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A robust energy management 
system for Korean green islands 
project
Lilia Tightiz  & Joon Yoo *

Penetration enhancement of renewable energy sources is a core component of Korean green-island 
microgrid projects. This approach calls for a robust energy management system to control the 
stochastic behavior of renewable energy sources. Therefore, in this paper, we put forward a novel 
reinforcement learning-driven optimization solution for the convex problem arrangement of the 
Gasa island microgrid energy management as one of the prominent pilots of the Korean green islands 
project. We manage the convergence speed of the alternating direction method of multipliers solution 
for this convex problem by accurately estimating the penalty parameter with the soft actor-critic 
technique. However, in this arrangement, the soft actor-critic faces sparse reward hindrance, which 
we address here with the normalizing flow policy. Furthermore, we study the effect of demand 
response implementation in the Gasa island microgrid to reduce the diesel generator dependency of 
the microgrid and provide benefits, such as peak-shaving and gas emission reduction.

To combat global warming, substituting RESs for fossil fuels is more beneficial to the island regions of the earth. 
As global warming continues, oceans rise, and islands disappear1. On the other hand, energy storage systems 
(ESS) mitigate the random nature of RESs, allowing microgrid power networks to take over the island’s power 
supply without relying on central power plants2,3.

In Korea, with 471 residential islands, using a microgrid to electrify the islands is the most cost-effective 
solution. In this country, 171 residential islands electrify with stand-alone microgrids, whereas DGs supplied 
their power earlier4. According to the Korean government plan, 63.8 GW of RESs will be installed by 2030. This 
amount is 20% of national electricity generation and would result in a 37% reduction in CO2 emissions5. Imple-
menting the Green Islands project is a significant step in this direction. One of the seven pilot green islands is 
Gasa Island, which initially operated as a stand-alone microgrid powered by three DGs6.

Due to the objective of the Korean green island project, Gasa Island has moved towards entirely relying on 
RESs with assistance from ESSs. In this self-sufficient microgrid, DGs were used only as backup power in case 
of contingency. However, it is impossible to achieve this goal without an intelligent, robust EMS unit that can 
coordinate energy supply resources performance to reduce greenhouse gases. Since the use of ESSs on this 
island, in addition to the compensation of RESs power absence, is the voltage and frequency regulation, large-
scale ESSs are needed. A RES’s primary contribution on this island is to reduce greenhouse gas emissions, not 
to reduce residents’ electricity bills4. Meanwhile, introducing DR to lower the peak-average ratio reduces the 
need for further investment in ESSs and RESs besides minimizing DG utilization in emergencies. As a result, in 
this paper, we examine the energy management of Gasa Island as part of the Green Island project, which aims 
to implement economic dispatch as a baseline, and then develop EMS using DR programs to reduce DG usage 
and ultimately greenhouse gas emissions. According to these objectives and the constraints of high penetration 
of RESs in green islands, in addition to the uncertainty in loads, the Gasa island EMS problem is stochastic, 
high-dimensional, and sequential. The MG EMS arrangement should consider several factors based on the type 
of MG, including centralized or decentralized decision making, optimization methods, RESs output, and load 
uncertainty management. So far, MG EMS optimization has been carried out using a mathematical approach, 
meta-heuristics, and artificial intelligence (AI)7. These EMS scheduling may follow a centralized or decentralized 
manner. A real-time EMS for microgrid in a decentralized fashion is presented in8. This paper examined the MG 
voltage and frequency stability from a power electronics perspective. Economic model predictive control (EPMC) 
offered economic dispatch for residential microgrids in9. Authors in this paper addressed applying prediction 
error in RESs output in their model with stochastic MPC in the future attempt. However, it is costly and com-
plex to implement MPC. However, uncertainty in RESs power production is crucial to be considered to provide 
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an accurate EMS vastly in literature implemented by deploying probability distribution. Raghav et al.10 hired a 
sparrow search algorithm to arrange EMS, considering forecasting errors of RESs output and load prediction. 
They compared their method with a wide range of other metaheuristic-based optimization methods. Uncertainty 
in PV and WT power prediction is considered in the optimization of microgrid EMS11 by deploying different 
probability density functions. The authors of this paper used the quantum teaching learning-based (QTLBO) 
optimization method and compared the results with a real-coded genetic algorithm, differential evolution, and 
TLBO. This paper focuses on the robust arrangement of fast converged optimization methods to support online 
EMS. Another goal is to reduce DG roles to strengthen the CO2-free island target through DR. Additionally, this 
paper deploys historical data of RESs output power and load in the modeling environment considering their 
randomness behavior.

