
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20754  | https://doi.org/10.1038/s41598-022-25016-5

www.nature.com/scientificreports

Inter‑individual differences 
in baseline dynamic functional 
connectivity are linked to cognitive 
aftereffects of tDCS
Monika Pupíková 1,2, Patrik Šimko 1,2, Martin Lamoš 3, Martin Gajdoš 4 & Irena Rektorová 1,2,5*

Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in 
healthy aging; however, results from various studies have been inconsistent. We hypothesized that 
inter‑individual differences in baseline brain state may contribute to the varied results. We aimed to 
explore whether baseline resting‑state dynamic functional connectivity (rs‑dFC) and/or conventional 
resting‑state static functional connectivity (rs‑sFC) may be related to the magnitude of cognitive 
aftereffects of tDCS. To achieve this aim, we used data from our double‑blind randomized sham‑
controlled cross‑over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive 
training had induced significant behavioral aftereffects. We performed a backward regression 
analysis including rs‑sFC/rs‑dFC measures to explain the variability in the magnitude of tDCS‑induced 
improvements in visual object‑matching task (VOMT) accuracy. Rs‑dFC analysis revealed four rs‑dFC 
states. The occurrence rate of a rs‑dFC state 4, characterized by a high correlation between the left 
fronto‑parietal control network and the language network, was significantly associated with tDCS‑
induced VOMT accuracy changes. The rs‑sFC measure was not significantly associated with the 
cognitive outcome. We show that flexibility of the brain state representing readiness for top‑down 
control of object identification implicated in the studied task is linked to the tDCS‑enhanced task 
accuracy.

The proportion of older adults in the population is increasing worldwide and the age-associated cognitive decline 
represents an emerging problem that society will face in the near future. While various developments have led 
to longer life expectancy, the proportion of the healthy years remains rather  constant1. The economic value of 
a slowdown in the rate of aging that would improve health and lead to a 1-year increase in life expectancy has 
been estimated to be worth US$38 trillion; a 10-year increase would be worth US$367 trillion in the United 
 States2. Performance decline with advancing age can be seen across a wide range of cognitive  functions3,4; some 
are more affected than others. Working memory has been identified as a core cognitive function deteriorat-
ing with age that mediates age-related variance on a broad array of cognitive  behaviors5. In order to offset the 
trajectory of cognitive decline in the aging population, various non-pharmacological interventions have been 
proposed to strengthen the cognitive functions that are sensitive to healthy or pathological  aging6–12, including 
cognitive training, physical therapy, and non-invasive brain stimulation techniques. However, the effectiveness 
in maintaining cognitive functions varies greatly both across and within intervention  types13.

Transcranial direct-current stimulation (tDCS) was proposed as an inexpensive and easily administered 
method for experimental use, and potentially also for clinical use, in an attempt to modulate cognitive  functions14. 
Research aiming to modulate cognition using tDCS suggests that ongoing brain processing can be tuned and 
reorganized on the level of large-scale brain  networks15,16, resulting in a favorable behavioral aftereffect via 
improved inter- and intra-network  communication17–21. tDCS applies a weak direct electric current through 
two electrodes placed over the scalp with the goal of modulating underlying cortical  excitability22. It has been 
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proposed that, due to the relatively subtle neuromodulatory effect, the enhancing potential of tDCS may be 
more pronounced when brain networks are already engaged in cognitive  tasks15. tDCS, in combination with 
cognitive training, proved its functionality in cognitive augmentation in a senior  population6,9,20,23,24. However, 
accumulating evidence indicates large inter-individual variability in responsiveness to  tDCS25,26. One-treatment-
suits-all strategies have been widely adopted. As responders and non-responders to specific treatment options 
introduce heterogeneity into the data and lower the overall effect  sizes27,28, study results have been inconsistent 
and sometimes  contradictory29–32.

