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Breast cancer (BRCA) is the most prevalent malignancy and the leading cause of death in women.
Interleukin (IL) genes are critical in tumor initiation and control. Nevertheless, the prognosis value of
the IL in BRCA remains unclear. We collected data from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO), and 94 IL genes were identified from GeneCard. Based on the random
forest (RF), least absolute shrinkage and selection operator (LASSO) analysis, and multivariate

Cox regression analysis, we constructed an IL signature. GSE22219, GSE25065, and GSE21653

were derived as validation sets. The expression differences in the tumor microenvironment (TME),
immunotherapy, and chemosensitivity of BRCA between the high- and low-risk groups were
evaluated. Overall, 21 IL genes were selected to construct an IL risk model, of which IL18BP, IL17D,
and IL23A were the first time identified as prognostic genes in BRCA. IL score could distinguish
BRCA patients with inferior outcomes, and AUC of it was 0.70, 0.76, and 0.72 for 1-,3- and 5- years,
respectively, which was also verified in GSE22219, GSE25065, and GSE21653 cohorts. Meanwhile,
compared to luminal A and luminal B, HER2-positive and TNBC had significantly higher IL score.
Besides, the high-risk group had a significantly higher prevalence of TP53 and TTN but a lower
prevalence of PIK3CA, as well as higher tumor mutation burden (TMB) and neoantigen level. High-
and low-risk groups exhibited notable differences inimmunomodulators and tumor infiltrates
immune cells (TIICs), and the high-risk group had significantly lower Tumor Immune Dysfunction and
Exclusion (TIDE) score. Additionally, the high-risk group has more responders to immune or anti-HER2
combination therapy, whereas the low-risk group has higher sensitivity to docetaxel and paclitaxel.
Consequently, we constructed a reliable risk model based on the IL genes, which can provide more
information on both the risk stratification and personalizing management strategies for BRCA.

Breast cancer (BRCA) is the most frequently diagnosed malignancy and the fifth greatest cause of cancer-
related death in women worldwide. Despite revolutionary advances have been made in the early-detection,
there are still approximately 2.3 million new cases diagnosed with it in 2020, accounting for 11.7% of all cancer
cases worldwide'. Meantime, BRCA is a widely known heterogeneous disease that can be classified into differ-
ent histopathological subtypes according to the expression of hormone receptors (estrogen receptor (ER) and
progesterone receptor (PR)) and epidermal growth factor receptor 2 (HER2/Neu)>?. Then, different treatment
methods, such as surgery, radiation therapy, chemotherapy, and endocrine would be adopted according to the
patient’s histological subtype*. However, primary and or developed subclones promoted by therapeutic drugs
would further result in drug resistance and tumor recurrence’. In addition, primary defined histological subtypes,
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such as triple-negative breast cancer (TNBC), are also molecularly heterogeneous and can be further categorized
into subtypes with varying prognoses®. Mounting evidence demonstrates the emerging role of immunotherapy in
the BRCA treatment, and emphasizes the association between tumor microenvironment and BRCA metastasis”®.
Lv et al.’ generated an aging genes-related risk stratification that can be used for predicting immunotherapy in
BRCA. Zhou et al.!® developed a prognostic model of cellular senescence-related genes, which was applied to
characterize the tumor microenvironment infiltration in BRCA. Nevertheless, the existing risk models still have
an inadequacy in the prognostic role, thus, it is of great significance to construct a novel signature for improving
the prognosis of BRCA.