ADMM is a widely used response to EMS arrangement as a complex problem since of deploying distributed 
computational approach to reduce the severity of high-dimensional characteristics of microgrid EMS problem12. 
ADMM solved the quadratic and non-quadratic format of the economic dispatch problem of the islanded micro-
grid in13. The proposed algorithm showed high performance in balancing power consumption and generation of 
the island microgrid. Lyu et al. in14 proposed a dual-consensus ADMM to provide less communication-dependent 
microgrid economic dispatch scheduling. ADMM was used to solve the microgrid economic dispatch consider-
ing ESS costs in15 and16. However, a primary concern of hiring ADMM is the hyper-parameter dependency of its 
convergence to the optimum. Designing dynamic step-size for updating dual variables and converting ADMM to 
proximal gradient method are remedies has been offered to overcome the convergence hindrance of ADMM17–20.

Recently, considerable literature has grown up around the theme of sequential prediction of deep learning21 
and in an augmented horizon deep reinforcement learning (DRL) to estimate the penalty parameter of 
ADMM22,23. DRL proved the fast convergence provision of ADMM by justifying penalty parameters in22. How-
ever, the utilized DRL method was TD3 which suffers from hyper-parameter dependency and worsens the large-
scale vulnerability of solving convex problems such as microgrids EMS. Zeng et al.23 solved the quadratic format 
of distributed optimal power flow with the help of Q-learning to estimate the penalty parameter of ADMM. By 
transferring the residual value variant to the reward function in each iteration, the authors in this paper solved 
the sparse reward problem of arranged reinforcement learning. Moreover, this paper hired reinforcement learn-
ing, i.e., Q-learning’s discrete action space limited the more credited actions searching possibilities. Therefore, 
in this paper, we employ the state-of-the-art of SAC to offer a fast and accurate converged ADMM. In contrast 
to other methods that experience the local optimum trap after a certain number of iterations due to ineffective 
exploration, SAC supports continuous action space and adds stochasticity to the policy, providing excellent action 
exploration that persists until the last training process iterations24. We deploy the NFP technique to increase 
the density of the policy probability distribution to overcome the sparse reward issue. The contribution of this 
paper has four folds:

•	 Providing a convex problem arrangement of Gasa island EMS considering DR and load flow constraints to 
make profits for consumers and the utility grid.

•	 Arrangement of a SAC-based solution to estimate the penalty parameter of ADMM to support the high-
dimension and complex problem of Gasa island EMS.

•	 Solving sparse reward hindrance with a less computational burden on the learning process of SAC algorithm 
by arranging high-density action space with the NFP approach.

•	 Exploration of less dependency on conventional generators and acquisition costs with DR implementation.

The remainder of this paper is organized as follows. By specifying the objective function and microgrid elements 
constraints, “Problem formulation” section formulates the problem. “Proposed method” section represents the 
solution method, and “Results and discussion” section investigates the novelty of the proposed solution by 
analysis of the results and compare with benchmark methods. Later on, “Conclusion” section discloses the most 
relevant conclusions of our work.

Problem formulation
Microgrid objective function.  In this paper, we consider two scenarios for the EMS arrangement of the 
Gasa island microgrid. The first scenario includes photovoltaic cells (PV), wind turbines (WT), DGs, ESSs, and 
loads, as shown in Fig. 1. In the second scenario, we schedule the DR for the residential load to decrease the 
peak-average ratio. This approach reduces DG consumption and carbon emission production, making the green 
island a more practical objective. Consequently, we define the objective function of the Gasa island microgrid 
as minimizing power generation costs for the first scenario, and we enhance that by attaching minimization of 
power consumption cost for consumers through DR implementation. We formulate the objective function of the 
Gasa island microgrid, considering two scenarios as follows.

where i: The number of generation units; j: The number of loads; T: The time period of optimization; cg : The cost 
of power generation (KRW); Pg : The amount of power generation (kW); cs : The cost of start-up and shut-down 
of conventional power generation units (KRW); us : Conventional power generation units on/off status; PL : The 
amount of power consumption (kW); price: The price of load power consumption (KRW).
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The first term of (1) calculates the cost of power generation, and the second part is the power consumption 
expenses. According to Fig. 1, Cg can be applied to power generation units that include PV, WT, DG, and ESS in 
discharging mode. The cost of start-up and shut-down applies to conventional units, which is DG in this study. 
Since we plan to reduce peak load through implementing DR, consumption cost minimization is meaningful 
for this program participant loads.