The inter-individual variability may have multiple causes; these causes are thus far poorly understood. tDCS-
induced effects interact with individual differences based on demographic variables such as age, education, and 
 sex33–36. Other identified factors include baseline performance on the same or similar  tasks6,37,38, temporal spac-
ing of  sessions34, brain  morphology39, and  genetics40,41. The implementation of biomarkers in tDCS-responder 
identification should be encouraged, such as combinations with neuroimaging and electrophysiological methods, 
to increase the effectiveness of tDCS in well-selected candidates who might best profit from  tDCS42. In particular, 
the study by Cerreta et al.43 shows the association of inter-individual variability of multi-session tDCS-induced 
changes with a brain state measured by resting-state functional connectivity within large-scale brain networks. 
However, the study did not find any associations for immediate single-session aftereffects.

Recent studies have challenged the conventional resting-state static functional connectivity (rs-sFC) analysis 
with its assumption of invariant rs-networks through the entire fMRI  duration44. As the brain is an inherently 
dynamic system, another non-mutually exclusive approach of resting-state dynamic functional connectivity 
(rs-dFC) accounts for the presence of temporal variability in the resting-state functional connectivity. Individu-
als switch between different whole-brain connectivity profiles (often called “states”) characterized by distinct 
recurring functional connectivity patterns that are common for the studied  population45. The sliding window 
approach is one of the most widely used methods to track time-varying functional connectivity in fMRI. The con-
nectivity metric (Pearson correlation coefficient here) is calculated in a short-term interval window that moves 
along the signals in defined steps. This forms a series of correlation matrices in which connectivity states are then 
assessed by their clustering. For each state, higher-order summary metrics (e.g., state occurrence, dwell times, 
state coverage) can be estimated. Even though the debate is extensive and ongoing regarding the interpretation, 
functional significance, and origin of the rs-dFC and  states44,46,47, recent advances have provided evidence for 
a physiological basis of rs-dFC, e.g., by combining EEG and rs-fMRI  recordings48,49. Temporal variability was 
shown to reflect changes in neural activity related to cognitive, behavioral, and sensorimotor  operations50–53. A 
strong correspondence was demonstrated between changing states as revealed by dynamic functional connec-
tivity and ongoing experimentally induced cognitive  states54,55. Researchers also examined dynamic functional 
connectivity during tasks and found a direct link between cognitive performance and the dynamic reorganization 
of the network structure of the  brain56. The authors showed that enhanced communication between specialist 
regions of the brain that would otherwise remain segregated had increased an individuals ability to accomplish 
complex cognitive tasks. Some parameters of the dynamic system were identified as potential aspirants for sensi-
tive markers of mental conditions which might be complementary to metrics about static brain  characteristics57. 
Preliminary research has revealed alterations in specific rs-dFC features distinguishing between controls and MCI 
 subjects58 or Alzheimer’s disease  patients59. One such feature, the occurrence rate of a state, indicates how often 
that particular state is visited in relation to duration and has been linked to distinct brain network  flexibility44,45 
and cognitive  flexibility60.

