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Physical evidence 
of meminductance in a passive, 
two‑terminal circuit element
Abhiram Dinavahi , Alexandre Yamamoto  & H. Rusty Harris *

The first intentional memristor was physically realized in 2008 and the memcapacitor in 2019, but 
the realization of a meminductor has not yet been conclusively reported. In this paper, the first 
physical evidence of meminductance is shown in a two‑terminal passive system comprised primarily 
of an electromagnet interacting with a pair of permanent magnets. The role of series resistance as a 
parasitic component which obscures the identification of potential meminductive behavior in physical 
systems is discussed in detail. Understanding and removing parasitic resistance as a “resistive flux” 
is explored thoroughly, providing a methodology for extracting meminductance from such a system. 
The rationale behind the origin of meminductance is explained from a generalized perspective, 
providing the groundwork that indicates this particular element is a realization of a fundamental 
circuit element. The element realized herein is shown to bear the three required and necessary 
fingerprints of a meminductor, and its place on the periodic table of circuit elements is discussed by 
extending the genealogy of memristors to meminductors.

In his seminal 1971  paper1, Leon Chua observed that while the resistor, the capacitor and the inductor were 
respectively defined by current–voltage, charge–voltage, and current-flux relationships, a circuit element defined 
by charge-flux relationship was missing. This led him to conceive of the fourth fundamental circuit element, 
the memristor which was characterized by a constitutive relationship between charge and flux. In 1977, Chua 
defined the larger class of memristive  systems2 and updated the defining feature of a memristor to be a “pinched 
hysteresis” curve in the current–voltage plane. He later went on to develop the genealogy of  memristors3, with 
the original idea of charge-flux relationship only defined to be a requirement for ideal memristors and not for 
generic and extended memristors. The idea of a constitutive relationship in the  (v(α) −  i(β)) plane being the dis-
tinguishing feature of an ideal circuit element- where  v(α)(t) is defined by (1) and α, β are integers- further led to 
the theoretical possibility of infinitely many such elements, populating a doubly periodic table of fundamental 
circuit  elements4,5.

Leon Chua also notes in his 1971 paper that “while a memristor behaves as an ordinary resistor at any given 
instant of time,  t0, its resistance (conductance) depends on the complete past history of the memristor current 
(voltage)”. This being a mathematical description, can be generalized and used as the guiding principle for the 
physical realization of any fundamental circuit element. Of particular interest among such elements are a capaci-
tor whose capacitance (elastance) depends on the history of its voltage (charge), called the memcapacitor, and an 
inductor whose inductance (reluctance) depends on the history of its current (flux), called the  meminductor6. 
While the memristor has been physically realized in  20087 and the memcapacitor in  20198, the meminductor 
has remained elusive so far.

It is important to recognize the contemporary debate on the utility of applying Chua’s mathematical model to 
modern 2-terminal elements. Indeed, for memristive elements driven by oxygen vacancy transport, the impact 
of accurate ionic diffusion models on the state variable are still debated, not to mention the stored energy ther-
modynamic arguments used against the classification of resistive memory as a memristor. However, completing 
the mem-element mosaic by accurately mapping 2-terminal elements into the model is critical to providing tools 
to device engineers and scientists in important research areas such as neuromorphic computing and memory 
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architecture. Therefore, the discovery and understanding of a meminductive element is vital to the scientific 
discussion of device classification and the furtherance of important emerging technology areas.

Much like  memcapacitive9 devices, meminductive devices, owing to their inherent energy storage properties, 
could potentially offer lower static power consumption than memristive devices for large-scale, energy-efficient 
neuromorphic computing applications. Furthermore, dynamical circuit applications of mem-elements involving 
local activity, edge of chaos, and resulting persistent  dynamics10–13 adds more value to a physical implementa-
tion of a meminductor. However, despite work being published on SPICE modeling of  meminductors14 and 
potential ways of achieving meminductance in physical  systems15, its realization is yet to be reported. A previous 
 publication16 claiming to have realized a meminductor fails to grasp its essence as a two-terminal circuit element 
and reports pinched hysteresis in the flux-current behavior not between the two terminals of the element but 
elsewhere. In this paper, we report the first true physical evidence of meminductance in a passive two-terminal 
system.