Microgrid elements modeling and constraints.  The main objective of CO2 reduction in green island 
advent encourages priority of RESs in supplying loads. Therefore, we decline the cost of RESs power generation. 
The only RESs constraint is the maximum amount of power that can produce.

where PPVmax and QPV
max are the maximum active/reactive power generation of PVs. PWT

max and QWT
max are WTs’ highest 

amount of active/reactive power production.
DG is the only conventional generator in the Gasa island microgrid. In addition to its limitations concerning 

the amount of energy generated, the DG faces constraints regarding its working duration and variation in power 
output as follows.

where TDG
up  and TDG

down determine minimum up and down time, respectively. uDG is a binary value that shows the 
DG is on or off. The DG’s power generation cost is calculated according to (10).
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Figure 1.   Gasa island microgrid structure.
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where a1 , a2 , and a3 are factors for the fuel cost of DG. We also consider start-up cost of DG ( cs,DG ) as a fixed 
number of 10 KRW.

The followings represent the main constraints that attach to the ESSs performance.

where ηch and ηdch are ESS charging and discharging efficiency. SoCmin and SoCmax determine up and down limits 
of state of charge (SoC), and τ is the time slot. This study estimates the battery degradation cost based on (14).

where Eb,rated and Eb(t) are rated stored energy and available energy of battery at time t, respectively. ηleakage 
determines leakage loss, σ is a coefficient to calculate battery degradation during its lifespan, cb,inv is the initial 
investment to provide battery, and nch,dch is the number of full charge and discharge cycles.

Gasa island includes 164 households25. To model the residential load, we hire the Enertalk open dataset that 
consists of the per appliance load consumption of 22 houses in Korea26. This dataset provides commonly deployed 
appliances’ power consumption data of a Korean household, including refrigerator, Kimchi refrigerator, water 
purifier, rice cooker, washing machine, and TV. We aggregated the power consumption of appliances by around 
13% based on27 to estimate the heating and cooling system. We implemented DR on residential consumers to 
decrease the peak-average ratio. Therefore, we categorize the Enertalk appliance records into non-controllable, 
shiftable, and reducible loads. TV, Kimchi refrigerator, refrigerator, and rice cooker are non-controllable loads. 
The washing machine and heating and cooling system are shiftable and reducible loads, respectively. Therefore 
the electricity consumption of the heating and cooling system during the DR program based on inside building 
temperature ( Tempin ) has the following restrictions28,29.

where � Tempin(τ ) is the inside building temperature deviation during time step τ . Tempinmin and Tempinmax are the 
inside building maximum and minimum desirable temperature. β and γ are the building thermal capacitance 
(kWh/ ◦ C) and reactance ( ◦C/kW), respectively. PH&C(t) is the power usage of the heating or cooling system 
in time t.

To calculate the cost of load, we consider the time of use (TOU) price ( pTOUt  ) according to Table 130.
To provide a trade-off between utility profit in decreasing peak-average ratio with higher TOU in peak hours 

and consumer comfort, we add the anxiety rate term ( Arate ) to the cost function to respect consumers’ preferred 
power consumption rate.

In the case of the heating and cooling system, the DR affects the customer comfort where the inside 
temperature ( Tempin(t)) exceeds limitations that are defined in (17)31.

(10)cDG(t) = a1 + a2P
DG + a3

(

PDG
)2
,

(11)SoC(t) = SoC(t − 1)+

(

Pb,chηch −
Pb,dch

ηdch

)

τ ,

(12)SoCmin ≤ SoC(t) ≤ SoCmax ,

(13)− Pb,dchmin ≤ Pb(t) ≤ Pb,chmax ,

(14)cb(t) = στ
(

Pb(t)+ Eb(t)ηleakage
)

,

(15)σ = cb,inv/(Eb,ratednch,dch),

(16)�Tempin(τ ) =
1

βγ

(

Tempout(t − 1)− βPH&C(t)
)

,

(17)Tempinmin ≤ Tempin(t) ≤ Tempinmax ,

(18)PH&C
min ≤ PH&C(t) ≤ PH&C

max ,

Table 1.   TOU price ( pTOUt  ) (KRW/kWh) based on KEPCO regulations.