Working memory, i.e., the ability to adaptively maintain and simultaneously manipulate  information61,62 to be 
employed in ongoing processing, is related to higher-order cognitive skills such as multitasking and  learning63. 
It is therefore central to the execution of a variety of daily  functions64. Major cognitive brain networks, such as 
the frontoparietal control (FPCN) and dorsal attention networks (DAN), are important in governing working 
memory  processes65,66. A significant number of studies have investigated age-related modifications in func-
tional networks using static functional connectivity and have revealed disruptions/reorganizations within cer-
tain functional brain  networks67–69, including the FPN and the DAN. In addition, the default-mode network 
(DMN), which is typically activated during internally focused cognitive  processes70 and suppressed during the 
performance of externally directed  tasks71, is characterized by patterns of age-related intra-network decrease and 
increased between-network  connectivity72–74. This shift from intra-network to more pronounced inter-network 
connectivity seems to be global among brain networks in healthy  aging75, referred to as reduced network segrega-
tion and increased integration. Age-related altered interplay between task-positive and task-negative networks 
has been associated with compromised working memory  performance76,77. However, working memory relies on 
the ability to engage diverse cognitive control  systems78,79 and thus on dynamic and flexible coordination across 
multiple large-scale brain networks that transiently link distributed brain regions in response to changing task 
 demands80–82. While it is generally assumed that cognitive deficits in older adults are related to reduced brain 
flexibility, these might not be appropriately addressed by rs-sFC, due to its nature. It has been suggested that the 
study of rs-dFC can unveil flexibility in the functional coordination between different sub-networks and provide 
a deeper understanding of distinct brain changes with  aging83. A recent study revealed that reduced brain flex-
ibility in a senior population due to disruptions in brain state dynamics was associated with discrete cognitive 
deficits during a working memory task that became more pronounced with advancing  age84. Further, the ease 
of state transitions from one state to another and occurrences of some particular states decreased with advanc-
ing  age83,85,86. These alterations in brain dynamics due to aging were associated with cognitive  performance85. 
Age-related changes associated with brain network dynamic flexibility may provide potential markers of risk 
for, and resilience to, age-related cognitive decline across the  lifespan46. We tested whether the occurrence of 
distinct brain states at rest predicts the magnitude of cognition-targeted intervention aftereffects, such as tDCS 
coupled with cognitive training.
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Our aim was to explore whether inter-individual differences in brain state dynamics of healthy seniors, as 
evaluated by rs-dFC data analysis, might influence the magnitude of tDCS-induced cognitive aftereffects. We also 
aimed to compare rs-dFC and conventional rs-sFC methods to determine which one is more precisely related to 
specific immediate stimulation-induced aftereffects. To achieve our aims, we utilized data from our previous study 
of bifrontal tDCS coupled with cognitive training in healthy older  adults20. The data had indicated a significant 
stimulation effect upon cognition. The original study was conducted in a double-blind, cross-over design aimed 
at enhancing performance in a visual object matching task (VOMT). The bifrontal montage, with anode over the 
left dorsolateral prefrontal cortex (lDLPFC), significantly enhanced VOMT accuracy as compared to the sham 
stimulation. This was accompanied by a significant stimulation × time interaction in rs-sFC, measured by the 
magnitude of resting-state functional connectivity between the stimulated seed and the fronto-parietal control 
network (FPCN). We now computed a regression model to explore whether baseline resting-state functional 
connectivity could contribute to variability in tDCS-induced immediate cognitive aftereffects, encompassing 
both rs-sFC and rs-dFC measures.

Methods
Sample. A cohort of healthy seniors, all at least 60 years of age, were enrolled in the study. Only participants 
with no serious neuropsychiatric conditions and with intact cognition were included in the experiments on the 
basis of a complex neuropsychological examination prior to the study (for details  see20); no participants had 
ferromagnetic metals in their bodies (due to the presence of MRI data acquisition). Demographic data included 
age, sex, and education. Each subject signed the informed consent form in accordance with the ethics codes and 
relevant regulations approved by the ethics committee of Masaryk University.

Study design and procedure. Subjects participated in a double-blind crossover design study as described 
 previously20. All participants underwent a series of four tDCS stimulations using two distinct electrode mon-
tages (bi-frontal/right fronto-parietal), with corresponding sham stimulation over the same stimulation areas 
(see Fig. 1). Data from the bi-frontal montage was used for the current study. All participants had fMRI prior to 
and immediately after tDCS in each experimental session. The tDCS and the VOMT offline task were performed 
in the NIBS laboratory placed next to the MRI scanner and it took less than 5 min to move subjects between the 
two laboratories. The main behavioral outcome, VOMT was performed before and after the tDCS with a visual 