Interleukins (IL) and associated cytokines regulate the innate and adaptive immunity in normal and tumor
tissue, with roles in immunomodulatory, promoting signal transduction, and maintaining tissue homeostasis'"'2.
Previous studies have indicated that IL servers as a “double agent” in tumor development: on one hand, chronic
inflammation has been recognized as a driver of carcinogenesis which produces carcinogenic mediators,
and IL further promotes tumor growth, metastasis and progression'?; on the other hand, IL also governs the
innate and adaptive immunity-mediated cancer cell death, starting from the lymphocytes proliferation to the
termination'>!*, Specifically, numerous studies have delineated the role of IL in the development of BRCA, and
most of them have long been implicated as the promoters contributed to tumor invasion, migration and therapy
resistance'™"”. For instance, IL6 not only interacts with STAT3 signaling to drive ER positive BRCA metastasis
and lead to resistance to hormone therapy'®, but also alters tumor microenvironment (TME) in TNBC promot-
ing epithelial-mesenchymal transition (EMT) progression, cancer stemness and M2 macrophage polarization'.
On the contrary, some IL family members have also been proven with antitumor activity in BRCA?*?!. Over-
expression of IL-1p has been revealed the association with better outcomes in BRCA patients with lymph node
metastasis?2. Moreover, as IL directly participates in or mediates the regulation of the TME, it could be targeted
to increase the sensitivity of immune checkpoint inhibitors®. Prior research mainly has only established a cor-
relation between a single IL gene and BRCA prognosis**~%; hence, the comprehensive prognostic function of IL
family genes in breast cancer, to our best knowledge, remains unknown.

In this research, the underlying role of IL in prognosis, gene mutation, TME, and immunotherapy of BRCA
were our primary concerns. Based on the IL genes, we have developed an IL score that could predict the OS of
BRCA patients in the TCGA cohort and further validated this risk model in three GEO cohorts. In addition, the
correlation of mutation characteristics and risk score were comprehensively applied, and we further evaluated
the TME landscape between high- and low-risk groups. Moreover, the response to immunotherapy in BRCA
patients with different IL scores was performed to contribute reliable insights into the treatment for BRCA. Taken
together, our study might provide robust biological targets for improving prognosis and clinical treatment for
BRCA patients, and offer further reliable guidance on the personalized medicine of BRCA.

Materials and methods

Data collection and analysis. The RNA expression data and clinical details of the TCGA-BRCA cohort
were downloaded from The Cancer Genome Atlas (TCGA) database (http://xena.ucsc.edu/) as the training set,
with male BRCA patients excluded. Meanwhile, the GSE22219, GSE25065, and GSE21653 were collected from
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and were used as three independent
validation sets. Meantime, we searched “interleukin” as a keyword from the GeneCard (https://www.genecards.
org/) with the category protein-coding and high correlation score, and finally a total of 94 IL genes (Table S1)
were identified and utilized for the subsequent analysis.

Construction and validation of the IL score.  Firstly, we performed random forest (RF) with R package
“randomSurvivalForest” (version 3.6.4)*” to obtain hub IL genes (with variable relative importance >0.4). Sec-
ondly, the least absolute shrinkage and selection operator (LASSO) regression analysis®® was applied to screen
out the optimal genes through the "glmnet" R package”, and the best \ value was obtained by tenfold cross-
validation used for gene screening. We took the intersection genes of hub genes and optimal genes from RF and
LASSO, respectively, and applied multivariate Cox regression analysis to construct a risk model based on them.
The risk model formula was exhibited as follows: IL score=>_'__; Expr enej * CO€f goe» and the BRCA patients
were divided into a high-risk group and a low-risk group according to the median IL score. To further evaluated
the prognostic ability of the IL score, we used the Kaplan-Meier survival curve to evaluate the overall survival
(OS) ability based on the “survival” and “survminer” packages®, and performed receiver operating characteristic
(ROCQ) at 1, 3 and 5 years to calculate the area under the curve (AUC) values using the “timeROC” R package.

Clinical features analysis and nomogram establishment. The Kruskal Wallis test was used to ana-
lyze the difference in clinical characteristics between two risk groups, including age, tumor node metastasis
(TNM) and pathological stage, and the stratified analysis was then performed in the TCGA cohort. According
to the results of univariate and multivariate Cox regression analysis, we generated a nomogram based on IL score
and clinicopathological parameters using “rms” R package, and the performance of the nomogram was assessed
by calibration curves and ROC curves.