TOU plan

Spring and Autumn Summer Winter

Time of day
Average price (KRW/
kWh) Time of day

Average price (KRW/
kWh) Time of day

Average price (KRW/
kWh)

On-peak 10–12 a.m. and 
13–17 p.m. 91.9 10–12 a.m. and 

13–17 p.m. 157.7
10–12 a.m. and 
17–20 p.m. and 
22–23 p.m.

137.3

Off-peak 0–9 a.m. and 23–24 p.m 55.4 0–9 a.m. and 23–24 p.m 55.4 0–9 a.m. and 23–24 p.m 62.3

Mid-peak Others 70.2 Others 101 Others 98
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where K is the anxiety rate coefficient.
Additionally, according to the customers’ preferred time of using the washing machine, the anxiety rate of 

the washing machine ( AWM
rate  ) participating in DR is determined as follows.

where hs and hf  are the lower and upper preferred times of using the washing machine, respectively. σ and ζ 
determine penalty coefficients of shifting washing machines out of consumers’ preferred time.

We deploy the water station load profile from32 and simulate school daily power consumption from33. The 
amount of lighthouse and radar base power consumption of Gasa island in the average daily load profile decline 
in this paper. During power dispatch scheduling, we consider load flow constraints for each branch of the Gasa 
island microgrid as follows.

where,

where i and j are bus indexes. Pi,j(t) and Qi,j(t) are active and reactive power flow of lines between i and j buses 
at time t. Vi

min and Vi
max are lower and upper voltage limitations of each bus. PSCh , PWP , and PLh are the school, 

water pump station, and lighthouse active power consumption, respectively. Pl,b denotes non-DR participants’ 
residential load, and Pl,dr is DR participants’ residential load. �PH&C,dr , and �PWM,dr are the amount of heating 
and cooling systems and washing machines’ active power consumption that contributes to DR. We modify the 
objective function in (1) based on Gasa island microgrid constraints as follows.

subject to (2)–(9), (12), (13), (16)–(29). This formulation arranges a quadratic form of convex problem, which 
is solved in the following section based on ADMM technique.

Proposed method
ADMM.  ADMM is a popular and reliable approach for convex quadratic programming. The conventional 
ADMM method attempts to solve the following problem34:
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subject to

where x and x′ are the optimization variables, f and g are coefficient matrices, d is the sequence, and f(x) and 
g(x′ ) are convex functions of optimization variables.

We arrange the Lagrangian function for the convex problem (31) as follows.

where � is a relevant vector of multiplier for constraints (32), and ρ is the penalty factor.
ADMM iteratively updates optimization variables according to the following.

This iterative procedure will converge when the primal and dual residuals of ADMM techniques meet their 
thresholds ǫp and ǫd , respectively, as follows.

where ‖ r
p
k ‖ and ‖ r

p
k ‖ represent the primal and dual residuals of the ADMM technique, calculated according 

to (39) and (40), respectively.

We deploy the decompose technique introduced in23 to solve our ADMM problem. To this end, we consider two 
penalty parameter vectors as follows.

where ρPQ is the penalty parameter for active and reactive power and ρVθ denotes voltage and phase angle penalty 
parameter. nPQ and nVθ are the number of constraints for each pair of active and reactive power and voltage and 
phase angle, respectively.

Since penalty parameters are determinant factors in ADMM dual and primal in each iteration to converge 
according to (37) and (38), the sequential characteristic of these parameters calculation encourages using the 
DRL method to estimate penalty parameters.

SAC algorithm with enhanced exploration.  SAC is an actor-critic DRL method with sample efficiency 
specification of its off-policy approach24. SAC works in both discrete and continuous environments. The main 
characteristic of SAC is stochastic-based policy optimization by adding entropy to policy. This characteristic 
gives advantages of productive exploration and, consequently, a higher convergence rate to off-policy methods, 
such as deep deterministic policy gradient (DDPG) and twin delayed DDPG (TD3). Its sample efficiency due to 
learning from experience saved in the replay buffer is superior to on-policy techniques such as proximal policy 
optimization (PPO) and trust region policy optimization (TRPO). The entropy term ( H(.) ) is defined accord-
ing to (29). The portion of entropy in the learning policy is determined by temperature parameter α , which is 
decreased during the learning iteration as follows.

