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The formulation of irrigation 
and nitrogen application strategies 
under multi‑dimensional 
soil fertility targets based 
on preference neural network
Shuai Lou 1, Rui‑Qi Hu 2, Yue Liu 1, Wan‑feng Zhang 3 & Shu‑Qing Yang 1*

With the aim of improving soil fertility, it is of great significance to put forward optimal irrigation and 
nitrogen fertilizer application strategies for improving land productivity and alleviating non‑point 
source pollution effects. To overcome this task, a 6‑hidden layer neural network with a preference 
mechanism, namely Preference Neural network (PNN), has been developed in this study based on the 
field data from 2018 to 2020. PNN takes soil total nitrogen, organic matter, total salt, pH, irrigation 
time and target soil depth as input, and irrigation amount and nitrogen application rate (N rate) as 
output, and the prior preference matrix was used to adjust the learning of weight matrix of each layer. 
The outcomes indicated that the predictive accuracy of PNN for irrigation amount were  (R2 = 0.913, 
MAE = 0.018, RMSE = 0.022), and for N rate were  (R2 = 0.943, MAE = 0.009, RMSE = 0.011). The  R2 
predicted by PNN at the irrigation amount and N rate were 40.03% to more than 99% and 40.33% to 
more than 99% higher than those obtained using support vector regression (SVR), linear regression 
(LR), logistic regression (LOR) and traditional back propagation neural network (BPNN), respectively. 
In addition, compared with the neural network (Reverse Multilayer Perceptron, RMLP) with the same 
structure but no preference structure, the  R2 of the predicted irrigation amount and N rate by PNN 
increased by 25.81% and 27.99%, respectively. The results showed that, through the irrigation of 93 to 
102, 92 to 98 and 92 to 98 mm, along with nitrogen applications of 65 to 71, 64 to 73 and 72 to 81 kg/
hm2 at 17, 59 and 87 days after sowing, respectively, the organic matter, total nitrogen, total salt 
content and pH of the soil would reach high fertility levels simultaneously.

The development of agriculture in China largely depends on the input of chemical  fertilizers1. However, exces-
sive irrigation and nitrogen applications not only lead to low fertilizer utilization efficiency but also result in soil 
 acidification2, soil nitrogen leaching  losses3, decreased organic matter content  levels4, and secondary  salinization5, 
which ultimately result in low soil fertility. It has been observed that methods involving the deep burial of straw 
were able to alleviate nitrogen  loss6 and soil  salinization7, and also could increase the soil carbon storage  levels8. 
However, a reasonable water and nitrogen application scheme must be taken to promote straw decomposition 
and improve soil fertility, reduce non-point source pollution effects, and realize salinization control. There have 
been few studies performed regarding the formulation of irrigation and nitrogen application strategies based on 
multi-indicator fertility goals under the condition of straw burial.

Over the past two decades, the majority of the accepted irrigation or nitrogen application strategies have 
only been able to formulate through comparisons of limited field  treatments9–12. To reduce the costs of field 
experiments and improve the accuracy of irrigation and nitrogen application strategies, physical models such 
as  HYDRUS13,14 and  SWAP15,16 came into being. These types of models can simulate the effects of different 
irrigation schemes on soil solute under specific boundary conditions. The model’s prediction accuracy can be 
improved by increasing the input density of irrigation and nitrogen  application17. However, most irrigation 
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or nitrogen application optimization strategies proposed through physical models were based on the forward 
research concept of “treatment-index-treatment.” In other words, first, determine the influence trend of measure 
variables such as irrigation amount on farmland variables such as soil salinity, then deduce the optimal measure 
according to the trend. However, the accuracy of the strategies formulated under the aforementioned concept 
depends mainly on the range and density of the measure variables in the adopted field layouts or input models. 
In addition, the effectiveness of the irrigation or nitrogen application combinations that had not been included 
in the model input ranges could not be fully validated. On the other hand, the research approach based on 
“treatment-index-treatment” cannot build a direct mapping relationship between the input indicators and final 
results, and must conduct an additional screening layer. As a result, the model can only optimize the strategy for 
a single goal, and cannot consider multi-dimensional goals comprehensively. Therefore, in order to address those 
issues, an innovative research idea which could directly put forward irrigation and nitrogen fertilizer application 
optimization strategies according to determined targets was urgently required.

