one, the younger cohort has a 
much stronger predicted IgG response compared to the 70+ cohort, such that by day 10 they have achieved a 
three-fold IgG advantage over the older cohort (Fig. 3b). A more rapid antibody response to vaccination is not 
unexpected in younger individuals, where factors such as impaired B cell development and maintenance are more 
common in the  elderly59. Indeed, we find that plasma B cells are produced at roughly the same rate amongst all 
ages, however, die at a slower rate of 0.044 d −1 in younger individuals, compared to a rate of 0.061 d −1 in older 
individuals; which suggests that younger individuals are better at maintaining their plasma B cell population.
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The initial humoral advantage in younger individuals quickly dissipates, such that by day 50 the ratio of 
IgG response between 18–55 and 70+ individuals is ∼1.0. As time progresses beyond day 50 after dose one, we 
find there exists an increased ability to maintain humoral immunity amongst 18-55 aged individuals compared 
to 56–70 and 70+ aged individuals (Fig. 3b), such that by day 265 the 18–55 aged individuals are predicted to 
have ∼4-fold more IgG compared to older individuals. This result is in line with mRNA-1273 low-dose clinical 
findings where a two-fold reduction in IgG by day 209 in older cohorts was  found25, as well as a separate study 
which found mRNA-1273 and BNT162b2 levels to negatively correlate with  age60. These results support vaccine 
administration strategy that prioritizes older  individuals61, as we predict their humoral immune loss to occur 
faster compared to younger individuals.

As the world’s nations respond to the continued spread of the SARS-CoV-2 pandemic and the emergence of 
its many variants, vaccine conservation is becoming increasingly important. As cautioned by the World Health 
Organization, many individuals in some priority populations have not yet received a primary  vaccination62. This 
begs the question; will a lower dose elicit protection against a SARS-CoV-2 challenge? Without an immunologic 
correlate of protection against SARS-CoV-2 this question is difficult to answer explicitly. However, towards 
addressing the concern, we fit our model to two-low-dose (25 µ g) mRNA-1273 data sets (Fig 5), and compared 
the degradation kinetics relative to peak immunity to our two-standard-dose results (Table 2). All population fit 
parameters for standard and low dose scenarios are shown side-by-side in Table S2. For the low dose fits we find 
antibody degradation to be approximately ∼1.6 times faster, while the released antibody rate is a factor of ∼1.1 
times slower, as compared to the standard dose population fits. We find, however, that relative to peak immunity, 
the two-low-dose strategy loses immunity slower, such that by day 265 since dose one recipients are predicted 
to have 97.3% loss of peak immunity, compared to > 99 % peak loss for two standard doses of mRNA-1273 or 
BNT162b2 (Table 2).This result is corroborated by previous studies that demonstrate lower prime dosages (as well 
as longer separations between dosages) yield a higher efficacy, where the mechanism is hypothesized to be lower 
doses leading to a selection stringency in germinal centres ultimately leading to B cells with higher affinities for 
the target  antigen63. Further vaccine conservation may be realized by spreading the dosage interval beyond the 
manufacturers initial recommendations. Persistent immugenicity has been found in individuals having received 
extended prime-dosage-intervals of ChAdOx1 nCoV-19  vaccine64,65. We save for future work an exploration of 
increasing dosage intervals on immunological outcomes from mRNA vaccines using our modelling approach.

Our modelling approach successfully captures humoral immunity gained from vaccination and provides 
biologically-relevant mechanistic insight into the vaccination immune response. For future work, with appro-
priately high-resolved data we can expand the model to robustly predict cellular responses, or we can extend the 
model to include additional booster doses separated by variable timescales. Vaccine-free within-host pathogen 
dynamics have been studied for SARS-CoV-266–72, coupling a vaccine model, such as that presented in Eq. (9) 
in this work, with an infection model would be an interesting course of future work to better understand the 
mechanisms driving immunity vaccination together with challenge by infection.