Molecular subtypes of BRCA. BRCA was mainly divided into four molecular subtypes, including luminal
A, luminal B, HER2-positive, and triple-negative BRCA (TNBC)*L Then, we performed an alluvial diagram to
visualize the changes in IL score in four molecular subtypes of BRCA and applied the Kaplan-Meier survival
curves to analyze the prediction ability in the IL score of four molecular subtypes with “survival” and “sur-
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vminer” packages. In addition, we compared the differences in IL score, tumor mutation burden (TMB), and
neoantigen level among four different molecular subtypes of BRCA.

Functional enrichment analysis. To deeply explore the underlying biological activities of the risk model,
we firstly screen the genes that were strongly associated with IL score using the Pearson (|R|>0.25, p<0.05), and
we finally obtained IL score -associated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG)* and Gene
Ontology (GO)* functional annotation was applied to analyze the functional enrichment of IL score-associated
genes using the “cluster Profile” R package. The GO mainly performed enrichment analysis in three aspects,
including biological process (BP), cellular component (CC), and molecular function (MF). p-value <0.05 and
q<0.05 were set as cutoff values.

Mutation analysis. To evaluate the mutational landscape of BRCA patients between high- and low-risk
groups, we analyzed the mutation information of BRCA patients using “maftools” package. Subsequently, we
used cBioPortal (https://www.cbioportal.org/mutation_mapper) to draw lollipop plots that could identify the
variation distribution of genes and the underlying functional impact of mutations. Finally, the TMB of the high-
and low-risk groups was also assessed.

Tumor microenvironment of BRCA. The tumor microenvironment (TME) included non-cancerous host
cells in the tumor and non-cellular components, which played an important role in the progression and thera-
peutic effect of cancer®. To identify the immunological features of the TME in BRCA, we assessed the expression
level of immunomodulators between high- and low-risk groups. In addition, we performed CIBERSORT? to
analyze tumor infiltrates immune cells (TTICs) abundance in high- and low-groups.

The immunotherapy landscape. First of all, we evaluated the different expression levels between 24
immune checkpoints and two risk groups. Moreover, we calculated the enrichment scores of immunotherapy
prediction pathway between high- and low-risk groups in the TCGA cohort, and the ESTIMATE algorithm was
applied to calculate the immune score, stromal score, and tumor purity. Tumor Immune Dysfunction and Exclu-
sion (TIDE) score, T cell dysfunction score, T cell exclusion score, and microsatellite instability (MSI) score
were evaluated based on the TIDE website (http://tide.dfci.harvard.edu/). In addition, the dataset GSE173839
was applied to evaluate the immunotherapy benefit of the risk model. Finally, we downloaded the immunophe-
noscore (IPS) of BRCA from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home) to predict the BRCA
patients’ response to immunotherapy.

The correlation between chemosensitivity and IL score. We collected three treatment targets,
including EGFR network, immune inhibited oncogenic pathways, and radiotherapy predicted pathways to assess
the correlation between treatment targets and the risk model. In addition, the drugbank database (https://go.
drugbank.com/) was used to obtain the BRCA-related drug target genes. Furthermore, we used the “ggplot2” R
package to compare the proportion of pathological complete response (pCR) among patients in the high- and
low-risk groups who received neoadjuvant chemotherapy in the GSE194040 cohort.

Statistical analysis. We used R software and its associated software package (v.4.1.2) to analyze the data.
Kaplan-Meier curves and log-rank tests were used to assess differences in OS between groups. Continuous data
processing was performed by Student’s t-test and Wilcoxon’s test, and Fisher’s exact test was applied to categori-
cal data. All tests were two-way and p <0.05 was considered statistically significant.

