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Classification and visual 
explanation for COVID‑19 
pneumonia from CT images using 
triple learning
Sota Kato 1*, Masahiro Oda 2,3, Kensaku Mori 2,3,6, Akinobu Shimizu 4, Yoshito Otake 5,6, 
Masahiro Hashimoto 7, Toshiaki Akashi 8 & Kazuhiro Hotta 9

This study presents a novel framework for classifying and visualizing pneumonia induced by COVID‑
19 from CT images. Although many image classification methods using deep learning have been 
proposed, in the case of medical image fields, standard classification methods are unable to be used 
in some cases because the medical images that belong to the same category vary depending on the 
progression of the symptoms and the size of the inflamed area. In addition, it is essential that the 
models used be transparent and explainable, allowing health care providers to trust the models and 
avoid mistakes. In this study, we propose a classification method using contrastive learning and 
an attention mechanism. Contrastive learning is able to close the distance for images of the same 
category and generate a better feature space for classification. An attention mechanism is able 
to emphasize an important area in the image and visualize the location related to classification. 
Through experiments conducted on two‑types of classification using a three‑fold cross validation, we 
confirmed that the classification accuracy was significantly improved; in addition, a detailed visual 
explanation was achieved comparison with conventional methods.

The outbreak of the coronavirus disease-2019 (COVID-19) has spread throughout the world, and the number of 
infected people continues to increase. A method called a reverse transcriptase polymerase chain reaction (RT-
PCR) is used to test for COVID-19 infection; however, its accuracy varies from 42 to 71% and it takes longer to 
receive the test results than other  methods1. Because the number of infected individuals is expected to increase 
in the future, the establishment of a highly accurate test method is required. In this study, we aim to establish 
an automatic classification method of pneumonia incurred through COVID-19 from CT images of the lungs 
using deep learning. In recent years, studies on the automation of image diagnosis using deep learning have 
been actively conducted in the medical  field2–17, and it is known that a diagnosis using deep learning can provide 
highly accurate and objective results. If a direct diagnosis from CT images can be made possible, the number of 
people involved in the RT-PCR and the risk of infection will be reduced. A reduction of the inspection time and 
an increase in the number of inspections will be also expected.

Based on this same idea, many classification methods for COVID-19 using deep learning have been 
 proposed2–11. However, with these conventional methods, two important problems have yet to be solved: (1) 
Although there are differences in CT images of the lung for pneumonia caused by COVID-19 and pneumonia 
caused by other diseases, such differences vary depending on the progression of the symptoms and the location 
of the infected area. (2) Most conventional methods aim to obtain a high accuracy and have difficulty finely 
visualizing the location related to the classification. Problem (1) indicates that the datasets will contain a vari-
ety of images, and we consider conventional training methods to be insufficient to acquire an effective feature 
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representation for classification. Problem (2) indicates that conventional methods for a visual explanation are 
unable to provide a detailed interpretation because the visualization result is based on compressed and high-
dimensional information from the network.

To solve these problems, we present a novel classification method based on three types of learning, i.e., 
classification learning, contrastive learning, and semantic segmentation. Contrastive learning is able to close 
the distance of image features in the same category and create a better feature space for classification. With the 
proposed method, we apply supervised contrastive  learning18. By concurrently applying two different types of 
training, the classification accuracy is improved based on the differences between images. In addition, we adopt 
a pixel-wise attention module in the above method. This module is composed of a semantic segmentation, and 
is able to emphasize an important area in an image and visualize the location related to classification.

We evaluated our method on a dataset of CT images of COVID-19 patients. Based on the experiment results, 
we confirmed that the proposed method achieves a significant improvement in comparison with conventional 
classification methods for COVID-194,7.

This paper is organized as follows. We describe related works, the details of the proposed method, and the 
experiment results. Finally, we summarize our approach and describes areas of future study.

Our contributions are as follows:

• The proposed method trains both classification and contrastive learning at the same time, and generates a 
better feature space for classification even if the dataset contains images under different conditions.

• Furthermore, in the classification model, we adopt an attention mechanism based on semantic information. 
It teaches an important location for COVID-19 infection to the classifier and provides a high accuracy and 
easy-to-understand visual explanation.