Generalized mathematical description of circuit elements
The conventional Ohm’s law, v = i ∗ R , can be represented as an ordered triple (i, v, R) and generalized to describe 
all three traditional circuit elements through appropriate choice of the constituents of the equation: the resistor 
described by (i, v, R) and/or (v, i, G), the capacitor by (v,  i(−1), C) and/or  (i(−1), v,  C−1), and the inductor by (i,  v(−1), 
L) and/or  (v(−1), i,  L−1). Table 1 summarizes the α/β notation of current and voltage in the three traditional cir-
cuit elements. This table also maps the α/β notation to classically understood variables for each of the elements. 
The following discussion focuses on a current-sourced inductor for a periodic sourcing function, i(t), with zero 
mean and zero initial condition, i(0) = 0, and can be easily extended to any of the six ordered triple combinations 
shown in Table 1. A constant, state-independent instantaneous relationship between i(t) and  v(−1)(t) describes the 
classical inductor, with the slope of the inductor’s characteristic i −  v(−1) curve being the element’s familiar char-
acteristic inductance. The linear nature of the classical inductor can be seen in the flux-current curve of Fig. 1a.

The first step in describing the “mem”-version of any of these elements is to underscore that the transfer func-
tion, what is classically thought of as L for an inductor, is not necessarily constant, and how it functionally varies 
can be complex. The simplest case of the transfer function varying based on the condition of a state variable is a 
non-linear inductor, where the nonlinearity results from a single-valued dependence of the instantaneous induct-
ance on the sourced current. This single-valued dependence is illustrated in Fig. 1b with a linear relationship (for 
convenience) between inductance and current, and this temporal variation results in a non-linear relationship 
between current and flux. The generalized Ohm’s law description, with the (i,  v(−1),  Linst) triple, still applies and 
it follows that the flux-current relationship is single-valued, with the flux becoming zero whenever the current 
is zero. Hence, an ideal current-sourced nonlinear inductor is defined by

 (Details of the oscillatory procession to/from points B and D of the transfer function and its phase relationship 
in a Lissajous framework are given in Supplemental Material.)

The phenomenological cause of a transfer function’s variation constitutes a state variable, and this variable 
being different from the sourcing function results in a multi-valued relationship between the sourcing function 
and the transfer function, and thereby, mem-properties. It is usually extremely difficult to represent such state 
variable(s) fully mathematically, and this is the reason the discovery of memristors (and recently, memcapacitors) 
was so elusive until modern times. Meminductive properties are observed when a state-dependence of induct-
ance makes it multivalued in current. However, the meminductor can still be described using the same general 
equation as the linear version, complete with an ordered triple, and is distinguished from its base-counterpart 
by the transfer function having a multi-valued dependence on the independent state variable.

A temporal variation in  Linst (with the same frequency as i(t) or a higher harmonic) which is not single-valued 
in i(t) results in a multi-valued hysteretic curve in the i −  v(−1) plane. The hallmark observation of a pinched 
hysteresis curve passing through the origin in the i −  v(−1) plane helps define the generic meminductor, as seen 
in Fig. 1d. A generic meminductor can be described by

(2)v(−1) = Linst
(

i(0)
)

∗ i(0).

Table 1.  Generalized Ohm’s law for the traditional fundamental circuit elements. Choice of the independent 
and dependent state variables and the associated transfer function in the generalized version of Ohm’s law to 
result in the three traditional fundamental circuit elements: a resistor, a capacitor, and an inductor.
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 here, s(t) is the state variable, and its time dependence can be mapped to the functional properties of the cur-
rent and the phenomenon that causes the state variable through (4). A generic meminductor can have  i(−1) be 
zero for a non-zero value of  v(−2) and  v(−2) be zero for a non-zero value of  i(−1). Further, both  i(−1) and  v(−2) can be 
multi-valued functions of each  other17.