Results

Development of the IL score. First, we used RF to screen the IL genes and found 39 hub IL genes with
relative significance values greater than 0.4 (Fig. 1A). In the meantime, LASSO regression analysis further
determined 42 optimal IL genes (Fig. 1B) (Table S2). Then, 21 intersection genes were overlapped by these two
algorithms, including IL6ST, IL18BP, NFIL3, IRAK4, IL1RL1, IL21, IL17D, IL23A, IL22RA2, IL26, ILIRAPL2,
IRAKI1, IL17RE, IL27, ILF2, IL1IRN, IL31RA, IL20RB, ILIRL2, IL13RA1, and IL17B (Table S3). Based on the
21 IL genes, the multivariate Cox regression analysis was employed, aiming to construct a risk model (Fig. 1C).
The IL score was calculated by multiplying the expression of each gene by its respective coefficient and adding
the results together (Table S4). The BRCA patients in the training cohort were divided into high- and low-risk
groups according to the median IL score. Figure S1 displayed the distribution of risk score and survival sta-
tus in BRCA patients. Low-risk patients had better OS than those with high-risk (median OS: 9.3 months vs
11.7 months, p <0.0001, Fig. 1D), and the AUC for prediction survival of the IL score was 0.70 in 1 year, 0.76 in
3 years, and 0.72 in 5 years (Fig. 1E).

Validation and comparison of IL score. To further access the robustness of the IL score, we performed
three independent cohorts from GEO, including GSE22219, GSE25065, and GSE21653 using the same formula
to calculate the risk score (Table S5-S7). Figure S2A-C showed the distribution of risk score and survival status
for BRCA patients in three validation sets. As shown in the Fig. 2A-C, high-risk patients in three validation
cohorts all had worse OS than low-risk patients. In addition, the AUC values of 1-, 3-, 5 years were 0.66, 0.62 and
0.65 in GSE22219 cohort (Fig. 2D); 0.62, 0.65 and 0.64 in GSE25065 cohort (Fig. 2E); and 0.79, 0.63 and 0.65 in
GSE21653 cohort (Fig. 2F). To comprehensively analyze the prognostic ability of IL score, four risk models**-**
from previous studies were collected to compare with the prognostic prediction capacity. The result demon-
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Figure 1. Construction of IL score. (A) Screening hub genes by RF with variable relative importance >0.4.

(B) Screening optimal genes by LASSO and calculating the minimum criteria. (C) Multivariate Cox regression
analysis to obtain intersection genes. (D) Kaplan-Meier curve in TCGA cohort. (E) Sensitivity and specificity
of ROC curve in TCGA cohort. IL, interleukin; RE, random forests; LASSO, Least Absolute Shrinkage and
Selection Operator; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic; AUC, area under

the curve.
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Figure 1. (continued)
strated that the AUC value of the IL score was significantly greater than the other four risk models, showing that
our risk model surpassed the others in terms of accuracy (Fig. 2G). In addition, both univariate and multivariate
Cox regression analyses demonstrated that the IL score had good prognostic value in the four cohorts (Fig. 2H
and I).
The landscape of clinicopathological features in the risk model. Then, we analyzed the difference
in IL score across BRCA patients with different clinicopathological features, including age, pathological stage,
and TNM stage, and found that patients with M1 or higher stages had a significantly higher risk score (Fig. 3A).
In addition, stratification survival analysis was applied according to age (< 60 years and > 60 years), pathological
stage (stage I-1I and stage ITII-IV), T stage (T1-2 and T3-4), N stage (N0 and N1-3), and M stage (MO0 and M1).
It was confirmed that the patients with high risk score had significantly shorter OS, regardless of their clinico-
pathological features (Fig. 3B-K).
Heterogeneity in IL score between different molecular subtypes. The interaction between well
known four molecular subtypes (luminal A, luminal B, HER2-positive, and TNBC) and IL score subtypes were
visualized using an alluvial diagram (Fig. 4A). Intriguingly, there were more TNBC and HER2-positive patients
in the high-risk group, whereas there were more luminal A patients in the low-risk group. Survival analysis
revealed that the IL score may distinguish the survival of luminal A patients significantly (p <0.0001). The simi-
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Figure 3. The association between clinical characteristics and IL score. (A) Difference between clinical features
and IL score. (B) Survival analysis of clinical features, including age < 60 years (B), age > 60 years (C), stage I-1I
(D), stage III-1V (E), T1-2 (F), T3-4 (G), NO (H), N1-3 (I), MO (J) and M1 (K).
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Figure 3. (continued)

lar trend was observed in the other three subtypes, although there was no statistically significant difference
due to limited sample size (Fig. 4B). HER2-positive and TNBC had the highest IL score compared to the other
molecular subtypes, which was consistent with aforementioned result in Fig. 4A (p <2.2e-16, Fig. 4C). Moreo-
ver, TMB values were both significantly elevated in the high-risk group of luminal A and luminal B patients (all
p<0.001, Fig. 4D). Subsequently, neoantigen levels were significantly higher in the high-risk group of luminal
A patients (p <0.05, Fig. 4E).