• Unlike conventional contrastive  learning18–22 and other visualization  methods23–28, our proposed method 
does not require two-stage learning. It is possible to create a classification and visual explanation using a 
single model.

Related works
In recent studies, COVID-19 infection classification from diagnostic imaging has been frequently achieved using 
a convolutional neural network (CNN)2–11. Li et al.2 proposed a three-dimensional CNN for the detection of 
COVID-19. This approach is able to extract both two-dimensional local and three-dimensional global representa-
tive features. Wu et al.3 proposed a multi-view fusion model for screening patients with COVID-19 using CT 
images with the maximum lung regions shown in axial, coronal, and sagittal views. In recent years, a new network 
architecture called a vision transformer revolutionized image recognition and was also used for COVID-19 infec-
tion classification. Cao et al.10 converted three-dimensional datasets into small patch images and applied them 
to a vision transformer (ViT). In addition, Hsu et al.11 proposed a convolutional CT scan-aware transformer for 
three-dimensional CT-image datasets used to fully discover the context of the slices. They extracted the frame-
level features from each CT slice, followed by feeding the features to a within-slice-transformer to discover the 
context information in the pixel dimensions.

Although various classification methods have been proposed, there are few methods specializing in visual 
explanations for COVID-19. A visual explanation enables humans to understand the decision making of deep 
convolutional neural networks, and it is important to elucidate the cause of this disease in the medical field. 
Our method is able to classify pneumonia from COVID-19 and visualize an abnormal area at the same time.

Metric learning. Metric learning can create a space in which image features within the same class are closer 
together and images of different classes are kept at a distance. It is known to be highly accurate in various 
tasks such as face  recognition29–33, object  tracking34–39, and anomaly  detection40,41. Contrastive learning, which 
is a type of metric learning, has attracted attention as a self-supervised learning for obtaining a better feature 
 space18–22. Chen et al.19 proposed a simple framework for contrastive learning of visual representations, called 
SimCLR. They indicated that data augmentation plays a critical role in defining effective classification tasks, 
and introducing a learnable nonlinear transformation between the representation and the contrastive loss sub-
stantially improves the quality of the representation. In addition, Khosl et al.18 proposed supervised contrastive 
learning that extends the self-supervised contrastive  approach19 to a fully supervised setting, allowing us to effec-
tively leverage label information. Contrastive learning is also used by certain tasks for COVID-19  screening12–14.

Although these methods achieved a high performance for image representation learning, most of contrastive 
learning consists of two learning stages, i.e., feature extraction and classification. This leads to complicated train-
ing and require a lengthy amount of time. Following this problem, Wang et al.42 proposed a hybrid framework to 
jointly learn features and classifiers, and empirically demonstrated the advantage of their joint learning mode. A 
good point of this method is the reduced training time and more effective features acquired by training through 
both classification and contrastive learning at the same time. We adopt this idea and achieve to generate a better 
feature space even if there are various types of images under different conditions in the dataset.

Visual explanations from convolutional neural network. Several visual explanation methods, which 
highlight the attention location, have been proposed for convolutional neural networks. The most typical meth-
ods are based on a class activation map (CAM)23–28,43–45. A CAM can visualize an attention map for each class 
using the response of a convolution layer and the weight at the last fully connected layer. Because attention maps 
are represented by a heat map, they are easy for humans to understand. Selvaraju et al.23 proposed gradient-
weighted class activation mapping (Grad-CAM), which is a type of gradient-based visual explanation. Grad-
CAM visualizes an attention map using positive gradients at a specific class during back propagation, and has 
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been widely used because it can interpret various pre-trained models using the attention map of a specific class. 
In addition, Fukui et al.44 also applied a CAM to an attention module called an attention branch network (ABN). 
An ABN is able to simultaneously train for a visual explanation and improve the performance of the image rec-
ognition in an end-to-end manner. Our visualization method is inspired by an ABN.