In recent years, artificial intelligence (AI) models have been successfully used in the prediction processes of 
farmland indexes, such as  yields18,19, irrigation, nitrogen  applications20. Some studies have successfully predicted 
citrus fruit numbers and coffee yields using SVR models trained by crop  images21,22. In addition, wheat yields 
have been successfully predicted using high-resolution data collected by satellite sensors. The accurate predic-
tions of soil total nitrogen, organic carbon, and water content have been achieved using SVR models trained 
by near-infrared spectral  data23. Furthermore, the  yields24 of crop  ET0

25 and oilseed rape have been accurately 
predicted using multi-layer perceptron (MLP) methods. In addition to successful predictions on time scales, 
Dong et al.26 used wavelet BP-neural networks to predict maize crop yields under various fertilization treatment 
conditions and established the mapping relationships between fertilization treatments and crop yields. Gu et al.27 
used BP neural networks to predict crop yields under different amounts of irrigation. Therefore, it can be seen 
that the combinations of artificial intelligence and field experimental processes have provided new ideas for 
the formulation of irrigation and nitrogen application strategies. However, it should be noted that the models 
mentioned above had been mainly used for predicting such indicators as crop yields and had rarely shown the 
ability to be relevant in the formulation of accurate irrigation and nitrogen application strategies. In addition, 
the simple structure of the BP neural network leads to the lack of generalization ability, which cannot effectively 
solve the over-fitting problem caused by the limited amount of experimental data.

Objectives
The contribution of this study is to developed a preference neural network (PNN). The reverse training mecha-
nism of PNN enables the model to directly formulate optimal irrigation and nitrogen application strategies 
based on multi-dimensional goals composed of soil organic matter, total nitrogen, total salt, and pH value. In 
the HeTao irrigated area of northwest China, we carried out a two-factor cross experiment in 2018 and 2019 on 
the amount of irrigation and nitrogen application. We trained the PNN model using the obtained data, and the 
irrigation-nitrogen interaction surface of a single fertility index was drawn according to the predicted results. 
The strategies of irrigation and nitrogen application that could simultaneously meet the four fertility targets of 
soil organic matter, total nitrogen, total salt and pH were obtained. Based on this strategy, we rearranged the 
experiment in 2020, and the feasibility of the irrigation-nitrogen application scheme was verified by evaluating 
the fitting degree of simulated and measured values under the same strategy. In addition, the performance of 
PNN was compared with Support Vector Regression (including linear, Poly, and RBF kernel functions), Linear 
Regression (LR), Logistic Regression (LOR), and traditional Back Propagation Neural Networks (BPNN) , and 
traditional BP neural network to verify the model performance. The training and performance evaluation pro-
cesses is shown in Fig. 1.

Materials and methods
Study area. Figure 2 shows the location of the study area on a map of China generated by ArcGIS software. 
This study’s field experiments were carried out in the Shuanghe Town agricultural comprehensive water-saving 
demonstration area (40°42′ N; 107°24′ E), which is located in the middle reaches of the Hetao Irrigation Area 
of Inner Mongolia. The duration of the experimental process ranged from April in 2018 to October in 2020. 
The experimental area was characterized by a mid-temperate semi-arid continental climate. The average annual 
precipitation was determined to be 138  mm and the average evaporation was approximately 2332  mm. The 
majority of the rainfall was concentrated during summer and autumn seasons, and the accumulation of salt in 
the surface soil was considered to be serious in the spring and winter months. The average rainfall during maize 
growth period was 75.3 mm. The 0 to 40 cm soil layers in the experimental area were categorized as silty loam 
soil, with an average bulk density ranging from 1.42 to 1.53 g  cm−3. A maize straw layer with a thickness of 5 cm 
was buried at a depth of 40 cm, and then the land was leveled. Also, in addition to autumn watering and spring 
irrigation procedures, water from the Yellow River was used three times for irrigation during the entire growth 
period of the maize crops. The adopted irrigation method belonged to border irrigation. Urea (46% N) were used 
as the fertilizer types.

Field trials design and data collection. We carried out experiment 1 from 2018 to 2019, and the data 
obtained were used for model training and to determine the hyper-parameters. The experimental design is 
shown in Table 1. The PNN model trained from the data obtained in experiment 1 predicted the optimal range 
of irrigation amount and nitrogen application rate (N rate) for each growth period of maize. In these ranges, the 
soil organic matter and total nitrogen could be kept above 20 g/kg and 1.6 g/kg, respectively, the soil salt content 
was less than 2 g/kg, and the pH value was between 6.5 and 7.5. In order to verify the accuracy and feasibility of 
the range of irrigation and nitrogen application simulated by PNN, the field experiment 2 was set in 2020 based 
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Figure 1.  Flow chart of the proposed methodology to forecast evaporation using machine learning models.

Figure 2.  The location of the study area.
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on the range simulated by PNN and to evaluate the fitting degree between measured and simulated values of soil 
indicators under the same amount of irrigation and nitrogen application. The experimental design is shown in 
Table 2.

The experimental design were repeated for three times. The plot area of each treatment measuring 8 × 9 = 72 
 m2. The surrounding area was separated using 1.2 m buried polyethylene plastic film, and 30 cm was left at the 
top to prevent fertilizer and water from flowing into each other. The field management process was consistent 
with that used by the local farmers. The film width of maize was 1.1 m, with each film covering two rows. The 
plant spacing was approximately 45 cm, and the row spacing was 35 cm. In addition, the planting density of the 
maize was 60,000 plants/hm2.