Nomogram construction. Univariate and multivariate Cox regression analysis revealed that the IL score
was an independent prognostic indicator (HR=3.91, 95% CI 2.60-5.89, p <0.001, Fig. 5A and B). Next, we con-
structed a nomogram according to IL score, T stage, N stage, pathological stage, and age (Fig. 5C), which showed
a good agreement between actual and predicted survival at 1-, 3- and 5-year (Fig. 5D). The AUC for prediction
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breast cancer; TMB, tumor mutation burden.
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survival at 1-, 3- and 5- year was further improved to 0.80, 0.82 and 0.78, respectively, outperforming the risk
score and other clinicopathological factors (Fig. 5E-G).

Functional enrichment analysis. To investigate the potential biological activities of the risk model, we
performed the GO and KEGG enrichment analysis based on the IL score-associated genes (R-value>0.25). The
results revealed that the IL score-associated genes were primarily enriched in DNA replication, hexose meta-
bolic process, and monosaccharide metabolic process. From the aspect of GO CC, we found these genes mainly
clustered in the DNA replication preinitiation complex. And cadherin binding, histone binding, and catalytic
activity acting on a tRNA were major concentrated in GO MF (Fig. 6A). Through KEGG analysis we found that
the IL score-associated genes were mainly involved in the cell cycle, carbon metabolism, glycolysis, and gluco-
neogenesis (Fig. 6B).

Genomic landscape. Somatic mutation profiles of BRCA patients from the TCGA cohort were visualized
by waterfall plots, which showed that TP53, PIK3CA, and TTN were the most frequently mutated genes in both
high-risk and low-risk groups (Fig. 7A and B). However, the prevalence of the top 3 genes, including TP53, TTN,
and PIK3CA were significantly differed between the two groups according to Fisher’s test (all p <0.05, Fig. 7C). In
addition, as shown in lollipop plots, PIK3CA mutations were mainly distributed in specific functional domains,
including PI3K-p85B, PI3K-C2, PI3Ka, and P13-P14-kinase (Fig. 7D); the distribution of TP53 mutations was
primarily in specific functional domain P53 (Fig. 7E). In addition, TMB was significantly higher in the high-
risk group (p=5.1e—15; Fig. 7F), which was accompanied by a rising level of neoantigen (p =2.4e-06; Fig. 7G).
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Figure 6. Pathway and enrichment analysis of IL score-associated genes. (A) GO analysis. (B) KEGG analysis.
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular
component; ME, molecular function.
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Association between IL score and tumor microenvironment. We explored the expression level of
immunomodulators, and the distribution of these 122 immunomodulators in high- and low-risk groups was
shown in Fig. 8A. Interestingly, though high risk group had notable elevated TMB value, more significantly
overexpression of immunomodulators were presented in the low-risk group, including CCL1, CCL19, CX3CRI.
Subsequently, we identified the differences in TIICs between the high- and low-risk groups, high-risk group
had significantly higher abundances of macrophage M0, macrophage M2, neutrophil and NK cell resting, as
well as lower abundances of B cell naive, mast cell activated, monocyte, myeloid dendritic cell resting and T cell
CD4+ memory resting than those of low-risk group (all p <0.05, Fig. 8B).