Figure 1.  Experimental design and methods. (a) The crossover design involved two sessions with real 
2 mA stimulation/ sham tDCS with a concurrent working memory task. Prior to and after the stimulation, 
participants performed a visual object matching task (VOMT) and underwent resting-state fMRI. (b) Offline 
VOMT—subjects respond whether the two consecutive objects are the same or different by pressing a YES/
NO button in two difficulty levels (conventional view of objects—lower difficulty level; unconventional view of 
objects—higher difficulty level). (c) Online WMT—subjects view a block of faces and scenes (2 + 2, randomized 
order) preceded by a specific command on how to react to a probe that follows each block. Subjects respond 
whether the probe is consistent/ inconsistent with the prior instruction by pressing a YES/NO button. Freely 
available face photographs from  Chicago87 and  Glasgow88 face databases were used as a face stimuli in the task.
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working memory task (WMT) with faces and scenes as an “online” cognitive training task during the tDCS 
stimulation (online WMT). Both tasks were practiced by the participants during the baseline (opening) session 
to prevent high learning effects between the first and the second stimulation session. Prior to the experimental 
sessions, each subject underwent T1 MRI sequence scanning to enable individual targeting of tDCS montage 
(for further details see below). The study was approved by The Masaryk University Research Ethics Committee. 
The study was carried out in accordance with relevant guidelines and regulations. The trial was preregistered in 
ClinicalTrials.gov under NCT04134195.

tDCS. tDCS was performed through a battery-driven stimulator (DC-Stimulator Plus, NeuroConn GmbH, 
Germany). The anode was placed over the lDLPFC (MNI − 40 32 30) and the cathode over the right middle 
frontal gyrus (MFG; MNI 44 40 − 10) in the bifrontal stimulation  protocol20. We used the T1 MRI scan-based 
frameless stereotactic neuro-navigation targeting with Brainsight 2, to specify the exact location of the electrode 
center in each individual. A current of 2 mA was delivered using two rubber electrodes (5 × 5 cm) for 20 min, 
with initial ramp-up and final ramp-down phases of 30 s. The electrode was held in place by conductive paste 
(Ten20 Conductive Paste gel, Weaver and Company). The sham stimulation was applied with the same settings, 
but the stimulator was turned off after 30 s. The impedance was controlled by the device throughout the session; 
an excess of limits would have led to an automatic termination of stimulation.

Behavioral tasks. Throughout the study, we used two different visual WMT. VOMT was our main behav-
ioral outcome. The task consists of multiple successive paired images of common objects. The second image 
of each pair is either the same or different from the first image (different object identity or object orientation). 
Participants are instructed to respond as quickly as possible by pressing a YES button if the second object of the 
paired images is the same as the first object (regardless of spatial orientation) or by pressing a NO button if the 
second object is different. We collected the number of correct responses and reaction times (RT) of both condi-
tions—conventional view (lower difficulty level) condition and unconventional view (higher difficulty level) 
condition with rotated object views. We used different versions of the task for every session, balanced in dif-
ficulty. The main outcome was overall accuracy (the percentage of the correct responses) based on our previous 
 study20.

The online WMT, adapted from Gazzaley et al.78, involved faces and outdoor scenes to be remembered which 
was performed during the stimulation session (active, sham). The task consisted of two subtasks in which aspects 
of visual information were kept constant while the target instruction changed. Subjects viewed a block of faces 
and scenes (2 + 2, randomized order) preceded by a specific command on how to react to a probe that followed 
each block. Subjects responded to whether the probe was consistent/ inconsistent with the prior instruction by 
pressing a YES/NO button. The number of correct responses and reaction times (RT) were collected (for more 
details  see20).

MRI data acquisition and pre‑processing. We acquired MRI data with a 3.0  T Magnetom Siemens 
Prisma. Our MR protocol involved a T1 MPRAGE sequence (TR 1620 ms; TE 2.44 ms; voxel size 1 × 1 × 1 mm; 
FoV 256 × 256 mm; flip angle 8°; 224 transversal slices) and two sessions of resting-state fMRI (rs-fMRI; n = 25; 
TR 850 ms; TE 35.2 ms; voxel size 2 × 2 × 2 mm; FoV 208 mm; flip angle 45°; 80 transversal slices; 700 scans; 
multiband factor 8; and overall duration of resting-state acquisition 9.5 min).