During the entire growth period of the maize crops, soil samples were collected from the 0 to 20 cm, 20 to 
40 cm, 40 to 60 cm, 60 to 80 cm, and 80 to 100 cm soil layers using a soil drill and a three-point method was 
adopted. The soil samples were stored at 4 °C for the determination of total nitrogen, organic matter, total salt 
content, and pH values. The total nitrogen, organic matter, total salt content, and pH were determined using a 
KDN-AA double tube azotometer, MWD-2 microwave universal digestion device, TU1810PC ultraviolet–visible 
spectrophotometer, and a TU18950 double beam ultraviolet–visible spectrophotometer, respectively.

Soil parameters measured include organic matter (SOM), total nitrogen (TN), Salt and pH. The data set 
includes pre-irrigation and post-irrigation reports from 2018 to 2020. Statistical parameters regarding the soil 
data are shown in Table 3.

The dataset obtained in Experiment 1 in 2018 to 2019 was 2490 rows in size, the 80/20 principle was used 
to data into training, and testing sets were required for ML modeling; 80% of data were employed for model 
training, while the remaining 20% were used for testing. Specifically, the data corresponding to the treatments 
with the nitrogen application rate (N rate) of 75 kg/hm2 (N3) in all the treatments (W1N3, W2N3, W3N3) were 
used as the test set, and the data of the other treatments were used as the training set. The training set was used 
to initiate ML parameter training. Subsequently, The test set was employed to assess the model. The dataset size 
in 2020 was 1080 rows, which was used to verify ML modeling.

Figure 3 shows the changes of soil indexes over time for each treatment in the field test (take the 0–40 cm soil 
in the main distribution area of maize roots as an example). There are differences under the influence of different 
irrigation amounts. When irrigation is 90 mm, soil SOM is 13.25% and 7.00% higher than 60 mm and 120 mm, 
and soil TN is 4.59% and 6.50% higher than 60 mm and 120 mm, respectively. The soil Salt was 23.30% lower 
than 60 mm, and the pH was 4.16% and 4.36% lower than that of 60 mm and 120 mm, respectively. It can be seen 

Table 1.  Experimental 1 design scheme.

Serial number Treatment Irrigating water quota (mm) Nitrogen application rate (kg/hm2)

1 W1N1 60 45

2 W1N2 60 60

3 W1N3 60 75

4 W1N4 60 93.3

5 W2N1 90 45

6 W2N2 90 60

7 W2N3 90 75

8 W2N4 90 93.3

9 W3N1 120 45

10 W3N2 120 60

11 W3N3 120 75

12 W3N4 120 93.3

Table 2.  Experimental 2 design scheme.

Treatment

17d 59d 87d

Irrigating water quota 
(mm)

Nitrogen application rate 
(kg/hm2)

Irrigating water quota 
(mm)

Nitrogen application 
rate (kg/hm2)

Irrigating water quota 
(mm)

Nitrogen application 
rate (kg/hm2)

W1N1 102 71 98 73 98 81

W1N2 102 71 98 73 98 81

W1N3 102 71 98 73 98 81

W2N1 97.5 68 95 68.5 95 76.5

W2N2 97.5 68 95 68.5 95 76.5

W2N3 97.5 68 95 68.5 95 76.5

W3N1 93 65 92 64 92 72

W3N2 93 65 92 64 92 72

W3N3 93 65 92 64 92 72
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Table 3.  Various meteorological variables and their descriptive statistics. In this table, the Xmean, Xmedian, 
Xmax, Xmin and SD represent the mean, median, maximum and minimum of the weather variables, standard 
deviation, respectively.

Dataset Xmean Xmedian Xmin Xmax SD

SOM (g/kg) 15.45 15.36 4.27 21.79 2.93

TN (g/kg) 1.43 1.44 1.02 1.72 0.12

Salt (g/kg) 1.43 1.35 0.74 2.85 0.46

pH 7.49 7.42 6.71 8.45 0.36

Figure 3.  Changes in soil organic matter, total nitrogen, salinity, and pH under different treatments over time 
(a case study of 2019).
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that irrigation of 90 mm is more favorable for increasing soil SOM and TN contents and reducing soil salinity 
and alkalinity. Soil SOM and TN contents were the highest at n 75 kg/hm2, which were 4.38% and 8.34% higher 
than those at N = 93.3 kg/hm2, respectively. Soil Salt was the lowest at N = 60 kg/hm2, which was 3.02% lower 
than those at N = 75 kg/hm2, with a small gap with other levels. In conclusion, nitrogen application of 75 kg/hm2 
was beneficial to increase soil organic matter and nitrogen content, and nitrogen application of 60 kg/hm2 was 
beneficial to controlling soil salt content.

Machine learning (ML) models used for irrigation and nitrogen application strategies. Five 
ML frames were used to estimate the irrigation and N rate. These models are preference Neural Network (PNN), 
Support Vector Regression (SVR), Linear Regression (LR), Logistic Regression (LOR), and traditional BP Neural 
Networks (BPNN). Among them, the prediction effects of linear, Poly, and rbf kernel functions are respectively 
tried in SVR framework. The torch framework was used to train and test machine learning models in Python.