However, the results of conventional visualization methods are difficult to locate in detail, the reason being 
that we are mainly visualizing high-dimensional features in the penultimate layer of the network and we use 
bilinear methods to restore extremely small pieces of information into their original size. Because our method 
generates an attention map from a segmentation map of the same size as the input image, it catches smaller 
infection regions and allows for a more detailed visualization.

Methods
This study was approved by the Japan Medical Image Database (J-MID). All methods were performed in accord-
ance with the guidelines and regulations of J-MID, and informed consent was obtained from all subjects and/
or their legal guardian(s).

This section describes the overview of our method for classification and a visual explanation. Figure 1a shows 
an overview of the training flow, and Fig. 1b shows an overview of the inference flow of the proposed method. 
During training, two image pairs, which are affine and color transformed using the method described  in19, are fed 
into the CNN, and high-dimensional features are obtained. The features are then fed into three networks, i.e., an 
FCN for classification, an FCN for contrastive learning, and a decoder for a semantic segmentation. The outputs 
of these networks are three types of vectors for classification, contrastive learning, and semantic segmentation. 
Herein, we describe the roles of three vector types: a vector of classification for classifying COVID-19 pneumo-
nia, a vector of contrastive learning for creating a better feature space for classification, and a vector of semantic 

Figure 1.  Overview of proposed method for the training and inference flows.
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segmentation for classifying locations within the image at the pixel-level and leaking an attention location to the 
networks for classification and contrastive learning.

During an inference, test images are fed into the trained CNN, and we obtain only the classification result. 
We also visualize an important location related to classification from feature maps of the attention module. 
Unlike conventional contrastive  learning18–22 and other visualization  methods23–28, our proposed method does 
not require two-stage learning, and is able to generate a classification and visual explanation using only a single 
model.

Figure 2 shows an overview of the network structure. The proposed network is has an encoder-decoder 
 structure15, and the encoder network is a ResNet18 pre-trained using  ImageNet46. The decoder network consists 
of a deconvolutional  layer47, batch  normalization48 and ReLU function, and outputs a segmentation result based 
on the point-wise convolutional layers along with the information from the encoder network. The features 
from ResNet18 are fed into classification and contrastive learning networks. These networks consist of two 
point-wise convolutional layers and a global average pooling  layer49. In the classification network, the softmax 
function layer is used and the output is the probability of classification. In the contrastive learning network, 
an L2-Normalization layer is used and the network outputs 256-dimensional vectors for the cosine similarity.

The role of the attention module is for teaching an attention location to two networks for classification and 
contrastive learning. The feature map obtained from the decoder network has information on three categories 
in a CT-image: background, normal region, and infection region. The proposed attention module only retrieves 
the features of the infection region after the softmax layer and resizes the attention map to the size of the features 
from ResNet18. The feature maps are then multiplied by the attention map to generate a weighted feature map, 
and the weighted feature maps are added to the original feature maps.

During the experiments, we evaluated two types of methods. The proposed method using only classification 
and contrastive learning is called Double Net, and the method using a semantic segmentation and attention mod-
ule is called Triple Net. Double Net is based on the hybrid network  in42, and aims to confirm the effectiveness of 
the simultaneous learning of contrastive learning and classification. Triple Net aims to confirm the importance 
of teaching the attention location to the classifier. Although Triple Net needs both labels of classification and 
semantic segmentation, unlike conventional classification methods for COVID-194,50,51, it can clearly visualize 
the location related to classification by doing segmentation simultaneously.

Loss function. Classification loss. When there are N datasets ({xk , yk}k=1...N ) of images xk and their la-
bels yk , because the datasets in the mini-batch include augmented images, the number of samples is 2N 
({x̂k , ŷk}k=1...2N ) . For classification of the loss function, we use the softmax cross entropy loss shown in Eq. (1), 

Figure 2.  Overview of network structure. The proposed method is based on the U-Net architecture. The 
encoder consists of ResNet18, the output has high dimensional features, and the decoder outputs a segmentation 
map. The features extracted from ResNet18 are fed into two fully convolution networks (FCNs), and we 
obtain two types of vectors for classification and contrastive learning. The attention module also teaches the 
information of infection regions for two FCNs. A ground truth of a semantic segmentation includes three 
categories. A black region is a background category, and blue and red regions are normal and infection regions.
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where C is the number of categories for classification, tkc is the teacher label, and zcekc is the predicted probability 
for class k. Because the softmax cross entropy loss is also applicable to the augmented images, it is applied to 2N 
samples in a mini-batch.