The data was checked for spatial abnormalities using the tool mask  explorer89. We controlled for the exces-
sive presence of movement in the data using framewise displacement (FD)90; we excluded all datasets exceeding 
the condition FD < 0.5 mm in less than 20% of scans (7 subjects excluded) as used e.g.  in20. The data was pre-
processed in SPM12 running under MATLAB R2019a, using realign and unwarp, spatial normalization, and 
spatial smoothing (FWHM 5 mm).

Independent component analysis (ICA). We decomposed pre-processed BOLD rs-fMRI data on sta-
tistically independent components to identify resting-state brain networks. We used the toolbox GIFT (https:// 
trend scent er. org/ softw are/ gift/;91,92). The ICA was performed with the INFOMAX algorithm and GICA back-
reconstruction algorithm. The reliability of the components was determined with the ICASSO  toolbox93. The 
optimal number of components was based on the minimum description length  criterion94. In our data, 30 stable 
components were estimated, out of which we identified 10 brain networks.

Dynamic functional connectivity. Sliding window correlations, i.e. Pearson’s  approach95,96, between the 
temporal-series of 10 selected independent components (ICs) were calculated. For each subject and session, a 
window length of 60 s and 90% overlap formed a series of 89 correlation matrices 10 × 10. The mean correlation 
matrix was subtracted from each matrix. The series of de-meaned matrices from each subject and session were 
concatenated across third (temporal) dimension.

K-means clustering applied on concatenated matrices was used to find re-occurring functional network 
 states49. The optimal number of clusters was determined by the mean criterion, which contained measures of 
Calinski-Harabasz index, Davies-Bouldin index, and silhouette values. The clustering algorithm was repeated 
1000 × with random initialization of centroid positions. The final cluster centroids represent functional network 
states. State vectors, composed as the assignment of each subject correlation matrix in a time-series to the near-
est cluster by a k-means algorithm, were used to extract parameters of the state  dynamics97. These included time 
coverage, i.e. the percentage of data covered by a specific state, and occurrence i.e. the number of state segments 
divided by duration. The higher the parameter value, the more often the state appears in a shorter duration. 
Higher state occurrence has been interpreted as higher cognitive  flexibility98.

https://trendscenter.org/software/gift/
https://trendscenter.org/software/gift/
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Static functional connectivity. For the rs-sFC, a magnitude of rs-connectivity between the lDLPFC and 
left inferior parietal lobule as part of the FPCN was used in the regression model as an explanatory variable based 
on our previous results (lDLPFC-FPCN;20). We computed rs-sFC as follows: first, we used ICA on resting-state 
functional connectivity data and manually identified spatial components representing the FPCN. Local maxima 
were chosen as regions of interest. Next, Pearson correlations between representative signals, converted to z val-
ues using the Fisher r-to-z transformation, were computed across the whole duration of a resting-state scan. Our 
focus was on the rs-sFC between stimulation seeds (seeds placed on the area underneath the anode electrode 
center) and the network seeds of FPCN (for further details  see15).

Statistical analyses. For each stimulation session, the change in performance scores was defined as 
VOMT overall accuracy at post tDCS minus the VOMT overall accuracy at pre tDCS. Thus, a positive value of 
the change indicates an improvement in VOMT overall accuracy. In the current study, we aimed to investigate 
the association between this dependent variable and rs-dFC/ rs-sFC measures at baseline.

First, we inspected the distribution of the behavioral and fMRI variables. Missing values were computed 
if other related variables for the case were available (1 value in the whole dataset). Non-normal distributions 
were log-transformed to meet normal distribution. At the baseline, bi-variate Pearson correlations were per-
formed to identify significant relationships with baseline performance in VOMT accuracy and rs-sFC, rs-dFC, 
or demographic variables. Backward regression analysis was then performed (removal criteria: p ≥ 0.10) to find 
the best variable to explain the variability in the magnitude of tDCS-induced improvements in VOMT accuracy. 
The outcome variable for the model was the pre-post difference in the overall accuracy of VOMT. Independent 
factors (predictors) included the occurrence rate of identified rs-dFC states 1–4 (a separate variable for each 
state) and a magnitude of lDLPFC-FPCN rs-sFC. If the regression model was significant, we then conducted 
sensitivity analyses by using a second regression model that tested whether the model remained significant fol-
lowing the inclusion of additional variables in the model shown to be associated with tDCS effects in previous 
literature: demographic variables (age, sex, education) and baseline  performance37 using forced entry multiple 
regression analyses. Before performing multiple regressions, independent variables were tested for multicol-
linearity (i.e., strong correlations among predictor variables, Pearson correlation coefficient (r) greater than 0.7) 
and homoscedasticity. Results were considered significant at p < 0.05. As this was an exploratory study aiming 
to identify potential candidates for further confirmatory trials, we did not correct for multiple comparisons. 
We emphasize that any significant results should not be interpreted as confirmatory, but rather exploratory for 
future hypothesis-driven trials.