Development of preference neural network. Model framework. The preference neural network 
(PNN) which was proposed for the first time in this study was a typical deep learning model. PNN can be 
regarded as an approximate natural function in order to describe the complete dependence of the soil fertility 
indexes, including the effects of soil total nitrogen, organic matter, total salt content, and pH values on irrigation 
and nitrogen applications. More specifically, PNN has the ability to optimize the function by constructing the 
mapping y = f (x, θ) and learning parameter θ.

First, the input end of PNN model was defined as matrix X ∈ Rn×d (in which n is the sample size, n = 2490; and 
d is the dimension of each input vector, d = 6), where {xi} i=1, …, n ∈ X represents the vectorized set of total nitrogen, 
organic matter, salt content, and pH used for measuring the soil fertility, as well as the nitrogen application and 
irrigation durations (expressed by days after sowing). At the same time, the output end of the model was defined 
as the matrix Y ∈ ℝn×2, which represented the levels of the irrigation and nitrogen fertilizer applications. The goal 
of the proposed PNN model was to learn the fixed mapping Y′ = f (X; θ) ⇒Y through the given input matrix X, 
where θ is the well optimized learnable parameters which can be obtained via PNN training. Meanwhile, the 
predicted value Y′ will infinitely approach the measured value Y. The structure and the algorithm of this study’s 
PNN model is shown in Fig. 4 and Table. 4.

Layer‑by‑layer affine transformation. A good definition of the affine transformation of the information flow 
between layers is considered to be the key to neural network model training. Generally speaking, the learnable 
parameter θ of each layer of a model includes the weight parameter w and the preference parameter b. The hid-
den representation  hl of the l-th layer in PNN is defined as follows:

where Wl and bl represent the learnable weight and bias variables of the l layer, respectively, and hl-1 is the hidden 
representation of the upper layer. Therefore, when l = 1, then h0 = X.

In the present study, using the hierarchical update rules, a given input data stream was allowed to pass through 
each hidden layer with intermediate operations, and then finally reached the output end.

Preference structure. The correlation between different production behavior factors (e.g., irrigation levels) and 
different natural factors (e.g., soil organic matter) differs in agricultural production. However, the traditional 
fully connected neural network has the characteristic that nodes of one layer are fully connected with all nodes 
of subsequent layers, resulting in the neurons between production behavior factors and natural factors with very 

(1)hl(hl−1;Wl , bl) = hTl−1Wl + bl

Figure 4.  Schematic diagram for the PNN structural connections. In the figure, it can be seen that when each 
input vector passed through each layer of the PNN, it is first multiplied by the Hadamard product of the weight 
matrix and preference value matrix for the purpose of obtaining a weight matrix with preference properties. 
After the matrix was activated by the Relu Function, Batch Normalization Module Methods and the Dropout 
Module were used for random suspension and normalization processing, and the input of the next layer was 
obtained.
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weak correlation still all being connected. Conversely, connections between neurons corresponding to factors 
with solid correlations are not strengthened.

Therefore, in this study the preference value module was specially developed. By first calculating the correla-
tion and significance between different production behavior factors (irrigation amount, N rate) and different 
soil fertility factors (organic matter, total nitrogen, total salt and pH), the preference value between the above 
two types of variables was calculated, and the preference matrix was constructed. Then the Hadamard product 
of the weight matrix and preference matrix was used to realize the artificial intervention and guidance to the 
neural network’s learning process.

In order to reduce the adverse impact of non-normality of data on correlation analysis as much as possible, 
this study rank-based inverse normal (RIN) transformations (i.e., conversion to rank score) methods were used 
to normally process the  data28. The RIN transformation function used here is as follows:

where Φ–1 is the inverse normal cumulative distribution function, and n is the sample size.
The normal cumulative distribution function is represented as follows: for discrete variables, the sum of 

probabilities of all values less than or equal to a, and its formula is as shown below:

The RIN normalized conversion values meet the requirements of normal distribution, Pearson correlation 
analysis and t-test can be directly performed, and the formula used was as follows:

where r (X, Y) is the Pearson Correlation Coefficient, Var [X] is the variance of X, and Var [Y] is the variance 
of Y, Cov (X, Y) is the covariance of X and Y, which represents the overall error of the two variables. The t-test 
is performed on the normalized data after rank-based inverse normal (RIN) transformation method, and the 
formula is as follows:

where n is the number of samples, and r represents the Pearson Correlation Coefficient. Preference value is the 
concentrated embodiment of correlation and significance between variables, and the calculation formula is as 
follows:

(2)f (x) = �−1

(

xr − 1
2

n

)

(3)FX(a) = P(X ≤ a)

(4)r(X,Y) =
Cov(X,Y)

√
(Var[X]Var[Y])

(5)t =
√

n− 2

1− r2

Table 4.  Algorithm of Preference neural network.
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where PVij represents the preference values between the variables Xi and Yj, Xi represents the ith production 
behavior factor (e.g., irrigation amount), and Yj represents the jth soil fertility factor (e.g., soil organic matter 
content), Pij is obtained by looking up the table based on the t, and e is a constant, taking 0.001 in order to prevent 
the denominator of the formula from being 0.