Conclusion
In our study we develop a novel within-host mathematical model to describe the vaccination process of LNP-for-
mulated mRNA vaccines, and we fit our model to 22 mRNA-1273 and BNT162b2 clinical data sets to determine 
best-fit model parameters and establish accurate long term predictions. We separate our individual fits by age, 
sex, and vaccine type. We find young individuals (18–55 of age) to be more responsive to vaccination as well as 
maintain humoral immunity longer than compared to older (70+ of age) individuals. Our results suggest males 
have a slightly higher peak response to two doses of BNT162b2, however, there exists little difference between 
sexs in the ability to maintain humoral immunity over the long term. We predict that two standard doses of either 
vaccine results in less than 99% of peak immunity remaining by day 190 and 238 past dose one for BNT162b2 
and mRNA-1273, respectively. Relative to peak IgG response, the the mRNA-1273 vaccine is found to decay 
slower as a function of time as compared to BNT162b2.

Our results will help guide public health policies regarding booster dose timelines. Our humoral results, 
correlated with efficacy against infection studies, are in agreement with the CDC timeline that a booster of an 
LNP-formulated mRNA vaccine may be required within 6–8 months of the second dose to maintain high effec-
tiveness against SARS-CoV-2 and the emerging  variants27,28.

Methods
Clinical data acquisition. All clinical data used in this work were previously published and are summa-
rized in Table 3. If unavailable directly from the published source, we digitized the data directly using the soft-
ware WebPlotDigitizer (version 4.5)73. All data sets in the supplementary and main text have been deidentified, 
and all methods were performed in accordance with the relevant guidelines and regulations.

Model for in‑host mRNA vaccination. Here we describe our model for mRNA vaccination delivered by 
lipid nano particles, and the subsequent in-host immunization process. We model the time dependence of eight 
state variables: lipid nanoparticles (L), vaccinated cells (V), CD4+ cells (T), plasma B cells (B), antibody (A), 
CD8+ cells (C), and the cytokines interferon (F) and interleukin (I). The model developed in this work is adapted 
from our recently published adenovirus-based  model40.

Inoculation and vaccination. BNT162b2 and mRNA-1273 both contain base-modified—or nucleoside-mod-
ified—bmRNA that encode for full-length diproline-stabilized SARS-COV-2 viral spike protein, and are deliv-
ered via a payload enclosed by a lipid nanoparticle (LNP)74,75. The standard mRNA dose in BNT162b2 is 30 µ g, 
and together with the known mRNA size of 4.3  kb74 and average nucleotide molecular weight of 319 g  mol, there 
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are an estimated 1.32× 1013 of bmRNA in each dose. The standard dosage of mRNA-1273 contains 100 µ g of 
bmRNA, while the molecular weight of the molecule is not public knowledge. LNP-based mRNA theraputics are 
a novel techonology where the pathway to activating the innate and and adpative immune response in humans 
is not well understood. Further, the route of administration of an LNP-based vaccine has a pronouced effect on 
the targeted cell types and tissues; for example, a luciferase-based mouse study by Pardi et al. found that intra-
dermally, intraperitoneally, subcutaneously, intramuscularly, and intravenously inocculated LNP vaccines have 
varying  outcomes33. While intraperitoneally and intravenously delivered LNP vaccines tended to primarily drain 
to hepatocytes in the liver, intramuscularly, subcutaneously, and intradermally delivered LNP vaccine stayed 
near the site of injection for many days (with partial drainage to the liver). A later study examining intramuscu-
lar injection in mice found that an LNP-based mRNA vaccine activated the innate immune system and remained 
active near the injection site as well as in draining lymph  nodes76. The cytokines TNF and IL-6 were found in 
the muscle as as well as in the draining lymph nodes, as well as activation of B cells, and CD8+ , CD4+ T cells. 
Motivated by such studies, the SARS-CoV-2 mRNA-based vaccines BNT162b2 or mRNA-1273 are delivered 
intramuscularly to humans.

Upon receiving a dosage of BNT162b2 or mRNA-1273, the patient is therefore likely producing spike pro-
tein near the site of injection for many days, as well as in lymph nodes for a period of time. The timescales and 
activation thresholds between the innate and adaptive immune response, driven by the proportions of the LNP 
dose absorbed into myocytes, draining lymph nodes, and hepatocytes is not well known. Therefore, in this work, 
we take a course grained approach to the in-host immunization process and model a general ‘vaccinated’ cell 
compartment.