Contrastive loss. For contrastive learning, we adopted supervised contrastive  learning18. The contrastive loss 
function is shown in Eqs. (2) and (3).

In Eq. (3), i presents a sample from the true class, j presents samples having the same class as i (positive), and k 
presents samples having a different class from i (negative). In addition, Ii  =j means that j is not the same image 
as i. Moreover, Iti=tj also means that the teacher labels are of the same category, and Iti  =tk means that the teacher 
labels are of a different category. Therefore, Eq. (3) shows that all positive pairs contribute to the numerator, and 
all negative pairs contribute to the denominator for the features of the reference class of data in a mini-batch. 
Ideally, Eq. (3) should maximize the cosine similarity of the numerator and minimize the cosine similarity of 
the denominator, and we apply the training such that Eq. (3) is maximized. In fact, we minimize Eq. (2) with a 
negative sign to minimize the error using a gradient descent. Note that for each anchor i, there is 1 positive pair 
and 2Nti − 2 negative pairs, and thus the denominator has a total of 2Nti − 1 terms (positive and negative). Here, 
τ is a temperature parameter, and we use the same value as τ = 0.07 from the original  study18.

In the case of Double Net, the final loss function for classification and contrastive learning is described in 
Eq. (4). To control the balance of two-types training, we used a inversely proportional weighting coefficient 
� = 1− epoch/epochmax inspired  by42, where epoch denotes the current epoch number and epochmax indicates the 
maximum epoch number. From the weighting, contrastive loss is prioritized during the early stage of training, 
and the model is trained using the ideal feature space. During the end of the training, the classification loss is 
prioritized, and the model is trained to obtain a more accurate prediction. Conventional classification methods 
using contrastive  learning18–22 apply contrastive learning during the first step, and then train only a new classifier 
by fixing the weights of the network at the first step. The proposed weighting schedule aims to realize a one-stage 
learning method applied in two steps.

Segmentation loss. For semantic segmentation loss, we adopted the Dice  loss16 in Eq. (5), where C is the num-
ber of categories for segmentation, n is the number of pixels, zsegnc  is a predicted segmentation, and zseg

′

nc  is an 
annotation of semantic segmentation. Here, γ is added to both the numerator and denominator to ensure that 
the function is not undefined in edge case scenarios, such as when zsegnc = z

seg ′

nc = 0 , and we set γ = 1 . In the case 
of Triple Net, a final loss function for the three types of learning is as shown in Eq. (6).

Experiments
Datasets and training conditions. Dataset. As the dataset, we used the CT volumes taken in multiple 
medical institutions in Japan. We used CT volumes of all 1,279 patients registered in the J-MID database, and 
there are CT scans with annotation and CT slices for classification and semantic segmentation. The specifica-
tions of the CT volumes are as follows: a 16-bit pixel resolution of 512× 512 , 56 to 722 slices, a pixel spacing 
of 0.63 to 0.78 mm, and a slice thickness of 1.00 to 5.00 mm. The ground truth for COVID-19 pneumonia was 
checked by radiologists of the “Japan Radiological Society” based  on1, and that for semantic segmentation was 
created by medical image processing researchers and checked by  doctors17. The ground truth for pneumonia 
were classified into four types of image findings  in1: a typical appearance, an indeterminate appearance, an atypi-
cal appearance, and a negative outcome for pneumonia. Ground truth images for segmentation contain three 
categories, i.e., the background, normal regions, and infection regions. Some of the image slices in a CT volume 
do not sufficiently show the lung area. In addition, the number of slices is not uniform among the samples, and 
thus it is difficult to use them as input. We therefore either selected a single CT image having the largest infection 
region or an image having the largest normal region from the segmentation results. We also used a gray-scale of 
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−1000 to −500 within the 16-bit images, converting them from 16-bits into 8-bits and resizing them to a pixel 
resolution of 256× 256 for easier handling.