In order to make the preference values of the various indicators in the same order of magnitude more stable, 
the preference values were normalized:

where N represents the number of variables related to the experimental treatments, PVi -PVavg takes the absolute 
value, while the positive or negative values of the PVnormal were determined by the positive or negative values of 
the correlation r.

The PNN integrated the preference matrixes into the neural network structures by identifying the Hadamard 
products of the learnable weights between the preference matrixes and the input and output data. By referring to 
Eq. (1) in the hierarchical affine transformation, the preference constraint of PNN could be expressed as follows:

where P is the preference matrix calculated by Eq. (8), and ⊙ represents the Hadamard product of the corre-
sponding elements of the matrix. The structure of preference neural network and preference value are shown 
in Figs. 5 and 6.

Hyper‑parameters of PNN. We conducted experiments on the datasets with varying the hyper-parameters 
(such as the number of PNN layers and hidden layers, the number of nodes in each layer, learning rate, dropout 
rate and batch size) to understand that how the Hyper-parameters impact on the performance of PNN.

(6)PVij =
r(Xi ,Yj)

Pij + e

(7)
PVnormal = ±

∣

∣PVi − PVavg

∣

∣

√

∑N
i=1 (PVi−PVavg )

2

N−1

(8)hl(hl−1;Wl , bl) = hTl−1Wl ⊙ P + bl

Figure 5.  Schematic diagram of the preference connection structures of the preference neural networks. The 
depth of the network detailed in the figure only illustrates the preference connection structure (for a better 
demonstration), and does not indicate the depth of the PNN used in the experiment.

Figure 6.  PVnormal between production behavior factors and natural factors. Since soil depth, days, irrigation 
amount and N rate were all artificially set variables, and there was no objective correlation in the data set. 
Therefore, the preference values among these variables were default e = 0.001.
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We select the activation function and learning rate by referring to the neural network structure commonly 
used in similar fields (1 hidden layer and 64 hidden nodes)29,30. It is found that ReLU has better performance than 
other activation functions (sigmoid, tanh). The performance is best when the learning rate is around 0.005. It is 
generally believed that neural networks with more hidden layers are able, with the same number of resources, to 
address more complex  problems31, but excessively increasing network depth will easily lead to  overfitting32. Since 
there is no direct method to select the optimal number of hidden layers and  nodes33, this study first calculated 
the structure of one hidden layer and 64 nodes in each layer, and found that the combined effect was poor  (R2 of 
irrigation and nitrogen application were 0.3971 and 0.4124, respectively). Therefore, the trial-and-error method 
is adopted. The number of hidden layers starts from 1 and is incremented by 1 to test the maximum number of 10 
hidden layers. The number of nodes in each layer were tested with a maximum number of 100 hidden neurons, 
starting with 5 and increasing by 5.

We found that when the number of hidden layers of PNN exceeds 6, and the number of nodes in each layer 
exceeds 65, the performance will drop significantly. The reason behind this phenomenon could be the current 
dataset size is insufficient for larger scale of the PNN model. In the consideration of that the size of new dataset 
we can obtain very year is similar to the current dataset size, we believe that current hyper-paramter settings of 
PNN is in a reasonable condition.

After that, the number of layers was fixed as 6, and the number of nodes in each layer were tested 10 times with 
60 as the starting point and 1 as the increment, we found that when the number of nodes was 64, the improvement 
of the fit degree was no longer noticeable. On this basis, we changed different activation functions and learning 
rate again, and found that PNN still has the best performance when the activation function is ReLU and the learn-
ing rate is 0.005. Then, different batch sizes and dropout rates were tried. The two parameters had weaker effects 
on the performance than the other parameters, and the performance was optimal at 256 and 0.1, respectively.

The hyper-parameters include:

 1. number of PNN layers;
 2. number of hidden layers;
 3. types of activation function;
 4. percentage of dropout;
 5. learning rate;
 6. loss function;
 7. optimizer;
 8. batch size;
 9. number of epochs;
 10. number of workers.

The ideal PNN structure for the study comprises these layers:

 1. number of PNN layers is 8;
 2. number of hidden layers is 6;
 3. Fully connected layers with 64 nodes and ReLU activation function
 4. dropout with 0.1.
 5. the learning rate is 0.005;
 6. loss function is Huber Loss Methods (HLM);
 7. optimizer: ADAM;
 8. epochs is 500;
 9. the batch size is 256;
 10. number of workers is 6.

Hyper‑parameters of other models. LR algorithms and LOR do not have hyper-parameters that need 
to be adjusted. A part of the hyper-parameters of the SVR model was determined by referring to Guan Xiaoyan’s 
 research34, and a part of the hyper-parameters of the BPNN model was determined by referring to Gu Jian’s 
 research27. RMLP takes the same hyperparameters as PNN. The hyperparameters of SVR and BPNN models are 
shown in Table 5.