Correlation of the IL score with immunotherapy. First of all, we analyzed the expression profile of
24 immune checkpoints between the high- and low-risk groups. The expression of PD-L1, ADORA2A, BTLA,
CD200, CD200R1, KIR3DL1, TIM-3, and VISTA was more prevalent in the low-risk group, whereas CD276
and PVR were up-regulated in the high-risk group (Fig. 9A). We determined, using the ESTIMATE algorithm,
that the ESTIMATE score, stromal score and immune score of the low-risk group were significantly higher
than those of the high-risk group (Fig. 9B). In addition, the TIDE score (p=6.5e—06) and T cell dysfunction
score (p=9e—06) were markedly lower in the high-risk group, indicating that the high-risk group may have
a higher possibility to respond to immunotherapy (Fig. 9C). The survival analysis further showed that BRCA
patients with high TIDE and lower risk score had the best OS (p<0.0001, Fig. 9D). We subsequently applied
GSE173839 to further explore the predictive ability of IL score for immunotherapy response in BRCA. Respond-
ers to durvalumab and olaparib therapy had higher risk score than non-responder in the GSE173839 (p =0.0045,
Fig. 9E). Additionally, anti-CTLA4 and anti-PD-1 therapy; either alone or in combination, were more beneficial
for patients in the low-risk group (p=0.0044; p=0.0032; p=0.041; p=0.0053; Fig. 9F-I). In consequence, we
believed that the risk model had the potential to be employed to identify the immunotherapy response of BRCA
patients.

Chemotherapeutic sensitivity and treatment efficiency of IL score. We explored the relationship
between IL score and therapeutic signatures, such as EGFR network, immune inhibited oncogenic pathways,
and radiotherapy predicted pathways, the results showed that the high-risk group showed a significant posi-
tive correlation in the radiotherapy predicted pathway (Fig. 10A). Furthermore, the target genes from chem-
otherapy drugs indicated that the low-risk group was positively associated with response to docetaxel and
paclitaxel (Fig. 10B). According to the GSE194040 cohort, the pCR proportion of neoadjuvant chemotherapy
(paclitaxel + pertuzumab + trastuzumab) in the high-risk group was significantly higher than that in the low-risk
group, but it did not reach statistical significance (p =0.074, Fig. 10C), and twelve other neoadjuvant chemother-
apy treatments were presented in Fig. S3. Moreover, neoadjuvant chemotherapy (paclitaxel + pertuzumab + tras-
tuzumab) had a higher risk score in pCR than non-pCR (p=0.0086, Fig. 10D), risk scores for the other eleven
neoadjuvant chemotherapy treatments were shown in Fig. S4. These results illustrated the potential therapeutic
implications of the risk model for chemosensitivity in BRCA.

Discussion

In this study, multiple machine learning algorithms, such as RF, LASSO, and multivariate Cox regression analysis,
were used to extensively examine the role of IL genes and ultimately create a 21 IL gene-related prognostic model
in BRCA. Not only did high-risk and low-risk BRCA individuals exhibit varied prognoses, but also distinct clin-
icopathologic characteristics, TME landscape, immunotherapy, and chemotherapy. Our research demonstrated
the predictive relevance, biological significance, and therapeutic potential of IL genes in BRCA.