We evaluated the binary classification and four-class classification on these datasets. The details of the dataset 
are shown in Table 1. we used 470 samples as the typical appearance, 289 samples as the indeterminate appear-
ance, 137 samples as the atypical appearance, and 383 samples as the negative outcome for pneumonia. For binary 
classification, the categories of both the typical appearance and the indeterminate appearance were treated as a 
single category (positive), and the categories of both atypical appearance and negative outcome for pneumonia 
were treated as another category (negative). We used 759 samples as the positive category and 520 samples as 
the negative category. We divided each dataset into 2 to 1 in numerical order, and made them for training data 
and for inference data. In inference data, we also divided it into 1 to 2 for validation data and for test data. For 
example, the first time of cross validation for binary classification, we used 853 samples for training data, 138 
samples for validation data and 288 samples for test data. Our experiments were conducted based on a three-fold 
cross validation while switching training data and inference data that were divided 2 to 1, and we evaluated the 
accuracy using only test data in inference data.

Training conditions. The batch size was set to 32, the number of epochs was set to 1000, and the optimizer was 
 Adam53 with a learning rate of 0.001. For data augmentation, we applied several random on-the-fly data aug-
mentation strategies during training, including images randomly cropped to 224× 224 , rotated with an angle 
randomly selected within θ = −90 to 90, flipped horizontally, and having random changes in the brightness val-
ues. For data pre-processing, we applied a normalization of 0 to 1 and subtracted the per-pixel  mean15. Experi-
ments were conducted based on a three-fold cross validation, and the average accuracy of three experiments was 
used for the final evaluation. In all experiments, we set random seed to zero.

For compared methods, we used the standard ResNet18 pre-trained on  ImageNet46 (Baseline), weakly super-
vised deep learning (WSDL)4, an attention branch network (ABN)44, and multi-task deep learning (MTDL)7 as 
comparison methods. WSDL and MTDL are methods for COVID-19 infection classification using CT-images. 
An ABN is a method for achieving a visual explanation using an attention mechanism. The bold letters present 
the best accuracy in the tables. Furthermore, we evaluated that the encoder of Triple Net based on ResNet18 to 
the network used by WSDL (Triplet Net + WSDL). WSDL can handle the features of various resolutions, and 
we consider that the encoder with WSDL can outperform other comparison methods due to the features based 
on infection regions of different sizes. In addition, we also compared 3D  networks50–52 using dataset consisted 
of CT volumes to confirm the difference in performance between 2D CNN and 3D CNN. In this study, we set 
the frame size to 64.

For the evaluation metric, we used the accuracy, precision, sensitivity, and specificity for binary classifica-
tion and four-class classification as  following4,7. We also used F-measure to evaluate the fairness of predictions. 
Furthermore, we carried out the analysis of the area under the receiver operating characteristic curve (AUC) for 
a quantification of our classification performance for a binary classification as  following4,7.

Results. Learning on binary classification. Table 2 presents the evaluation results of test images for binary 
classification. In Table 2, the accuracy was improved by over 1.74% when we used Double Net, and over 4.87% 
when we used Triple Net, in comparison with the baseline. Similarly, in comparison with the baseline, the pre-
cision was improved by 1.09%, the sensitivity by 9.04%, the specificity by 2.12%, the F-measure by 4.69% and 
the AUC by 2.09%. Furthermore, the accuracy using Triple Net + WSDL was higher than that using only Triple 
Net. The F-measure was improved by 1.83 % and the AUC was improved by 0.94 % in comparison with only 
Triple Net. We confirmed the effectiveness of teaching an inflamed area to the classifier, and compared to con-
ventional methods, our proposed methods achieved the highest accuracy under all evaluation measures. Adding 
contrastive learning and an attention mechanism was effective in comparison with the conventional methods 
for COVID-19 infection classification. On the other hand, 3D-ResNet18 has the worst accuracy compared to 
other methods. We consider that the difference in accuracy between 2D CNN and 3D CNN is due to the usage 
of pre-trained model. Although our 2D CNN models like ResNet18 are pre-trained on the ImageNet dataset, 
pre-trained 3D CNN models are only for the action recognition  task55 and they are not suitable for medical im-
age dataset.