Table 5.  Hyper-parameters of other model.

SVR BPNN RMLP

1. The penalty value C on the samples out of error ε is 26
2. ε is used to control the size of the regression approximation error 
pipeline, and its value is 0.036

1. Number of PNN layers is 3
2. Number of hidden layers is 1
3. Number of hidden layer nodes is 13
4. The learning rate is 0.05
5. The maximum number of training times to 10,000

1. Number of PNN layers is 8
2. Number of hidden layers is 6
3. Number of hidden layer nodes is 64
4. The learning rate is 0.005
5. The maximum number of training times to 10,000
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Model performance evaluation. The proposed PNN model was trained and validated using the field 
measured data from 2020 and the performance achievements of PNN were evaluated by the root mean square 
errors, mean square errors, and mean absolute errors as follows:

Model multidimensional fertility targets. The soil fertility grade classification of soil organic matter, 
soil total nitrogen content and salt content in this study was based on the soil fertility grade classification results 
by the Agriculture and Animal Husbandry Bureau of Bayannur City, along with the local standard Technical 
Specifications for the Assessment and Rating Criteria of Cultivated Land Quality (DB 15/T 1086, 2016), as the 
shown in Tables 6 and 7.

In the evaluation system of soil fertility referencing the Technical Specifications for Assessment and ℝating 
Criteria of Cultivated Land Quality (DB 15/T 1086, 2016), the pH was divided into four grades according to the 
membership degrees of the land productivity evaluations, as detailed in Table 8.

Based on the classification standard of soil fertility obtained by the Bureau of Agriculture and Animal Hus-
bandry of Bayannur City, when the farmland soil is at the high fertility level, the soil organic matter and total 
nitrogen content should be more than 20 g/kg and 1.6 g/kg, respectively. Soil salt content was less than 2 g/kg. 
Meanwhile, the pH value is kept between 6.5 and 7.5.

Results and discussion
Construction of coupling simulation surface of irrigation and nitrogen application and feasibil‑
ity verification of optimal irrigation‑nitrogen application strategy. To reflect the corresponding 
changes in the water and fertilizer strategies caused by the variations in the single fertility indexes, During the 
simulation, fertilization and irrigation dates were set at 17, 59, and 87 days after sowing, respectively, which were 
consistent with the actual measures taken by local farmers, and the soil depths were taken as the mean value 
of the 0 to 40 cm maize root layers. More importantly, in the 4 variables (organic matter, total nitrogen, total 
salt, and pH), 3 of them were defined as fixed values, which were 20 g/kg, 1.6 g/kg, 2 g/kg, and 7.5 respectively. 
The range of changing value refers to the maximum and minimum values of the measured values in the 3-year 
experiment. The data set of the input model of this variable was obtained by very small steps, and a complete data 
set was formed with the fixed variables and input into the model.

In Fig. 7 and Table 9, taking 1/500 of the value range of each indicator as the step length, PNN was used to 
predict and verify the irrigation and nitrogen strategy under the change of a single indicator at each growth stage 
of maize, and Kriging interpolation was carried out. Meanwhile, the simulated values of 0 to 40 cm soil organic 

(9)RMSE =

√

∑n
i=1(yipre − yimea)

2

n

(10)R2 = 1−
∑n

i=1(yipre − yimea)
2

∑n
i=1(yipre − yiavg )

2

(11)MAE =
∑n

i=1

∣

∣yipre − yiavg
∣

∣

n

Table 6.  Soil organic matter and Soil total nitrogen degrees.

Fertility degree Extremely lack Lack Medium High

Soil organic matter (g/kg)  < 10 10 to 20  > 20

Soil total nitrogen (g/kg)  < 0.41 0.41 to 0.87 0.87 to 1.60  > 1.60

Table 7.  Grading of the salinization degrees.

Fertility degree Non-saline Light saline Medium saline Heavy saline Saline

Concentration (g/kg)  < 2 2 to 4 4 to 6 6 to 10  > 10

Table 8.  pH grading degrees of the cultivated land.

Degree 1 2 3 4

pH  > 8.5  < 6.5 7.5 to 8.5 6.5 to 7.5
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Figure 7.  Surface of soil fertility index after irrigation and nitrogen application at seeding, jointing, filling 
stage of maize. The green surface is the water-nitrogen interaction surface with a single index change, which is 
obtained by PNN training based on the measured data from 2018 to 2019. The red dots are the measured values 
of corresponding indexes under the reset irrigation and nitrogen application levels in 2020.
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matter, total nitrogen, total salt, and pH were compared with those of PNN under the same water and nitrogen 
strategy in experiment 2 carried out in 2020 to verify the effectiveness of the PNN model.