Results
Subjects. Twenty-five healthy seniors (68.84 ± 4.65 years old; 17/8 women/men ratio; all Caucasians) com-
pleted the study. All participants had a high school or higher education level of 14.48 ± 2.64 years. Seven subjects 
were excluded due to low fMRI data quality (the excessive presence of participant movement in the scanner), one 
subject was excluded due to extreme values of rs-dFC measures.

Independent component analysis. We selected 10 components that represent functional networks and 
have been widely identified and reported in the literature by  others99–103: cerebellar network, front and back 
default mode network (front/back-DMN), visual network (VN), right and left frontoparietal network (r/l-FPN), 
frontotemporal (language) network (LN), dorsal attentional network (DAN), frontoparietal control network 
(FPCN), and sensorimotor network (SMN; Fig. 2).

Dynamic functional connectivity states. The analysis identified four rs-dFC states (Fig. 3). In brief, 
state 1 is a sparsely connected dynamic functional state, the posterior part of the DMN is clearly anticorrelated 
(i.e., network fluctuations are in the opposite direction) with the right FPN, and the SMN is anticorrelated with 
both DAN and primary VN, thus representing the “true” resting state in terms of both cognitive and motor activ-

Figure 2.  Ten ICA components utilized for the rs-dFC analysis.
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ity. In state 2, both left and right FPN are anticorrelated with the language and SMN networks. The posterior 
part of the DMN is particularly anticorrelated to the language network. At the same time, the SMN is highly 
interconnected with the visual, DAN, and language networks. This state may represent readiness for processing 
tools and objects, as indicated in the “action reappraisal” concept. This concept suggests that object knowledge is 
constituted by information inscribed within the motor and sensory systems thus stressing the automatic lower-
level processing of  information104. State 3 is a hyperconnected state which reveals particularly tight connection 
between the right FPN and DAN, visual and language networks. The (posterior) DMN is highly correlated with 
the SMN. The state may thus represent readiness for both motor and visual attention reaction to salient stimuli. 
In state 4, the left FPN (where the tDCS anode was positioned) is highly correlated with the language network 
which is in turn anticorrelated with the SMN and DAN. This state may represent readiness for top-down control 
of object identification with an involvement of temporal regions of the ventral visual pathway, and covert verbali-
zation/naming of an identified object with an engagement of semantic language processing.

Baseline rs‑sFC and rs‑dFC measures. The coverage of each state varied between 19% (state 4) to 35% 
(state 1), see Supplementary Table S1. For the occurrence of each state, see Table 1. Coverage and occurrence 
of rs-dFC states and a rs-sFC measure—lDLPFC-FPCN connectivity did not differ at baseline between real and 
sham stimulation conditions (p > 0.05, data not shown).

Regression model. At baseline, there were no significant correlations with the baseline VOMT accuracy 
performance and rs-sFC, rs-dFC or demographic variables. All assumptions for multiple regression were met. 
Backward regressions showed that for active stimulation, the occurrence of state 4 was the only significant vari-
able explaining the variability in overall accuracy change (R2 = 0.304;  F(1,16) = 6.555; p = 0.022). The final model of 
a backward regression is shown in Table 2. The R2 change between models varied between 0.000 and 0.026 (for 
the stepwise report of the backward regression see Supplementary Table S3). The model showed that the higher 