A special case of such variation is a single valued dependence between  Linst and  i(−1) corresponding to an 
ideal meminductor. This dependence can be interpreted to be the combined result of individual single valued 
dependencies between  Linst and a state variable s(t), and between s(t) and  i(−1)(t). Hence, an ideal meminductor 
can be synthesized by introducing a single-valued dependence between the instantaneous inductance,  Linst and 
charge,  i(−1)(t) such that the general equation reduces to (5). An ideal current sourced meminductor, besides 
exhibiting a pinched hysteresis curve passing through the origin in the i −  v(−1) plane, is also characterized by 
 v(−2) being single valued in  i(−1). Further, zero initial conditions force  v(−2) to be zero whenever  i(−1) becomes zero. 
These relationships for an ideal meminductor can be obtained by integrating both sides of (5) over time and 
then be rearranged as shown in (6)

 The corresponding equations for the  (v(−1), i,  L−1
inst) ordered triple are given in the supplementary information.

(3)v(−1) = Linst(s(t)) ∗ i
(0),

(4)where ds
dt = f

(

s, i(0)
)

.

(5)v(−1) = Linst
(

i(−1)
)

∗ i(0)

(6)v(−2) = L(−1)inst

(

i(−1)
)

∗ i(−1)

Figure 1.  Physical realization of a meminductor: approach and challenges. (a–d) Choice of the ordered triple 
as (i,  v(−1),  Linst) identifies the two-terminal circuit element as a current sourced inductor. For a sinusoidally 
varying i(t), a constant  Linst yields a linear inductor (a), whereas a time variation induced in  Linst due to its 
state-dependence introduces nonlinearity. A sinusoidal fit for  Linst is chosen here for clear illustration. The phase 
difference between i(t) and  Linst being even multiples of π

2
 results in an ideal non-linear inductor (b), a phase 

difference of odd multiples of π
2
 results in an ideal meminductor (c), and any other phase difference results in a 

generic meminductor (d). (e–g) Impact of series resistance on pinched hysteresis behavior of a meminductor: 
illustrated for a winding driven by a sinusoidal current signal, i(t) with  Io = − 15 mA and f = 8 Hz. Resistive flux, 
ΦR: series resistance,  Ro results in a right-handed ellipse in the (i, ΦR) plane (e), Inductive flux, ΦL: winding 
inductance,  Linst results in a pinched hysteresis curve in the (i, ΦL) plane, illustrated for  Lo = 64 mH with ΔL = 53 
mH (magenta), 33 mH (cyan), 13 mH (blue), and 3 mH (red) (f), Total flux, ΦT, calculated as the sum of 
resistive and inductive flux components illustrates the pinch point of the meminductive response of a winding 
with  (Lo, ΔL) = (64 mH, 33 mH) made to disappear by series resistances 2 Ω and greater at 8 Hz (g).
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Physical realization of a meminductor and impact of parasitic series resistance
The phase difference between i(t) and  Linst being even multiples of π/2 (i.e., 0, π, 2π, …) describes a single valued 
dependence between i(t) and  v(−1)(t) and thereby, an inductor, as shown in Fig. 1a,b. On the other hand, a phase 
difference of odd multiples of π/2 (i.e., π/2, 3π/2, …) describes a single valued dependence between  i(−1)(t) (i.e., 
charge) and  Linst, and thus, an ideal meminductor. Any phase difference between i(t) and  Linst besides integral 
multiples of π/2 (i.e., 0, π/2, π, 3π/2, 2π, …) describes a generic meminductor. Ideal and generic meminductors 
hence have multiple values of  v(−1)(t) for a given value of i(t) thus resulting in hysteresis lobes pinched at the 
origin and are shown in Fig. 1c,d, respectively. Therefore, the physical realization of an ideal current-sourced 
meminductor requires an inductor whose instantaneous inductance monotonically increases or decreases as long 
as the polarity of the sourced current signal does not change, thus resulting in a 90° phase difference between 
i and  Linst. Achieving such dependence in an inductor with a two-terminal passive configuration outlines the 
goal of this work.

The AC response of a two-terminal winding consists not only of an inductive component, but also of parasitic 
resistive and capacitive components. The series parasitic resistance- primarily from the coil winding- is particu-
larly notorious for swamping the inductive response at low frequencies. This complicates physical realization of 
a meminductor since the electrical response of a mem-element converges towards that of its respective element 
as the frequency  increases18. Hence, high frequencies are required for the inductive component of impedance 
to be more dominant than the resistive component, but the inductive component fails to manifest as memin-
ductance at such frequencies. This requirement of low frequency operation thereby necessitates means to either 
eliminate the series resistance or extract the meminductive component obscured by the more dominant resistive 
component. This work employs the latter strategy.