The entropy term will update the Bellman equation of the value network training process according to (45).

(31)Minf (x)+ g(x′), x ∈ R
n, x′ ∈ R

n′ ,

(32)Ax + A′x′ = d, A ∈ R
p×n,A′ ∈ R

p×n′ , d ∈ R
p,

(33)L(x, x′, �) = f (x)+ g(x′)+ �
T (Ax + A′x′ − d)+

ρ

2
�Ax + A′x′ − d�2, � ∈ R

n′′ ,

(34)xk+1 = argmin
x

Lρ(x, x
′
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(35)x′k+1 = argmin
x′

Lρ(xk , x
′, �k),

(36)�
k+1 = �k + ρ(Axk+1 + A′x′k+1 − d),

(37)� r
p
k �2≤ ǫp,

(38)� rdk �2≤ ǫd ,

(39)� r
p
k �= Axk + A′x′k − d,

(40)� rdk �= 2ρATA′(x′k − x′k−1).

(41)ρPQ ∈ {ρ
PQ
1 , ρ

PQ
2 , . . . , ρPQ
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(42)ρVθ ∈ {ρVθ
1 , ρVθ

2 , . . . , ρVθ
nVθ

},

(43)π∗ = argmaxπ

∑
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(

E(st ,at )∼ρπ [r(st , at)+ αH(π(at |st))
]

,

(44)H(π(at |st)) = Ea∼π(.|s)

[
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The critic in SAC includes value function Vψ and soft Q-function Qθ . The actor contains policy network Qφ . 
The policy network in SAC chooses action from Gaussian probability distribution according to the squashing 
function fφ(ǫ;st ) as follows.

To use SAC for parameter estimation of the ADMM, we need to arrange the Markov decision process (MDP), 
including state, action, transition function, and reward. The state will be the decision variables of the ADMM 
problem, which are the Gasa island microgrid elements’ active and reactive power as follows.

SAC will predict the suitable penalty parameter from the continuous action space according to (48), (49).

The reward function is defined as follow.

However, this reward function is a sparse reward. The NFP is a trick that is used in this study to empower 
stability and provision of efficient action space exploration to defeat the sparse reward issues35. A set of invertible 
functions establishes normalizing flows. With the change of probability distribution variables, normalizing flows 
sequentially transform a distribution to a more density distribution as follows36.

where z0 is the base distribution and zN is the final flow. The density of continuous variable the zN parametrized 
by φ is as follows.

One of the simplest methods to determine invertible function f is RealNVP. We deployed the method 
introduced in37 to combine SAC and normalizing flows. We will reparametrize the Gaussian distribution of 
action selection with RealNVP invertible transformation as follows.

where π(a|s) = z0 and the log density of action is as follows.

Therefore, the normal SAC will be modified by adding a gradient step on the normalized flow layers during 
the φ setting.

The proposed technique to determine penalty parameter of ADMM with the contribution of SAC and NFP 
is represented in Fig. 2.

Results and discussion
We deploy our proposed algorithm to optimize the Gasa island microgrid EMS in this section. The optimization 
takes place hourly and can be extended to shorter intervals based on available data. Figure 3 depicts the load 
profile for the island power consumers based on “Microgrid elements modeling and constraints” section. 
Since the residential load profile is for August, we choose the WT and PV output power taken from38 and the 
output temperature39 according to this period, as shown in Fig. 4. We simulate the microgrid and implement 
a centralized ADMM solution as a baseline and our optimization solution with the CVXPY package40 to use 
OSQP solver41 in the Python environment. The simulations are accomplished on a PC with Intel(R) Core (TM) 
i5-10400F CPU @ 2.90GHz.

The SAC algorithm’s performance was compared with different hidden layer numbers and batch sizes to justify 
DNN parameters. Figure 5 shows how the learning process of DNN varies depending on hyperparameters. Based 
on the results, two layers with a batch size of 128 will result in a trade-off regarding learning convergence, stability, 
and complexity. It will not be advantageous to extend the network size to three layers and the batch size to 256 
according to Fig. 5b. Table 2 depicts the microgrid element specifications and solution algorithm parameters.

(45)V(st) = Ea∼πφ(at |st )

[

Qθ (st , a)− αlog(πφ(a|st))
]

.