As formentioned, IL plays an important role in human disease and is closely related to the occurrence and
development of cancer®, and multiple IL genes have been confirmed their function in the proliferation and
growth of BRCA cells*"*2. Considering the critical role of IL genes in cancer, it is necessary to comprehensively
investigate their prognostic value in BRCA. Notably, in current study, we found 21 genes with significant prog-
nostic predictive functions, and IL18BP, IL17D, and IL23A were identified for the first time as being signifi-
cantly correlated with the prognosis of BRCA. At the same time, IRAK4, IL21, IL22RA2, IL26, IL27, ILIRN and
IL13RA1 were significantly related to the OS of BRCA. A previous research discovered that variants in IRAK4
are highly associated with the prognosis of BRCA, which increase nearly fivefold risk of developing BRCA®.
As a member of the IL-10 family of cytokines, IL26 participates in inflammatory signaling and is overexpressed
in TNBC*; nevertheless, a previous study found that the introduction of recombinant IL21 could enhance the
anticancer impact of trastuzumab in the treatment of metastatic HER2-positive patients and that IL21 expression
is essential for CD8 T cells to optimal anti-HER2 antibody effectiveness®. Furthermore, it was reported that the
mutant alleles of ILIRN are correlated with shorter OS in BRCA patients, mainly by altering IL1 receptor binding
and resulting in the production of IL-1, which produces a proinflammatory status and enhances the aggressive-
ness of BRCA tumor®. In addition, several studies also have confirmed that IL13RA1 is strongly related to the
survival of BRCA*#. All of these data corroborated our conclusions and demonstrated the prognostic function
of IL genes in BRCA. Additionally, the IL gene play a key role on the biological functions, recent work from
Liubomirski et al.*® found that the interaction of Notch with IL-6 and the transcription factor STAT3 enhances
pro-tumor functions in BRCA. There is evidence that inactivating mutations of P53 can guide the loss of meth-
ylation of IL-6, leading to epigenetic reprogramming and driving the development of BRCA*. Accordingly, we
constructed a 21 IL gene-related risk model in BRCA, which is proved to be robust and reliable with the AUC
for OS of the IL score was 0.70 in 1 year, 0.76 in 3 years, and 0.72 in 5 years in the TCGA dataset. Besides, baesd
on the nomogram, the AUCs for the OS predictions for 1, 3, and 5 years were 0.80, 0.82 and 0.78, respectively,
demonstrating the practical application value of this risk model in clinical management for BRCA patients.
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Moreover, the GO and KEGG enrichment analysis found that the DNA replication, glucose metabolic process,
and glycolysis pathways were the most enriched in the pathways related to IL score. Studies have discovered that
cancer is correlated with errors that occur during DNA replication®, and the inhibition of DNA replication is
shown to be beneficial to improve the prognosis of BRCA®!. Recent research has demonstrated the crucial role
played by glucose metabolic process in the growth of TNBC®. Besides, glycolysis exhibits elevated activity in
BRCA, mainly through the effect of mTOR hyperactivation®.

Furthermore, we systematically studied the genomic differences between high- and low-risk groups, and TP53
was the most frequently mutated gene in the high-risk group. It has been reported that nearly one third BRCAs
have TP53 mutations, which reduces the transcriptional activity of p53, resulting in the development of BRCA
5% Funda et al.*® have proved that BRCA patients with TP53 alterations had significantly inferior recurrence-free
survival, progression-free survival, and overall survival. Accordingly, TP53 mutations may contrbute to the poor
prognosis in the high-risk group. On the contrary, the mutation frequency of PIK3CA, which is a prevalent gene
in BRCA®, was higher in the low-risk group, and is also an effective prognostic marker of BRCA®. The increasing
prevalence of PIK3CA may be explained by higher proportion of hormone receptor positive patients in the low
risk group. As alpelisib, a a-selective PIK3CA inhibitor, has been approved by FDA for treating BRCA patients
with this kind of mutants, low risk group had potentially higher clinical benefits to the targeted therapy*®. Moreo-
ver, TMB is assoicated with a higher probability of response to immune checkpoint inhibitors (ICIs)*, and we
found that high-risk group had a significantly higher TMB. As Targeted Agent and Profiling Utilization Registry
(TAPUR) and GeparNuevo Study both revealed that ICI monotherapy showed satisfied antitumor activity in
BRCA patients with high TMB®¢!, it suggested that high risk patients may have higher respondse rate to ICIs.