The mechanistic model we propose for innoculation and preceding immunization in-host from an LNP-based 
mRNA vaccine is as follows. The number of LNPs in-host after inoculation is

The µL,V term accounts for the interaction between the LNP-mRNA payload and target cell, V. We consider a 
cell successfully vaccinated upon the successful fusion of a LNP, leading to subsequent expression of the spike 
protein (which is not explicitly modelled). γLL captures the natural degradation of LNPs in-host, as well as 
fusion inefficiency and drainage of the LNPs to the liver. The vaccinated cell count, describing cells capable of 
producing antigen, is then

where γV  is a general decay rate describing the loss of ability of the cell to produce antigen (not necessarily 
through cell death). For example, intramuscularly delivered LNP-mRNA in mice has been shown to translate 
locally at the cite of injection for up to 10  days33; a decline in translation may be caused by a number of cytoplas-
mic  enzymes77. In this work we do not impose any boundaries on γV.

CD4+ cell priming by vaccinated cells. Having received the mRNA payload vaccinated cells express antigen, 
leading to the development of membrane-bound class-II peptide-major histocompatibility complexes (MHC-
II). Naive CD4+ T-helper cells (given by T in our model) recognize and bond with MHC-II where an informa-
tion exchange  occurs78. These dynamics are captured by the µT ,V term in our model. The CD4+ cell is then 
considered primed with antigen information. We therefore model the activation of naive CD4+ cells by

where µT ,V is the rate of interaction between naive T cells and vaccinated cells and γT is the natural death rate 
of T cells. In this work µT ,V is determined through a fit to clinical data. The decay rate is fixed to 0.055 d −1 as 
determined in a previous  study49.

Humoral immunity. We model a primary antibody response generated by plasma B cells (B). Plasma B cells are 
primed by antigen-specific T  cells79. In our model this is taken into account by the interaction rate µTB . The 
maturation of a naive B cell into an antibody secreting cells is further enhanced by various  interleukin79,80. We 
incorporate interleukin-mediated plasma B cell maturation into our model through the term α

BI

(

I

S
I
+I

)

 . Thus 
the term α

BI
 regulates Plasma B cell stimulation by interleukin, while S

I
 provides a duplication threshold of 

plasma B cells due to interleukin. We fix s
I
= 1000 , which was determined by the two-dose half-max interleukin 

threshold in our previous work on adenovirus  vaccines40, and is further justified as accurate for this current work 
by the maximum clinical IL-8 values determined from the BNT162b2 interleukin data set obtained from ref.20. 
In this work we use four interleukin data sets: IL-6, IL-8, IL-15, and IL-16. Previous studies have linked all four 
of these interleukins to Plasma B cell differentiation or  proliferation81–86, thus we incorporate all four of these 
interleukin species into our fits. We therefore model the production of antigen-specific plasma B cells, B, as

where γB is the natural death rate of plasma B cells. The production of interleukin (I) by CD4+ cells is described 
in “Model for in-host mRNA vaccination” section.

(1)
dL

dt
= −µL,VL − γLL.

(2)
dV

dt
= µL,VL − γVV,

(3)
dT

dt
= µT ,VV − γTT ,

(4)
dB

dt
= µT ,BT + α

BI

(

I

s
I
+ I

)

B− γBB,
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In this work we focus on the production of the predominant antibody in humans immunoglobulin G (IgG)87, 
and do not distinguish between subclasses of IgG or consider other types of immunoglobulin. In our model IgG is 
given by A, and we model the production of A by B through the source term µB,AB . The rate of change of A is then

where γA is the antibody degradation term.

CD8+ cell priming and cytokine response. CD8+ Cyotoxic T cells, denoted by C in our model, target and 
eliminate virus-infected cells. CD8+ cells are primed by antigen presenting cells (Eq. 2) through cell-surface 
bound MHC class I  molecules88. In our model this process is captured by the source term µCVV  . The regula-
tion of antigen-specific CD8+ by cytokines is complex. Type I IFN has been shown to enhance the CD8+ T 
cell response during  priming89, and Type II IFN (IFN-γ ) has been directly shown to enhance development of 
CD8+  memory90,91. We therefore model the enhancement of CD8+ memory development through a source term 
dependent on the presence of IFN-γ (denoted by F in our model).

The rate of change of CD8+ , C, cells is then

where γC is the natural death rate of CD8+ cells, αC,F accounts for stimulation by F, and S
F
 is the duplication 

threshold due to F. In this work we fix s
F
= 600 which was determined by the two-dose half-max IFN-γ threshold 

in our previous work on adenovirus  vaccines40, and is further justified as accurate based on the two-dose IFN-γ 
data used in this work from refs.21  and20. The CD8+ decay rate is fixed to 0.01 d −1 as determined in a previous 
 study92.