Figure 3.  Four identified rs-dFC states (1–4 from the upper left to lower right). Each matrix depicts mutual 
correlations between each component identified using the ICA. Dark blue suggests a high negative correlation, 
and dark red suggests a high positive correlation. Note: DMN default-mode network, SMN sensorimotor 
network, DAN dorsal attentional network.
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the occurrence of state 4 at baseline, the higher change of overall VOMT accuracy (β = 0.551). The occurrence 
rate of states 1 to 3 and the rs-sFC measure were not significantly associated with the accuracy change. State 4 
remained significant (p = 0.046) even after correcting the model for demographic variables and baseline perfor-
mance; however, the overall model was not significant (R2 = 0.378;  F(1,16) = 1.334; p = 0.320, see Supplementary 
Table S4). No significant associations were found for the sham condition.

Discussion
In this study, we investigated whether baseline resting-state functional connectivity might contribute to individual 
differences in the tDCS-induced VOMT effects in healthy older adults with a novel insight from functional con-
nectivity temporal dynamics. The flexibility in which different rs-dFC patterns, i.e. brain states, are visited seems 
to be crucial for efficient and adaptable communication within the  brain105,106. Brain state occurrence rate (i.e. 
our rs-dFC parameter of interest) has been reported to reflect cognitive  flexibility59,60,98. In line with the previ-
ous literature, we were able to identify several distinct sparsely, densely, and intermediately connected rs-dFC 
patterns, similar to those reported in other  studies45,59,85,97,107.

In line with previous  literature45,59,107, participants spent most of the time in the sparely connected rs-dFC 
state (state 1 in this study) with relatively weak connections—mostly weak anti-correlations (or correlations 
near zero) between the task-negative and task-positive networks. This state may thus represent a “true” resting 
state in terms of both cognitive and motor activity. The frequency of a similar state was linked to the amount of 
self-focused  thoughts108. The state has been suggested to reflect a “ground state”, a preferable state of the brain 
with lower information transfer while preserving the maximum of energy  saved109. The states with weak and 
moderate correlations (correlations near zero) between brain networks were also considered as “metastable” brain 
states that avoid extreme brain configurations, allowing for the flexible reconfiguration of neural  networks110. 
On the other hand, other states have been previously interpreted as reflecting temporary deviations arising due 
to cognition, readiness to react to internal/ external stimuli, or due to other neurophysiological  processes107. 
We demonstrate that participants with a pre-existing higher occurrence rate of a particular rs-dFC state showed 
better cognitive response to tDCS stimulation. Notably, this rs-dFC state (state 4) reveals increased connection 
of the networks that are known to be engaged in a cognitively demanding visual working memory control. The 
total coverage of state 4 was lower than that of state 1. In more detail, the left FPN (where the tDCS anode was 
positioned) was highly correlated with the fronto-temporal network with a predominant left-sided involve-
ment. This network is also referred to as the language  network111. Therefore, we may speculate that this state 
represents readiness for top-down control of object identification in the VOMT, which includes covert naming 
of an object and involves semantic language  processing112–114. As the presentation of objects is ambiguous in 
the VOMT, object identification is required, thus processes beyond the basic perceptual comparison relying on 
visual networks are necessary. The ventral temporal lobe—specifically Broadmann area 37, partly covered in 
our fronto-temporal language network—is a multimodal language region in the ventral visual pathway that was 
shown to process semantic information about an  object115,116. Moreover, its intact connections to the middle 
temporal gyrus (which was substantially covered by the language network) are necessary for intact visual object 
 recognition117,118, particularly related to object meaning and  knowledge119–121.