Notably, more TNBC and HER2-positive BRCA patients were in the high-risk group, which was consistent
with the fact that TNBC and HER2-positive BRCA patients exhibit highly invasiveness and high proliferation
characteristics and have a worse prognosis than other types of BRCA*2. This difference in subtype distribu-
tion was consistent with the finding in the TMB that TNBC had the highest TMB compared to other BRCA
subtypes®®. On the other hand, TME is a cellular community composed of tumor cells, endothelial cells, and
stroma, which plays a key role in tumor control and progression, and is highly associated with malignant cell
immune evasion, chemotherapy resistance, and tumor cell proliferation®**. The expression of immunomodula-
tors reflects the immunological characteristics of TME, MHC, receptors, chemokines, and immune stimulators
are the main immunomodulators®. In the current study, we comprehensively analyzed the expression levels
of immunomodulators between two groups. Interestingly, we discovered that most immunomodulators were
highly expressed in the low-risk group, which contradicted our finding that the high-risk group would respond
better to immunotherapy. Several findings demonstrated that the high expression of CCL11 and CCL19 predicts
better OS of BRCA®%, and Li et al.®” indicated that the high expression of CCL21 is highly associated with a
lower distant recurrence rate of BRCA, through increasing the infiltration of CD8+T cells, thus, we confirmed
that these studies may explain the up-regulation of immunomodulators in the low-risk group. Consequently,
we hypothesized that the high-risk group would respond better to immunotherapy. In addition, we studied the
abundances of the TIICs using CIBERSORT to evaluate the immune heterogeneity between high- and low-
groups. Compared with the low-risk group, the increased tumor infiltrating abundances of macrophage MO,
macrophage M2, neutrophil, and NK cell resting were discovered in the high-risk group. It has been recently
highlighted that TIICs are a novel treatment target for immunotherapy of cancer’’, in which macrophage M0
is a key factor in regulating immune responses’’. Previous studies proved that the polarization of macrophage
M2 is highly related to BRCA and that reducing macrophage M2 can help to suppress the process of BRCA7>73,
These findings indicated that patients in the high-risk group have a worse prognosis, which may be related to
the high abundance of macrophage M2. Collectively, the IL score revealed the vital role of TME in BRCA and
might offer a novel strategy for the treatment of BRCA patients.

At present, immunotherapy is an approach to cancer treatment by activating the anti-tumor immune response,
in which immune checkpoints are a group of inhibitory immune receptors that exert an immunosuppressive
effect on the cell surface™, which can be beneficial to a subset of cancer patients in immunotherapy”. In this
study, we found higher expression levels of immune checkpoints in the low-risk group, including PD-L1, TIM-
3, VISTA, ADORA2A, BTLA, CD200, CD200R1, and KIR3DL1. Nevertheless, TIDE is shown to have better
prognostic ability than other indicators”®, we found a significantly lower TIDE score and T cell dysfunction
score in the high-risk group, indicating a better response to immunotherapy in the high-risk group. In particu-
lar, PD-L1 inhibitor durvalumab and PARP inhibitor olaparib can be used for the treatment of HER2-negative
BRCA?’, our research found that the responders to durvalumab and olaparib therapy had higher risk score than
non-responders in GSE173839 dataset, further suggesting that the BRAC patients in high-risk group response
better to immunotherapy. Together, these results demonstrated that the IL score can be employed as a potential
biomarker for BRCA immunotherapy. Docetaxel and paclitaxel are known to be commonly used chemothera-
peutic drugs for BRCA7®7, and sensitivity analysis of chemotherapeutic drugs showed that the low-risk group
had a significantly higher response to docetaxel and paclitaxel. Besides, neoadjuvant chemotherapy is a novel
treatment method for BRCA, which aims to reduce the tumor size and improve OS in BRCA patients with locally
advanced cancer®, and the combination neoadjuvant chemotherapy (paclitaxel + pertuzumab + trastuzumab) had
a higher risk score in pCR. Consequently, we speculated that there is a potential interactive correlation between
IL score and chemotherapeutic drug sensitivity of BRCA.

In summary, a 21-gene signature based on IL genes was developed and validated to have robust performance
in predicting the survival outcomes of BRCA patients. In addition, the risk model was proved to provide novel
insights into clinical characteristics, TME landscape, immunotherapy response, and chemotherapeutic drug sen-
sitivity between high- and low-risk groups. Taken together, we believed that our findings could offer a powerful
prognostic biomarker for individualized prediction of clinical decision-making and provide a theoretical basis
for further studies in patients with BRCA.
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Data availability

The datasets generated and analyzed during the current study are available in The Cancer Genome Atlas (TCGA)
repository (http://xena.ucsc.edu/), and GSE22219, GSE25065, and GSE21653 from Gene Expression Omnibus
(GEO) repository (https://www.ncbi.nlm.nih.gov/geo/). Access to both repositories is not required accession
number. The datasets analyzed during the current study are available from the corresponding author on reason-
able request.
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