As shown in Fig. 7a–c, it can be seen that with the increase of the target value of soil organic matter, the 
simulated amount of nitrogen application and irrigation showed an increasing trend. However, those trends had 
ceased when the soil organic matter reached 28 g/kg. As shown in Fig. 7d–f, soil total nitrogen content showed 
an overall increasing trend with the increase of N rate and presented a bimodal distribution with the increase of 
irrigation amount. When the N rate was 70 kg/hm2 and the irrigation amount was 95 mm, soil nitrogen reached 
the peak at the seeding stage, and total nitrogen content decreased with increasing irrigation and N rate. At the 
jointing stage, soil nitrogen reached the peak when the amount of irrigation and fertilizer was the maximum in 
the simulation range. At the filling stage, the total soil nitrogen began to decrease when the amount of nitrogen 
was more than 80 kg/hm2. As shown in Fig. 7g–i, soil salinity increased with the increase of irrigation and nitro-
gen application and reached the peak value when irrigation and nitrogen application reached 100 to 110 mm 
and 70 to 90 kg/hm2, respectively. Further increase in irrigation and nitrogen application would decrease the 
soil salinity level. As shown in Fig. 7j–l, soil pH showed a double peak trend with the increase of irrigation 
amount, reaching the first small peak at about 80 mm and then decreasing to the peak at about 120 mm. With 
the increase in N rate, soil pH showed single peak distribution at the seedling stage, jointing stage, and filling 
stage, and reached the peak at 77, 73 and 57 kg/hm2, respectively, and then decreased.

As shown in Table 9, under the same irrigation strategy, the fitting degree of corresponding soil TN, Salt, 
and pH in PNN simulation results was the highest with the measured values at the filling stage  (R2 is 0.9074, 
0.9643, and 0.9147, respectively). The fitting degree of corresponding SOM was the highest at the jointing stage 
 (R2 = 0.7969). Among the four indicators, PNN has the highest fitting degree to pH, and  R2 is above 0.9. Salt is 
the second, TN is the third, and its fitting degree to SOM is the lowest,  R2 is between 0.7 and 0.8.

Estimation of irrigation amount and nitrogen application rate in key growth period using 
preference neural network model. In experiment 2, soil organic matter, total nitrogen, salt, and pH 
of each layer within 0 to 100 cm of each treatment were taken as the target values. Input linear Support Vector 
Regression(Linear SVR), Poly Support Vector Regression(Poly SVR), RBF Support Vector Regression (rbf SVR), 
linear regression (LR), logistic regression (LOR), traditional BP Neural Networks (BPNN) were used to output 
the irrigation amount and N rate at 17d, 59d and 87d respectively. The simulation results were compared with 
the actual irrigation amount and N rate of each treatment in experiment 2 to verify the prediction accuracy of 
each machine learning model on irrigation amount and N rate. In order to investigate the effect of preference 
structures on improving the generalization performance of PNN, the reverse multilayer perceptron (RMLP), 
which has the same structure as PNN except without preference module, is also trained and output the same as 
other models.

The values pertaining to  R2, MAE, RMSE are listed in Table 10. The model with the best performance is the 
Preference Neural Networks (The  R2 of irrigation and nitrogen application were predicted to be 0.91, 0.94), 
followed by BPNN  (R2 were 0.65 and 0.67). The  R2 values predicted by the proposed PNN at the irrigation and 
nitrogen application were 40.03% to more than 99% and 40.33% to more than 99% higher than those obtained 
using the linear SVR, poly SVR, rbf SVR, LR, LOR, and traditional BP neural networks, respectively. Compared 
with RMLP without preference mechanism and with the same structure,  R2 of PNN increased by 25.81% and 
27.99%, respectively, when predicting irrigation amount and N rate. Compared with the conventional BPNN, 
the  R2 of RMLP was increased by 10.14% and 8.69% when predicting irrigation amount and N rate, respectively. 
These results indicate that the preference structure can improve the generalization performance of the neural 
network for predicting irrigation volume and nitrogen application, and the performance of the neural network 
with 6 hidden layers and 64 nodes is better than that of the neural network with 1 hidden layer and 13 nodes. At 
the same time, compared with other machine learning models, the SVR model with poly and rbf as the kernel 
function obtained less accurate prediction of irrigation amount(R2 were 0.14 and 0.23) and more inaccurate 

Table 9.  The comparison between the measured values of 0 to 40 cm soil indexes in each treatment obtained 
by the experiment in 2020 and the simulated values obtained by PNN under the same strategy.

Soil fertility index R2 MAE RMSE

Seeding stage

SOM 0.7408 0.8472 0.9456

TN 0.8235 0.0245 0.0263

Salt 0.8405 0.0215 0.0252

pH 0.9242 0.0857 0.0956

Jointing stage

SOM 0.7969 0.8120 0.8915

TN 0.7605 0.0269 0.0299

Salt 0.8105 0.0227 0.0271

pH 0.9003 0.1058 0.1228

Filling stage

SOM 0.7358 0.8616 0.9556

TN 0.9074 0.0180 0.0202

Salt 0.9643 0.0305 0.0338

pH 0.9147 0.0569 0.0676
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prediction of N rate obtained by poly SVR  (R2 was 0.27). Aside from the linear SVR model, the accuracy of the 
other SVR models was slightly lower than those of two regression models (LR and LOR) and two neural network 
models (PNN and traditional BP neural networks). This result may be explained by the fact that the prediction 
accuracy of SVR model is excessively sensitive to the influence of kernel function and hyper-parameter35,36.