Figure 3 presents the receiver operating characteristic (ROC) of various methods for binary classification. Our 
proposed methods are shown in the purple, brown and pink graphs. In Fig. 3, the graph of Triple Net + WSDL 
was closest to the upper left, demonstrating that it achieved the highest performance. In fact, the AUC of Triple 
Net showed the highest accuracy in comparison with the other methods.

Figure 4a presents the visualization results of the features at the last convolutional layer of ResNet18. We 
compressed the features into two dimensions using  UMAP54. The column on the left shows the results of the 
baseline and the column on the right shows the result of Double Net. The red dot indicates a positive category, 

Table 1.  Datasets used for evaluation.

Dataset

Binary classification Four-class classification

Positive Negative Typical appearance
Indeterminate 
appearance Atypical appearance

Negative for 
pneumonia

The number of 
samples 759 520 470 289 137 383
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and a blue dot represents a negative category. For the baseline, although most of the samples were separated 
between categories, there were points where the features of other categories overlap near the center. However, 
as shown in Double Net, each category was the independent, and it was possible to create the feature space for 
separating all categories. Because this feature space was separated into two categories, the network prediction 
based on the separated features prevented an incorrect prediction.

Learning on four‑class classification. Table 3 shows the performance for four-class classification. As presented 
in Table 3, our Double Net and Triple Net were better performance than the baseline, and improved the accu-
racy by 1.63% and 4.54%. Furthermore, Triple Net + WSDL achieved the best performance in comparison with 
conventional methods. In comparison with the baseline, it was improved the accuracy by 8.47%, the precision by 
5.17%, the sensitivity by 7.71%, the specificity by 9.22% and the F-measure by 4.48%. WSDL uses the features of 
both the upper and lower layers, and we consider that the features of the upper layers with finer information are 
required for classification of the classes with large area in four-class classification. Actually, Triple Net + WSDL 
improved the F-measure and sensitivity metrics by 3.21% and 2.67% in comparison with the original WSDL. We 
confirmed that our proposed methods using contrastive learning and an attention module were effective even if 
the number of classes increased.

Table 2.  Comparison results for binary classification.

Tasks Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F-measure (%) AUC (%)

3D network

3D-ResNet1852 71.02±1.25 50.35±6.68 71.34±4.78 71.36±1.94 58.52±3.16 76.56±2.21

CovNet (ResNet18)50 74.39±1.65 56.33±13.70 76.72±5.52 74.82±4.94 63.41±6.88 84.36±0.61

DeCovNet51 73.58±1.07 63.98±5.53 69.35±1.67 76.36±2.44 66.38±2.58 80.50±1.32

2D network

Baseline (ResNet18) 73.59±2.88 65.67±3.87 68.55±3.35 76.84±2.64 67.07±3.58 80.79±2.06

WSDL4 75.56±1.38 62.82±7.31 74.50±5.34 76.79±2.79 67.63±2.73 83.25±1.90

ABN44 76.03±3.44 62.89±10.09 74.51±1.83 77.09±4.57 67.83±6.75 83.59±3.77

MTDL7 75.79±2.08 61.96±3.89 74.98±4.28 76.41±1.82 67.71±2.59 81.04±4.39

Double Net (ours) 75.33±1.33 70.70±4.36 70.01±3.76 79.53±1.20 70.12±0.57 80.65±0.79

Triple Net (ours) 78.46±0.40 66.76±0.67 77.59±1.28 78.96±0.20 71.76±0.16 83.68±1.90

Triple Net +  WSDL4 (ours) 79.40±2.71 70.15±4.47 77.53±4.00 80.60±2.42 73.59±3.65 84.62±2.77

Figure 3.  Receiver operating characteristic (ROC) of various methods for binary classification.
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Figure 4b shows the visualization results of features compressed similarly to a binary classification. The left 
column presents the result of the baseline, and the right column shows the result of Double Net for four-class 
classification. Red dots indicate a typical appearance, orange dots shown an indeterminate appearance, aqua blue 
dots illustrate an atypical appearance, and blue dots represent a negative outcome. In the case of the baseline, 
although each category was independent, there were some dots in which the distance between categories was 
close, and dots that were close to different category sets. Such results are caused by a misclassification. However, 
in the case of Double Net, the distance between all categories was sufficiently large. These results demonstrate 
the effectiveness of contrastive learning, which creates a space in which images within the same categories are 
closer together and images of different categories are kept at a distance, even if the number of classes increases.