It is useful to note here that parallel resistance plays a similar role in the physical realization of memcapacitors 
as series resistance does in meminductors: for a memcapacitor, high capacitive impedance at low frequencies 
results in the resistive branch drawing most current and thereby being the dominant component swamping 
potential memcapacitance. On the other hand, high frequency operation destroys memcapacitance and the 
device behaves as a linear capacitor.

A current sourced winding with a time varying instantaneous inductance,  Linst(t) and effective series resist-
ance,  Ro has been considered to study the mechanism of series resistance swamping evidence of meminductive 
behavior. A phase difference of 90° is enforced between i(t) and  Linst(t) as described by the equations in Fig. 1e,f. 
Defining flux as the voltage integrated over time allows the total flux, ΦT to be expressed as the sum of the resis-
tive and inductive flux components, ΦR and ΦL, respectively as shown in Eqs. (7)–(9).

A current signal with  Io = − 15 mA and f = 8 Hz results in the plots shown in Fig. 1e–g, with ΦR being a unipolar 
ellipse with a counter-clockwise direction everywhere (Fig. 1e) and ΦL being a bipolar pinched hysteresis curve 
with counter-clockwise and clockwise directions in the first and third quadrants, respectively (Fig. 1f). Such 
contrasting directions of ΦR and ΦL result in the pinch point in the total flux curve drifting away from the origin 
as  Ro is increased and eventually disappearing as shown in Fig. 1g. The pinch point of a 64 mH inductor with ΔL 
of 33 mH at 8 Hz can be made to completely disappear by a series resistance as small as 2 Ω thus underlining a 
serious complication in the search for meminductive behavior in practical physical devices. For higher  Ro, the 
total flux takes the shape of a distorted ellipse.

Knowledge of the current sourced and a priori measurement of series winding resistance allows the calcula-
tion of the resistive voltage across the winding, and thereby resistive flux. On the other hand, since the total 
voltage can be measured, the total flux can also be calculated. The hidden meminductive behavior of systems 
where the series resistance cannot be eliminated can hence be extracted by subtracting the resistive flux from the 
total flux to obtain the meminductive flux at every instant. This technique is adopted in this study.

To test the validity of this idea, an axi-symmetric COMSOL  Multiphysics® model of a winding with a mov-
able ferromagnetic  core19 has been developed (Supplementary Figure-3) such that relative motion between the 
winding and the core can be mathematically defined to enable controlled time variation of  Linst. As the core 
slides into and out of the volume of winding,  Linst gradually increases and decreases, respectively. Therefore, by 
forcing a 90° phase difference between the core displacement, d(t) and the current sourced, i(t), the same phase 
difference can be extended to  Linst and i(t). This setup results in meminductive behavior since the quasi-static 
response of the system is inductive, with the value of the inductance at any instant depending on the history of 
the current sourced. However, the system only serves as a meminductor emulator, since the core displacement is 
not enforced by the sourced current but is independently controlled, thereby making it a 3-terminal, potentially 
active device, in direct contradiction with the requirement that any fundamental circuit element be passive and 
consist only of two terminals.

Simulation parameters have been described in Supplementary Section-3 and results from Supplementary 
Figure-3(b) indicate the total flux being almost indistinguishable from an ellipse, thus indicating an overwhelm-
ing dominance of resistive behavior over inductive behavior at a frequency of 8 Hz. However, subtracting resistive 
flux from the total flux reveals pinched hysteresis response as shown in Supplementary Figure-3(c), confirming 

(7)�R(t) |t=t0 =
∫ t0
−∞

i(t) ∗ Rodt =
∫ t0
0
i(t) ∗ Rodt

(8)�L(t) |t=t0 = i(t0) ∗ Linst(t0)

(9)�T (t) |t=t0 =

(

∫ t0
0
i(t) ∗ Rodt

)

+ (i(t0) ∗ Linst(t0))
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hidden meminductive behavior despite the (mem)inductive flux being over two orders of magnitude smaller 
than the total flux.