Formulation of irrigation and nitrogen application schemes based on multi‑dimensional fertil‑
ity targets. As shown in Table 11, Based on the surface of irrigation-nitrogen interaction constructed above, 
the intersection of irrigation amount and N rate was selected as the optimization strategy interval when all 
indexes were in the state of high fertility. When the irrigation amount was 93 to 102, 92 to 98, and 92 to 98 mm, 
and the N rate was 65 to 71, 64 to 73, and 72 to 81 kg/hm2 on the 17th, 59th and 87th days after sowing, respec-
tively, the soil organic matter and total nitrogen could be kept above 20 g/kg and 1.6 g/kg, respectively, the soil 
salt content was less than 2 g/kg, and the pH value was between 6.5 and 7.5.

Evaluation and prospect of the PNN model. The superiority of PNN mainly depends on its unique 
“preference mechanism.” In general, data obtained from field trials based on human processing have high sam-
pling and assay costs, so the data set obtained is often  limited37. However, studies requiring control of specific 
variables must conduct field trials, thus the model must be in the limited data set for training in this field of 
study. Through the preferred connection between neurons, PNN can actively learn and adhere to the prior rules 
in the data so that PNN can achieve higher convergence and lower error rate than other models in the case of 
limited data than other machine learning models. In addition, existing artificial intelligence models or physical 
models are mostly used to predict monitoring indicators such as soil moisture and groundwater  depth38,39, rather 
than artificial strategies like irrigation amount, but it should be an inevitable trend of intelligent agriculture that 
the model results directly guide production practice. Due to its reverse training structure, PNN can directly 
determine optimal irrigation and nitrogen application strategies based on multidimensional targets, which sig-
nificantly improves the accuracy and versatility of the model. Benefiting from the above characteristics, the PNN 
model makes it possible to apply the deep learning model as a core decision-making tool in “precision agricul-
ture”, and provides a solution for solving multidimensional decision-making problems in limited data sets.

Table 10.  Model performance parameters.

Model R2 MAE RMSE

Irrigation

SVR

Linear 0.5774 0.8292 0.9921

Poly 0.1422 0.7525 0.9267

rbf 0.2343 0.7148 0.8755

LR 0.3732 0.8323 0.9689

LOR 0.4902 0.8847 0.9408

BPNN 0.6521 0.0834 0.0995

RMLP 0.7257 0.0613 0.0756

PNN 0.9130 0.0179 0.0216

Nitrogen application

SVR

Linear 0.6371 0.7837 0.9419

Poly 0.2711 0.7016 0.8547

rbf 0.4503 0.5683 0.7412

LR 0.4406 0.879 0.996

LOR 0.5305 0.8842 0.8568

BPNN 0.6728 0.0591 0.0742

RMLP 0.7369 0.0697 0.0835

PNN 0.9432 0.0091 0.0114

Table 11.  Preliminary prediction results of irrigation and nitrogen application range.

Days after sowing

Irrigating water quota 
(mm)

Nitrogen application rate 
(kg/hm2)

Upper limit Lower limit Upper limit Upper limit

17d 102 93 71 65

59d 98 92 73 64

87d 98 92 81 72
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Conclusion
This study aims to predict the reasonable irrigation amount and N rate according to the multidimensional soil 
fertility objective. Therefore, a neural network model with 6-hidden layers and preference mechanism, namely 
the Preference Neural Network (PNN) model, has been developed. Four core indexes of soil fertility evaluation 
(organic matter, total nitrogen, total salt, pH), irrigation time and target soil depth were used as the input of 
PNN, and the amount of irrigation and nitrogen application were used as the output. The model was trained 
and tested using the data from 2018 to 2019, 80% of which was the training set, and 20% was the test set. The 
data from the validation test carried out in 2020 was used for verification. The results showed that the  R2 val-
ues of PNN in predicting irrigation amount and N rate were 0.3356 to 0.7708 and 0.361 to 0.6721 higher than 
those of the models without neural network structure (support vector regression, linear regression and Logistic 
regression), respectively, and were 0.2609 and 0.2704 higher than the traditional neural network (BPNN) with 
one hidden layer, respectively. In addition, the  R2 values of the predicted irrigation amount and N rate by PNN 
with the preference mechanism were 25.81% and 27.99% higher than those without the preference mechanism, 
respectively. It was proved that on the 17th, 59th and 87th day after seeding, the soil fertility could reach the 
standard of high grade with irrigation of 93 to 102, 92 to 98, 92 to 98 mm and nitrogen application of 65 to 71, 
64 to 73 and 72 to 81 kg/hm2, respectively.

Data availability
Some data through which the mean, median, max, min and standard deviation were derived are available from 
the corresponding author upon reasonable request. Also surface figure through which models and forecasts were 
derived which support the findings of this study are available from the corresponding author.
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