CD4+ and CD8+ cells exhibit complex cytokine secretion and regulation dynamics. Recent studies on SARS-
CoV-2 infection in humans have shown that cytokines are primarily produced by CD4+ cells, and that CD8+ 
are suppressed throughout the course of  infection12,93. Here, we consider a simplified approach where IFN-γ 
and Interleukin (I) cytokine production by primed CD4+ cells. CD4+ cells are one the predominant sources of 
cytokine  production94; CD4+ cells have been shown to secrete IFN-γ95,96 and are one of the primary synthesizers 
of  interleukins86,97. We therefore model the production of IFN-γ (F) and interleukin (I) by

and

The clearance of F and I is described by γF , and γI , respectively. Upon CD8+ priming enhancement by F, we 
model the subsequent removal of F by α

FC
CF . Similarly, upon Plasma B cell priming enhancement by I, we 

model the subsequent removal of I by α
IB
IB ; thus, we do not allow F and I to influence the rate of priming of 

multiple cells.
The complete model we use to describe the in-host immunization process by LNP-formulated mRNA vac-

cines is shown schematically in Fig. 1 and is given by 

(5)
dA

dt
= µ

BA
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Our model appears to be a complex 8 equation coupled model, however, demonstrated analytically in sup-
plementary section 6, the model readily decouples and reduces to a more simple activation-inhibition model 
between plasma B-cells and interleukin. We save for future work a full analytical exploration of the multiscaled-
ness and complexity  reduction51.

Parameter estimation, fitting assessment, and long‑term simulations. All fits to clinical data 
using our model (Eq. 9) were performed in  Monolix26 (Version 2020R1) using non-linear mixed-effects models. 
IgG and IFN-γ concentrations vary over many orders of magnitude over time, as such we log-transformed these 
quantities during fitting, while we fit to the linear interleukin response. Each data set used in this work is listed 
in Table 3; ‘individual study fits’ refers to aggregated data from the entire population of individuals within each 
respective study listed in Table 3. Individual study fit parameters (Tables S3 and S4) for each data set are deter-
mined by the maximum likelihood estimator Stochastic Approximation Expectation-Maximization (SAEM), 
and all fits met the standard convergence criteria (complete likelihood estimator). For IgG data sets from Ref.23, 
which begin on day ∼ 50 past dose one, an interval-censored data point was added to day 1 to guide the initial 
condition fit, where the allowable initial range of the fit is bounded within all the initial day 1 IgG values used 
in this work. Final clinical data points for IL-15 and IL-6 were gathered immediately after dose two where these 
quantities have peaked, such that the subsequent decay was not  characterized20. To ensure the eventual decrease 
in these cytokines as a function of time in our modelled prediction, we added an interval-censored data point 
on day 200, which ensures the fit on this day is between 0 and the minimal value determined on day 1 for each 
respective concentration. All two-standard-dose data sets are fit simultaneously in Monolix yielding a single 
standard dose population fit as well as individual fit parameters corresponding to each standard-dose data set. 
The two-standard-dose BNT162b2 and mRNA-1273 results are then determined by averaging the individual fit 
results determined from their respective vaccine type; thus, for example, our final mRNA-1273 model predic-
tion takes into account all mRNA-1273 clinical data sets used in this work. Similarly, all two-low-dose data sits 
are fit simultaneously in Monolix yielding a single low dose population fit as well as individual fit parameters 
corresponding to each low-dose data set. For all data sets we fit to cohorts of individuals, that is, the data were 
grouped and fit for each study, but not for each individual person within a study.

Sensitivity analysis. We perform sensitivity analysis to characterize the response of our model outputs to 
variation in the fitted  parameters98. Latin hypercube sampling (LHC) and partial rank correlation coefficient 
(PRCC)99 are employed to study the effects of model outcomes on the peak value of each state variable. We focus 
our sensitivity analysis on the peak values as the peak humoral response have been shown to be predictors of 
immune protection from symptomatic SARS-CoV-2  infection100. For a particular model paramter, PRCC values 
close to the maximum value of 1.0 indicate model output is highly sensitive to variation in that parameter, with 
values greater than 0.5 considered  significant101. PRCC values are either negatively or positively correlated with 
the model outcome (peak response)102.

Data availibility
All data that support the findings of this study are available within the manuscript and the supplementary infor-
mation files or from the corresponding authors upon reasonable request.
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