(46)at = fφ(ǫt , st) = tanh(µφ(st)+ σφ(st)ǫt), ǫ ∈ N (0, 1).

(47)S(t) = {Pg ,Qg , Pl ,Ql , uDG ,Vi , θi,j}.

(48)100 ≤ ρPQ,i ≤ 104, 1 ≤ i ≤ nPQ ,

(49)30 ≤ ρVθ ,j ≤ 3000, 1 ≤ j ≤ nVθ .

(50)r(st , at) =

{

200, if (37), (38),
0, otherwise.

(51)zN = f1 ◦ f2 ◦ · · · ◦ fN−1 ◦ fN (z0),

(52)lnpφ(zN ) = ln p(z0)−

N
∑

n=1

ln det|(∂fN/∂zN−1)|,

(53)π(a|s) = tanh(f1(µφ(s)+ σφ(s)ǫ) ◦ fN ),

(54)logπ(a|s) = log p(z0)−

N
∑

n=1

log det|(∂fN/∂zN−1)| −

N
∑

n=1

log(1− tanh((zNn )
2),
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Figure 6 demonstrates the convergence speed comparison of the proposed algorithm and conventional 
ADMM. The effectiveness of our hired technique appears in this figure, where surplus convergence of vanilla 
ADMM based on the number of iterations. By learning the best policy, the RL agent speeds up convergence for 
dual and primal residuals to 300 and 500 iterations, respectively, while for normal ADMM, this process time is 
double.

Figure 7 shows the Gasa island microgrid economic power dispatches along with the SoC level of BESS with 
and without DR. This figure illustrates the effectiveness of DR planning in reducing DG utilization during the 
understudy day. Without DR, the DG starts to work with a higher power generating amount of 315 kW at 1 a.m. 
to compensate for the shortage of RESs power shown in Fig. 7a. However, DR deployment causes this amount to 
reduce to 210 kW, as can be seen in Fig. 7b. Additionally, without DR, DG, due to ramp-down time limitations, 
should stay working on 315 kW, although the amount of shortage power is lower than this amount of generation. 
Moreover, we also solved the QP arrangement of Gasa island with the CPLEX solver as an analytical method. 
Table 3 represents our proposed SAC-NF-ADMM to improve the performance of ADMM in case of operational 
cost for under study day.

Figure 8 shows the voltage magnitude of the whole Gasa island power network nodes. This figure delineates 
the voltage magnitude of the island power network stay in the allowed range between 0.99 and 1.01 p.u.

The effects of DR scheduling on the cooling system and washing machine are represented in Figs. 9 and 10. 
The washing machine takes part in the DR program by adjusting operating hours to off-peak and mid-peak 
with lower TOU pricing. The results of DR implementation show that the anxiety rates perfectly direct the 
optimization problem to keep the desired time of washing machines’ working hours. As we discussed before, 
the washing machine’s preferred time of working is between 4 and 12 a.m. Therefore, as can be seen in Fig. 9, 
the washing machine power usage between 9 and 5 p.m. with higher TOU transferred to other times of day in 
the desired range.

The optimization algorithm justifies indoor temperature in the desired temperature between 23 and 25 ◦ C. The 
inside temperature tends to be higher between 10 a.m. and 5 p.m., where TOU is the highest amount, resulting 
in less power consumption for the cooling system compared to situations without DR schedules.

Figure 11 reveals the DR scheduling resulted in peak shaving of around 20% for residential load during 
peak hours. The green color shaded area in Fig. 11 shows peak shaving, while a red color shaded area signifies 
a transferred portion of peak load relating to washing machine usage. The most significant benefit of DR 
scheduling for consumers is dropping 21% in total consumer electricity bills, as illustrated in Fig. 12. After DR 
implementation, DG cost dropped by around 42%, which is another evidence of reduced DG usage and fewer 
gas emissions.