Experimental setup, results, and discussion
Extending the COMSOL simulation model to physically realize an ideal meminductor requires a mechanism 
to achieve current-induced relative motion between the core and the winding such that the direction of motion 
only changes when the polarity of the current signal changes, resulting in a phase difference of 90˚ between 
displacement and current. An experimental setup exploiting the interaction between a pair of neodymium 
permanent magnets and an electromagnet has been conceived to serve this objective: the magnetic poles on the 
winding switch whenever the current polarity changes which in turn reverses the direction of force between the 
permanent magnets and the winding. A time variation in the instantaneous inductance of the winding can be 
introduced by partially filling its core volume with a ferromagnetic material. As shown in Fig. 2a, the motion of 
the winding for the negative half-cycle of current results in gradually smaller winding volumes being occupied 
by the ferromagnetic core thus resulting in lower values of inductance (Supplementary Video-1). The motion is 
reversed during the positive half-cycle as the winding returns to its starting position as shown in Fig. 2b resulting 
in progressively higher values of inductance. The simulated magnetic field pattern (Supplementary Video-2) at 
the beginning of each run is shown in Fig. 2c, d. Also, the winding can be brought to a stop at any desired posi-
tion (and by extension, inductance) by turning off the current and since this position does not change unless 

Figure 2.  Experimental setup and results: (a–d) Two neodymium permanent magnets with like poles facing 
each other connected by a smooth shaft along which the fabricated winding can move freely; the core volume 
is partially filled by a ferromagnetic rod. Alternating negative (a) and positive (b) half-cycles in the sourced 
current result in alternating magnetic poles on the winding thus periodically switching the direction of force 
exerted on it by the permanent magnets. A periodic back and forth winding motion results from this force 
profile. Simulated magnetic field pattern for winding positioned as in (‘a’) and (‘b’) shown in (c,d), respectively. 
(e) Quasi-static inductance measurements on W-1 as a function of the position of the winding relative to the 
core; zero-reference position in the setup shown in the inset. (f,g) Total voltage measured across the terminals 
of the winding, W-1 by sourcing sinusoidal current, (h,i) Total flux calculated as the time integral of the total 
voltage measured, (j,k) (Mem)inductive voltage extracted from the total voltage by subtracting resistive voltage, 
(l,m) Extracted (mem)inductive flux calculated as the time integral of the extracted (mem)inductive voltage, 
and instantaneous dynamic inductance calculated as the ratio of extracted (mem)inductive flux and current. 
Inset on the top-right shows a picture of the experimental setup.
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externally disturbed, the element designed possesses non-volatile memory in the form of a continuum of non-
volatile inductance states.

Commercially available axially magnetized ring-type magnets with maximum remanent flux density of 14,800 
G have been used as permanent magnets in this work. Two air core windings, W-1 and W-2, with stand-alone 
inductances of 50 mH and 150 mH, respectively have been fabricated from AWG-42 copper formvar and used 
as electromagnets to generate the results reported. Quasi-static inductance measurements have been performed 
on an LCR meter at a frequency of 1 kHz, AC amplitude of 10 mV, and DC bias voltage of 0 V and the results for 
W-1 for different positions of the winding relative to the core are shown in Fig. 2e. These measurements reveal 
a gradual change in inductance as the overlap between the winding and the core changes while the inductance 
plateaus on either side of this transition region.

The results reported in this section have been obtained by sourcing a sinusoidal current signal with an 
amplitude of 15 mA and frequency of 8 Hz through the winding W-1 and measuring voltage. The absence of an 
obvious phase difference between sourced current and measured voltage in Fig. 2f and the apparent single-valued 
linear behavior with a slope of 628 Ω in Fig. 2g show that resistive behavior dominates the electrical response 
of the element, as expected from COMSOL simulations. As shown in Fig. 2h,i, the total flux calculated as the 
time integral of the measured voltage remains unipolar and results in an ellipse when plotted as a function of 
current, thus reiterating the resistive behavior of the element at this frequency. However, extracting the inductive 
component of voltage by subtracting resistive voltage from the total voltage, followed by calculation of extracted 
flux as described in Eqs. (10) and (11), respectively, reveals hidden meminductive behavior.