Participants who had a higher occurrence of this tightly connected rs-dFC state 4 before the stimulation 
improved more than those with a lower occurrence of the state. Previous literature showed that patients with 
cognitive dysfunctions (Alzheimer’s disease; dementia with Lewy bodies, DLB) spend more time in the lower 
inter-network connectivity state (i.e. energy saving mode) and switch less often into more highly and specifi-
cally connected network  configurations59. Another study from the same group reported marked and generalized 
slowing of the network dynamics in a DLB cohort in comparison with healthy  participants98. In the same vein, 
more pronounced brain flexibility as measured by the temporal variability of functional connectivity in healthy 
individuals, has been shown to be related to superior performance on a range of cognitive tests across different 
domains (e.g. alertness,  memory106). It seems that the efficiency of a healthy brain allows for a balance between 
metabolic expenditure and readiness for a more specific response to situational  demands122,123. Notably, state 4 

Table 1.  Mean rs-dFC outcomes.

Variable Mean Std. deviation

Occurrences of a state 1 0.174 0.074

Occurrences of a state 2 0.220 0.121

Occurrences of a state 3 0.228 0.105

Occurrences of a state 4 0.223 0.133

Table 2.  The final regression model statistics. Significance values are in bold.

Variable B

95% CI for B

Std. β t p R2

Std. residual

Lower bound Upper bound Mean SD

Occurrences of state 4 0.125 0.021 0.230 0.551 2.560 0.022 0,304 0.000 0.968
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also involved a high correlation between the frontoparietal and DMN networks, which was shown to be a cen-
tral feature of neurocognitive aging as revealed by rs-sFC, termed the “default-executive coupling hypothesis 
of aging”72,124. A similar state (in terms of co-activation among the FPCN and DMN) and reduced flexibility, 
e.g., longer dwell times, was related with reduced cognitive performance in healthy  aging85. We believe that our 
data provide support for the phenomenon of “the rich get richer” observed in previous  studies33,37, in which 
performance improvement is more expressed in a subset of high-performers or in people with higher education. 
In our study, individuals with higher flexibility of state 4 showed better responsiveness to tDCS. However, this 
interpretation must be treated cautiously. Our results do not confirm any causal relationship but only an asso-
ciation between specific brain rs-dFC and tDCS-induced cognitive aftereffects as they stem from the temporal 
dynamics of identified correlation matrices.

In contrast to results found in the  literature33,37, neither education nor baseline performance could explain 
the variability in tDCS-induced effects in our sample when forced into the model. However, all subjects in this 
study were high-performers with at least a high school education (14.58 mean years of education in our study, 
as compared to 13.5 years of education in the lower educated group  in37; therefore, the variability in these 
parameters was rather low.

In our regression model, we also considered the strength of rs-sFC between the stimulated seed (lDLPFC) and 
FPCN, which had shown a significant stimulation × time interaction after tDCS in our original  study20. Unlike 
rs-dFC measures, the magnitude of baseline rs-sFC was not associated with stimulation-related outcome. This 
finding is in accordance with the results of a previous study by Cerreta et al.43 in which the authors reported that 
rs-sFC of the DMN or FPCN could not predict tDCS-induced response in a 2-back WM task accuracy after a 
single session stimulation with the anode placed over the right DLPFC. We hypothesize that using rs-dFC as 
compared to rs-sFC measures may be necessary to identify tDCS responders. Future research is warranted to 
confirm this hypothesis.

We are aware of some limitations of this study. The study sample included only participants with more than 
12 years of education, thus our sample showed smaller variability in task accuracy, underrepresenting low per-
formers and limiting the transferability to the general population of older adults. In this exploratory study we 
did not use multiple comparison correction in regression models.

In conclusion, this study demonstrates that the brain state as measured by rs-dFC plays a role in inter-individ-
ual differences in tDCS-induced immediate cognitive aftereffects and that the relationship between the dynamics 
of a particular rs-dFC and stimulation-induced aftereffects is specific in terms of networks engagement and the 
anode position (i.e. over the lDLPFC, which is part of the left FPCN that provides visual processing control for 
VOMT). Individuals who exhibited higher flexibility of this specific task-related state were more responsive to 
the bi-frontal tDCS coupled with cognitive training. We also showed that rs-dFC analysis is better correlated 
with the immediate tDCS response magnitude, at least in participants with > 12 years of education, as compared 
to a regular rs-sFC analysis.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due accordance with 
informed consents signed by study participants but are available from the corresponding author on reasonable 
request.
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