Figure 5 shows evaluation results with confusion matrix using four-class classification. Especially, the number 
of correct for typical appearance category was increased, and the number of misclassification including posi-
tive categories was decreased. Although the number of correct for the atypical appearance was the same, it was 
often mistaken as the negative category for pneumonia, and it was reduced the mistakes as positive categories 
(the typical appearance and the indeterminate appearance). We consider that these results demonstrate the 
effectiveness of our proposed contrastive learning considering the relationships between classes and attention 
mechanism getting infection regions.

Results of visual explanation. Figure 6 shows the results of the important location for a binary classification. 
The first and second rows are visualizations of positive categories, and the third and fourth rows are visualiza-
tions of negative categories, under the condition in which a prediction is correct. Red shows the most important 
location, and blue shows an unimportant location for classification. We compared Triplet with the baseline, 
WSDL, and ABN. The baseline was visualized using Grad-CAM, WSDL was visualized using the CAM, and both 
the ABN and Triple Net were visualized using an attention map. In the case of the baseline with Grad-CAM, 
the area in the lung field was reddish. However, the heat map was blurred, and it was difficult to recognize the 
inflammation in detail. In the case of WSDL and the ABN, there were many responses outside of the lung areas, 
and the results were poor for making a proper judgment. In the case of Triplet Net, it was possible to visualize the 
detailed basis of the decision making by specifying more finely within the lung field region in comparison with 

Figure 4.  Visualization results of features at last convolutional layer of ResNet18 when we used the training 
samples. We compressed the features into two dimensions using  UMAP54 for (a) binary classification and (b) 
four-class classification.

Table 3.  Comparison results for four-class classification

Tasks Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F-measure (%)

3D network

3D-ResNet1852 45.39±3.16 36.91±2.58 36.82±3.65 44.84±2.97 35.06±2.73

CovNet (ResNet18)50 56.81±0.23 45.78±2.20 43.26±5.53 51.61±6.25 41.51±4.25

DeCovNet51 50.63±3.79 45.42±2.69 45.30±2.11 49.99±3.65 44.58±2.56

2D network

Baseline (ResNet18) 49.48±2.50 42.05±1.34 41.11±1.71 48.67±2.54 40.82±1.48

WSDL4 53.66±1.48 44.04±0.80 45.61±2.80 53.13±1.37 42.63±0.84

ABN44 51.10±0.67 42.26±0.96 41.81±1.62 50.34±0.65 41.32±1.07

MTDL7 52.38±3.36 42.31±2.39 40.49±3.83 47.38±6.95 40.42±2.96

Double Net (ours) 51.11±1.52 41.23±1.63 39.62±1.75 50.35±1.61 39.87±1.65

Triple Net (ours) 54.02±2.30 43.84±2.63 40.37±4.56 44.51±6.40 41.70±3.71

Triple Net +  WSDL4(ours) 58.22±3.35 47.22±3.06 48.82±4.69 57.89±3.31 45.30±3.65
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the conventional method. Although our visualization method has to prepare segmentation labels, comparison 
visualization methods without segmentation label cannot get infection regions precisely. It is too ambiguous to 
understand the judgement reason for human because the heatmap generated by Grad-CAM reacts to regions 
except for the lung area. From these results, we confirmed that the proposed attention mechanism visualized 
using features of segmentation a better understanding for human viewers.

Figure 7 shows the visualization results when our method misclassified the binary classification. When the 
predictions were correct, as shown in Fig. 6a and c, the sample in the positive category emphasized the infection 
areas in the lower area of the lung field. In the negative category, we confirmed that the heat map was made by 
looking at the blood vessels. When the predictions were incorrect, as shown in Fig. 6b and d, the attention map 
did not respond to inflammatory areas in the positive category, and the negative categories were often mistaken 
for the lung areas unrelated to inflammatory regions such as blood vessels.