Figure 2j shows the extracted inductive voltage as a function of time and its phase difference with the current 
being close to 90° confirms inductive behavior. The small spikes at the inductive voltage peaks can be attributed 
to the zero resistive voltage due to the sourced current being zero at these instants and the total voltage thus 
being very small and comparable to the electrical noise floor of the system. A difference between the positive and 
negative peak heights results in a distorted ellipse when vL is plotted as a function of i. A linear inductor results 
in a perfect ellipse on the v-i plane, and a non-linear inductor, a distorted ellipse with an asymmetry about the 
i = 0 line. However, an ideal meminductor results in a distorted ellipse with an asymmetry about the v = 0 line, 
thereby signifying the existence of two distinct values of instantaneous inductive reactance for a given value of 
current. This behavior can be noticed in Fig. 2k, with the maximum excursions of the voltage on the positive 
and negative side being 0.114 V and 0.154 V, respectively. This confirms existence of meminductance ordinarily 
rendered invisible by a much more dominant resistive component.

A winding not under the influence of external magnetic fields remains at rest and the flux calculated as 
the product of quasi-static inductance and sourced current agrees with the values obtained through the time 
integral of the measured voltage. However, the presence of permanent magnets in the vicinity of the electro-
magnet influences its strength, thereby resulting in its flux being considerably higher than when at rest. Hence, 
for a winding in motion, it is necessary to define instantaneous dynamic inductance, calculated as the ratio of 
dynamic flux and current at any instant. Figure 2l, m show the extracted flux and the instantaneous dynamic 
inductance,  Linst as functions of time and current, respectively. Extracted flux denotes the (mem)inductive flux, 
ΦL calculated as a time integral of the extracted inductive voltage and  Linst is calculated as the ratio of ΦL and i 
at any instant.  Linst calculation for |i| < 5 mA becomes unreliable and results in unrealistically large values, with 
the denominator in ΦL/i being close to zero and hence, needs to be extrapolated from its values elsewhere. In 
Fig. 2l, it can be noticed that the extracted flux shares its zero-crossing points with the sourced current, while 
its positive and negative peaks lie on either side of those of current. Also, a close to 90° phase difference can be 
observed between  Linst and current, in agreement with the discussion from “Generalized mathematical descrip-
tion of circuit elements” section.

The extracted flux, when plotted as a function of current, results in a pinched hysteresis curve with a twist 
about the pinch point at the origin as shown in Fig. 2m20.  Linst plotted as a function of current reveals interesting 
behavior with  Linst momentarily decreasing between points A and B before increasing, while the polarity of cur-
rent remains unchanged. As explained in “Generalized mathematical description of circuit elements” section, this 
pattern corresponds to generic behavior of the element rather than ideal. The physical origins of such behavior 
can be attributed to inertial motion of the winding causing it to continue in its previous direction of motion for 
a short duration even after a reversed polarity of current forces a reversal in the direction of the force. Also, the 
magnitude of current being low immediately following a reversal in polarity results in the force acting on the 
winding being low, thus contributing to considerable time elapsing before the force becomes strong enough to 
decelerate the winding to rest and accelerate it in the opposite direction. This generic behavior is further analyzed 
in “Position of the element realized on Chua’s periodic table” section.

Frequency dependence and fingerprints of a meminductor
The maximum displacement of the winding increases with an increase in the amplitude of the current input and/
or a decrease in the frequency, with low frequencies inducing the largest motion and high frequencies resulting 
in negligible movement. This is a direct consequence of the half-cycles lasting longer for lower frequencies, thus 
allowing more time for the winding to move in a certain direction before reversing. A larger displacement results 
in a smaller separation between the winding and the permanent magnets, thus resulting in larger dynamic flux 
and thereby, larger dynamic inductance. The dynamic inductance measurements for W-1 initially positioned 

(10)vL(t) = vmeasured(t)− [isourced(t) ∗ 628�]

(11)�L(t) |t=t0 =
∫ t0
0
vL(t)dt
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with its center coinciding with the edge of the core are shown in Fig. 3a for sinusoidal current signals of frequen-
cies of 4 Hz and 8 Hz and amplitude of 15 mA. The winding displacement (peak-to-peak) has been measured 
to be ~ 2 cm at 4 Hz and ~ 0.3 cm at 8 Hz thus resulting in the dynamic inductance being significantly greater at 
4 Hz. As the frequency is increased, the dynamic inductance decreases until it converges onto the quasi-static 
value at that particular position once the winding displacement becomes negligible (Supplementary Video-3). 
The range of inductance values for W-1 and W-2 for different frequencies has been shown in Fig. 3b with the 
dynamic inductance of W-1 found to converge onto the quasi-static value as the frequency approaches 10 Hz.