ADMM SAC+NFP
Initialize SoC

Read P  ,  Q   , P , Q  ,P , Q , p     , Line DataWTWT PV PV l l T OU

Time slot T

Solve ADMM

Call SAC for ρ  

Initialize 

Policy network Q     , 
Value function network V  , 
Q-function network Q  ,

ႴႴ, 

ψ 

Replay buffer D,
Size of vector n,
Action space A,
Learning rate αႴႴ ψ 

For i=1:n

Select action from (47), (48) 

Update k, k',  λ  

Set iterative residuals εp, εd with 
enough small amount

K=1

k=k+1

No

Yes

T=T+1

Output the optimal solution for time T

Observe S  and estimate reward r

Store transition(S , a , r , S     ) in D

For each learning s tep do:
Update value function based on 
Update critic based on
Update base policy
Update normalize flow layers

,α ,α ,α

ω

ω

t t

t t t t+1

Ψ-α     Lψ Ψ

ω -α     Lω
ω 

-α     L

ψ 

ω

ψ 

ω

Ⴔ -α     LႴ
ႴႴ ႴႴ ႴႴ

Equations (36), (37)?
Yes/No

Figure 2.   The proposed optimization algorithm for Gasa island EMS based on ADMM-NFP-SAC.
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Here, we deployed the TOU policy to schedule DR scheduling currently utilized in the Korean power system. 
TOU is one of the price-based DR policies. It is also possible to implement DR on Gasa Island using other price-
based DR models, such as real-time pricing (RTP) and critical peak pricing (CPP). Furthermore, incentive-based 
DR methods, including direct load control and emergency demand response programs (EDRP), can be used 
jointly with price-based DR with incentive payments from utilities to increase customer profits and encourage 
them to participate in DR. Therefore, in our future investigation, we will use a combination of price-based and 
incentive-based DR techniques to study their effect on CO2 emission reduction. On the other hand, to completely 
meet the current situation of Gasa island, we deployed the WT and PV output power historical data. However, 
in our future attempt to consider uncertainties in WT and PV power generation, we deploy long short-term 
memory (LSTM) based solution to provide the RESs predictor.

Table 2.   The Gasa island EMS solution simulation technical specifications and constraints.

Microgrid elements

DGs

 PDG,min/max (kW/step) 75/330

 PDG,ramp−down/up (kW) 120

 TDG,up/down (h) 2

 Quadratic coefficients

  a1 1.3

  ( /kW) 0.0304

  ( /kW2) 0.00104

RESs

 PPV ,max (kW) 314

 PWT ,max (kW) 400

BESS

 Ebat (MWh) 3

 Pbat,min/max (kW) − 300/300

 SoCmin/max (%) 20/90

 ηbat (%) 90

 σ (KRW/MW) 100

 ηleakage 3%/month

Load

 Tempinmin (
◦C) 23

 Tempinmax (
◦C) 25

 Building thermal capacitance β (kWh/◦C) 0.8

 Building thermal reactance γ ( ◦C/kW) − 0.02

 Heating and cooling anxiety rate coefficient (K) 100

 Lower/Upper prefered time ( hs/hf ) 4/12 (a.m.)

 Washing machine anxiety rate coefficients ( σ , ζ) 50

Algorithm parameters

SAC

 Learning rate 0.0001

 Discount factor ( γ) 0.9

 Replay buffer size 50,000

 Number of training episodes 5,000

 Mini-batch size 128

 Number of hidden layer 2

 αφ , αθ , αψ , αω 0.0003

 Activation function ReLU

 Optimizer SGD

ADMM

 ρPQ
min/max 100/104

 ρVθ
min/max

30/3000

 ǫp , ǫd 0.1, 0.001
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Conclusion
In this paper, we arranged the EMS unit for the Gasa island microgrid as one of the prominent Korean Green 
island project pilots. The proposed approach improves the main objective of this green island microgrid from 
the feasible framework for RESs utilization to a profitable microgrid for consumers with DR deployment. 
Additionally, our method resulted in less dependency on DGs with DR schedules. The ADMM-based solution 
for EMS provided a fast converged process of optimization by penalty parameter prediction with the state-of-
the-art DRL method SAC. We released each iteration from the computational cost of transferring dual variable 
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variants by definition of an independent, constant reward to each converged iteration. However, this approach 
resulted in a sparse reward hindrance for the process of training the agent. To overcome this problem, we used 
NFP to increase the probability distribution of policies. The results showed the proposed ADMM converged 50% 
faster than vanilla ADMM. Additionally, the implemented DR scheduling on reducible and shiftable residential 
load decreased 20% of the peak load. Since in this paper we considered current situation of Gasa island microgrid 
network TOU which is utilized DR policy in Korean power system conisdered to implement DR. In our future 
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work, we will develop our study with utilizing CPP and EDRP. Furthermore, we will hire LSTM based predictor 
to estimate RESs output prediction.
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