Figure 8 shows the visualization results when our method misclassified the four-class classification. In Fig. 8a 
and c, when the prediction was correct, the samples in the typical appearance category emphasized the infection 
areas in the lower lung fields, and the samples in the indeterminate appearance category emphasized the inter-
mediate infection areas. In the categories of an atypical appearance and a negative outcome, there were very little 
reactions from the large heat map (Fig. 8e and g). When the predictions were incorrect, the attention map did 
not respond to inflammatory areas in either the typical or indeterminate appearance (Fig. 8b and d). In addition, 
the atypical appearance were often mistaken in the samples of ambiguous inflammatory areas (Fig. 8f), and the 
negative outcome were mistaken in the lung areas unrelated to inflammatory areas (Fig. 8h). Then, by checking 
the 3D lung regions in Fig. 8f and h, we confirmed that the samples where the inflammatory areas extending 
to the slice images were mistaken for the typical appearance category, and the samples where no inflammatory 
areas were mistaken for the negative outcome for the appearance category in many cases in Fig. 8f. In the case 
of Fig. 8h, although there were also no infection regions in the other slice images, the pleural effusion regions 
were often mistakenly classified as the infection. These visualizations demonstrate that the model predicted the 
result based on the infection area.

Discussion. The limitation of our proposed method is to require an infection segmentation mask in training. 
Although conventional classification methods using CT  volumes50,51 compared by this study do not require an 
infection segmentation label and input CT volumes directly into the model, an input of our proposed Triple Net 
is used a slice image with the largest infection region from CT scan by infection segmentation masks.

However, as shown in Tables 2 and 3, Triple Net was the best accuracy in comparison with the methods 
without the infection segmentation  labels4,50,51. From those decisive results, we consider that the information of 
input is missing because the CT volumes consisting of different number of slices are aligned to have the same 
number of slices to be handled when we used 3D volumes as inputs. Then, it is considered that the slice selection 
using the infection segmentation mask can make a better decision using the infection regions.

Furthermore, as show in Fig. 6, Triple Net was possible to visualize the detailed basis of the decision making 
in comparison with the Grad-CAM and WSDL, and we consider it is important that teaching infection regions 
directly to the deep neural network using segmentation mask. Therefore, although there is a limitation to use 

Figure 5.  Evaluation results with confusion matrix using four-class classification. The left column presents 
the result of the baseline, while the right column shows the result of the Triple Net + WSDL. In the confusion 
matrix, Ta is the typical appearance, Ia is the indeterminate appearance, Aa is the atypical appearance and Np is 
the negative for pneumonia category.
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Figure 6.  Results of visual explanation. (a) Input image, (b) baseline with Grad-CAM23, (c) WSDL with  CAM4, 
(d) attention map using an  ABN44, and (e) the attention map achieved by Triple Net (ours). All explanation 
images are a superposition of input images and heat maps. Red shows the most important location, and blue 
indicates an unimportant location for classification.

Figure 7.  Results of visual explanations for binary classification. (a,c) Results when predictions are correct. 
(b,d) Results when predictions are wrong.
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the segmentation mask, it is important to use the segmentation mask from the viewpoint of classification and 
visualization in the case of COVID-19 from CT images.

Conclusion
In this study, we designed a novel classification method for COVID-19 infection from CT-images. In the F-meas-
ure, our Triple Net + WSDL achieved about 73.59% in binary classification and about 45.30% in four-class classifi-
cation. Furthermore, we confirmed that proposed contrastive learning generated a better feature space even when 
the dataset included images taken with various shooting equipment, and the attention module contributed to the 
specifics of the infection areas. However, the accuracy of the four-class classification may be further improved, 
which will be achieved by including more accurate information on the four classes of the inflammatory regions. 
This remains an area of future research.

Data availability
The data that support the findings of this study are available from J-MID, but restrictions apply to the availability 
of these data, which were used under license for the current study, and so are not publicly available. Data are 
however available from the authors when you become a member of J-MID (http:// www. radio logy. jp/j- mid/).
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