Frequency dependence of the behavior of a memristor as captured by Leon Chua’s formulation of the three 
fingerprints of a memristor can be extended to a current-sourced meminductor and summarized as  follows21: 
(1) When driven by a bipolar periodic current signal, the device must exhibit a “pinched hysteresis loop” in the 
flux-current plane, assuming the response is periodic. (2) Starting from some critical frequency, the hysteresis 
lobe area must decrease monotonically as the excitation frequency increases, and (3) the pinched hysteresis loop 
should shrink to a single-valued function when the frequency tends to infinity. Figure 3c shows that the element 
realized displays all the three fingerprints of a meminductor, i.e., pinched hysteresis curve in the flux-current 
plane, a monotonically decreasing lobe area as the frequency of sourced current increases and the response tend-
ing toward linear, single-valued behavior as the frequency increases beyond 10 Hz. The physical mechanism of 
the frequency dependence of the lobe area is an extension of the frequency dependence of the maximum wind-
ing displacement. As the frequency approaches 10 Hz the winding displacement becomes negligible resulting 
in time-invariant instantaneous inductance and thus, linear inductive behavior. This is further evidenced by the 
slope of the linear flux-current plot at 10 Hz being 61.5 mH, in perfect agreement with the quasi-static inductance 
measurements of W-1 from Fig. 3a. Figure 3d shows the comparison of the pinched hysteresis curves obtained 
for W-1 and W-2 at a frequency of 4 Hz. While the curve profiles look similar, the maximum flux for W-2 reaches 
close to 20 mWb while that of W-1, about 8 mWb with the difference arising from different inductance values 
of the two windings.

Figure 3.  Frequency dependence: (a) Quasi-static and dynamic inductance (scaled down) measurements on 
W-1 as a function of the position of the winding relative to the core; zero-reference position in the setup shown 
in the inset. (b) Inductance ranges of W-1 and W-2 for quasi-static and dynamic measurements at different 
frequencies. Winding displacement decreases as the frequency increases resulting in the dynamic inductance 
measurements at high frequencies converging onto the quasi-static value. (c) The three fingerprints of a 
meminductor exhibited by the designed element. (d) Comparison of the pinched hysteresis curves obtained 
from the two windings fabricated, W-1 and W-2.
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A consequence of frequency dependence of displacement is that for low frequencies, the winding can hit 
one of the permanent magnets, come to an abrupt stop, and stay immobile until the current polarity switches. 
This corresponds to a sudden switch in inductance from its dynamic value to a considerably lower quasi-static 
value, thus resulting in an abrupt shift in the voltage measurements and subsequent flux calculations. Hence, 
setup parameters such as the distance between the magnets, and sweep parameters such as amplitude and fre-
quency of the current signal must be chosen carefully to prevent the winding from hitting the magnets. Also, 
the winding motion not being exactly reproducible over multiple cycles causes the pinched hysteresis curves to 
not close themselves at the end of every cycle and instead drift away from the origin. Further study is needed 
to understand and stabilize the motion of the winding so that it returns to the same position at the end of every 
cycle. Vibrational noise and time variations of the series resistance can also contribute to the curves drifting away 
from the origin and need to be eliminated.

Position of the element realized on Chua’s periodic table
A comparison of (2) and (6) reveals symmetry in the relationships, with the only mathematical difference 
between an ideal nonlinear inductor and an ideal meminductor being the choice of the ordered triple. While 
an ideal meminductor displays pinched hysteresis behavior in the  (v(−1) −  i(0)) plane, an ideal nonlinear inductor 
displays similar behavior in the  (v(0) −  i(1)) plane. In fact, this symmetry can be extended to any arbitrary choice 
of α and β to theorize the existence of an ideal (α, β)-element which exhibits pinched hysteresis behavior in the 
 (v(α+1) −  i(β+1)) plane and is described by a constitutive relationship involving only  v(α) and  i(β) variables, leading to 
the periodic table of circuit elements, originally conceived by Leon Chua, and recreated in Fig. 4 with emphasis 
on results obtained in this work.

The plane in which a two-terminal passive circuit element displays pinched hysteresis behavior can identify 
the element. As such, the existence of a pinched hysteresis curve in the  (v(α+1) −  i(β+1)) plane allows the grouping 
of each of the three traditional circuit elements and its respective mem-element into different families: the resis-
tor family defined by α = β, the capacitor family by α = β + 1 and the inductor family by α = β − 1. As discussed in  
“Generalized mathematical description of circuit elements” section, while both ideal and generic versions of an 
(α, β) element result in a pinched hysteresis curve in the  (v(α+1) −  i(β+1)) plane, only an ideal element results in a 
single valued response in the  (v(α) −  i(β)) plane in at least one variable with one of  v(α) and  i(β) being zero whenever 
the other becomes zero.

The insets next to each (α, β) cell in Fig. 4a indicate the elements resulting in the respective response in the 
 (v(α) −  i(β)) plane. For example, a pinched hysteresis curve in the  (v(0) −  i(0)) plane corresponds to a memristor, 
while a single-valued non-linear behavior in the same plane represents an ideal nonlinear resistor. A pinched 
hysteresis curve in the  (v(−1) −  i(0)) plane as shown in Fig. 4b serves to uniquely identify the element realized in 
this work as a meminductor. Further, Fig. 4c shows the response in the  (v(−2) −  i(−1)) plane as being multi-valued 
in both the variables with the zero-crossing points of  v(−2) and  i(−1) not necessarily coinciding, thus qualifying 
the element as a generic meminductor rather than ideal. This result is in agreement with the discussion from 
“Experimental setup, results, and discussion” section, with the deviation from ideal behavior and onset of generic 
behavior explained as a consequence of inertial motion of the winding.

The deviation from ideal behavior raises questions on the physical realizability of any ideal two-terminal pas-
sive circuit element. Since there must be an inadvertent delay- regardless of how small- between a change in the 
sourcing function and a resultant change in the transfer function for any element, the transfer function becomes 
multi-valued in the source variable. For example, in a p–n junction diode- a supposedly ideal non-linear resistor- 
a change in the sourcing function, i.e., current (or voltage) needs to result in the diffusion of minority carriers 
across the space charge region before manifesting as a change in the instantaneous resistance (or conductance), 
thereby introducing a non-zero time delay- and thereby a non-zero phase difference- between the source vari-
able and the transfer function. Hence, the i − v response of a p–n junction diode would in fact be memristive 
rather than resistive with the area of the lobes of the pinched hysteresis curve being potentially miniscule but 
non-zero, nevertheless. This line of discussion, while appearing to lend support to the arguments that an ideal 
memristor is not physically  realizable22,23, in fact generalizes the idea to all ideal non-linear elements. The degree 
of deviation from ideality can vary depending on the timescales involved: negligibly small for a p–n junction 
diode due to short diffusion times of charge carriers and a lot more pronounced in the meminductor realized 
due to macroscopic displacements of the winding.

Conclusions
Using the phase difference between the transfer function and the independent state variable to distinguish 
between an element and its mem-versions provides a new experimental perspective to aid the physical realiza-
tion of any two-terminal circuit element. The element realized in this work has been shown to bear the three 
fingerprints of a meminductor and thus prove the physical evidence of meminductance, albeit overshadowed 
by a more dominant resistive component. The next step would be to make the series resistance less dominant, 
so that the element realized would truly be a meminductor without the need to extract hidden meminductive 
behavior. Operating the element in a cryogenic environment below the superconducting temperature of the 
winding appears the most feasible technique to eliminate series resistance in the configuration discussed. At 
room temperature, combating series resistance would require strengthening the inductive component through 
higher frequency operation; hence, replacing electromechanical means of varying instantaneous inductance with 
electronic phenomena is worth pursuing. Also, several existing physical systems such as solenoid plungers and 
audio speaker systems share similarities in operation principle with the meminductor described in this work 
and thus need further work dedicated to closer examination for meminductive properties.
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