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Adaptive simulation 
of 3D thermometry maps 
for interventional MR‑guided 
tumor ablation using Pennes’ 
bioheat equation and isotherms
Julian Alpers 1,3*, Maximilian Rötzer 1,3, Marcel Gutberlet 2,3, Frank Wacker 2,3, 
Bennet Hensen 2,3 & Christian Hansen 1,3

Minimally‑invasive thermal ablation procedures have become clinically accepted treatment options for 
tumors and metastases. Continuous and reliable monitoring of volumetric heat distribution promises 
to be an important condition for successful outcomes. In this work, an adaptive bioheat transfer 
simulation of 3D thermometry maps is presented. Pennes’ equation model is updated according to 
temperature maps generated by uniformly distributed 2D MR phase images rotated around the main 
axis of the applicator. The volumetric heat diffusion and the resulting shape of the ablation zone can 
be modelled accurately without introducing a specific heat source term. Filtering the temperature 
maps by extracting isotherms reduces artefacts and noise, compresses information of the measured 
data and adds physical a priori knowledge. The inverse heat transfer for estimating values of the 
simulated tissue and heating parameters is done by reducing the sum squared error between these 
isotherms and the 3D simulation. The approach is evaluated on data sets consisting of 13 ex vivo bio 
protein phantoms, including six perfusion phantoms with simulated heat sink effects. Results show 
an overall average Dice score of 0.89 ± 0.04 (SEM < 0.01). The optimization of the parameters takes 
1.05 ± 0.26 s for each acquired image. Future steps should consider the local optimization of the 
simulation parameters instead of a global one to better detect heat sinks without a priori knowledge. 
In addition, the use of a proper Kalman filter might increase robustness and accuracy if combined with 
our method.

Volumetric monitoring of the heat distribution during minimally-invasive thermal ablation using radiofrequency, 
high focused ultrasound and microwave is an urgent clinical need. Magnetic resonance temperature imaging 
may be used to guide the radiologist during these kinds of interventions. Here, the 2D temperature maps can be 
computed based on the acquired phase images using the proton resonance frequency shift (PRFS)  method1. To 
completely treat the tumor and prevent a recurrence, it is of greatest importance to destroy not only the malignant 
cells but also to provide a sufficient safety margin. This minimum ablative margin (MAM) is said to be one of the 
few predictors for local tumor recurrence. Laimer et al.2 claim that an increase of the MAM by one millimeter 
can decrease the risk of a local tumor recurrence by 30%. Nonetheless, the acquisition of 3D thermometry maps 
is accompanied by complex problems, like motion of organs due to the patient’s  breathing3 and the restricted 
acquisition time during intervention. In our previous  work4, we introduced a new image acquisition protocol 
by rotating a common 2D gradient recalled echo (GRE) sequence around the applicators main axis. This setup 
allows for a visual observation of the whole heat profile at any given time point. Nonetheless, our initial conven-
tional reconstruction approach was susceptible to artifacts and MR inhomogeneities. In addition, the temporal 
resolution relied heavily on the duration of the image acquisition, resulting in delays of up to 6 s.
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Contribution. In this work, we introduce a new method for volumetric heat map generation which can be 
applied during minimally-invasive tumor ablation. Pennes’ BHTE is updated based on 2D thermometry maps 
acquired during ablation. Because these maps are rotated around the applicator’s main axis, the full heat profile is 
always visible, and the simulation is not restricted to a specific heat source term and can be applied to all ablation 
techniques. The accuracy of the initial parameters is negligible and optimized by minimizing the sum squared 
error between isotherms extracted from the 2D maps and the current 3D simulation. Evaluation shows promis-
ing results of up to 0.88± 0.04 similarity to a manually extracted ground truth, while also being robust towards 
outliers and applicable to a wide range of clinical setups.

Related work
Johnson and  Saidel5 began research in the field of interventional and adaptive simulation in 2002 by analyzing 
3D simulation for thermal processes and conducting one of the first theoretical studies. Based on this work, they 
and other  researchers6,7 came to the same two conclusions. First, a continuous simulation of the heat distribution 
is able to increase the spatial resolution of a volumetric ablation monitoring. Second, a biological heat model is 
capable of aiding the real-time process of interventional radiology. A summary of the related work can be seen 
in Table 1.

Funetes et al8 show that it is possible to reconstruct missing data using the Kalman filter. In their work, they 
removed data from the images of an MRI-assisted thermal therapy, which were replaced by the BHTE modeled 
values. With consecutive data corruption below 10 sec, successful recovery was possible. Unfortunately, their 
approach was not meant to be used for interventional simulations of ablation. The focus of Senneville and Roujol’s 
 group9 was to improve the accuracy and reliability of MRI thermometry data with respect to the influence of 
stochastic noise. This is because the calculation of the thermal dose for necrosis determination is highly error-
prone at low SNR due to the exponential dependence on temperature.

Another way to tackle this problem is through the use of control algorithms to determine the value of one 
parameter. A rather simple control algorithm has been developed by Enholm et al.10. Their aim was to adjust the 
duration of irradiation during a HIFU intervention. Orthogonal to a focused ultrasound beam, concentric circles 
were used to set temperature limits to which the ablation could maximally reach. These values were determined 
by a pre-interventional simulation in which the optimal irradiation was calculated. Temperature-sensitive MRI 
data using the PRFS method provide feedback on whether the voxels lying on the circle have reached the target 
temperature or thermal dose. If so, irradiation continues in a different area. Quesson et al.11, on the other hand, 
did not focus on the duration, but rather on the intensity of the focused ultrasound irradiation. In addition, 
they aimed at maintaining a predefined temperature profile. In contrast to Enholm et al.10, the calculation of the 
simulation is performed in real time during the intervention. This is possible by a simplified description of the 
equation in frequency space. The Fourier transformed equation can be thereby solved with an algebraic expres-
sion and the heat radiation amplitude can be found. Together with the MRI-generated heat maps, a control loop 
can again be implemented. The position of the applicator and tissue or perfusion parameters are determined 
prior to ablation using reference images and then assumed to be constant during the whole intervention. None-
theless, control algorithms are also capable of adjusting more than one parameter at a time. Mougenot et al.12 
transferred the problem of coefficient determination for BHTE to the field of control engineering. They compared 
the temperature distribution of a HIFU simulation θ with a sequence of MRI heat maps T in a dynamic control 
loop. The difference between the target temperature T and the actual measured temperature θ was minimized 
based on the design of a PID controller. This control algorithm takes into account both the current temperature 
difference and its time derivative, as well as the accumulation of the error over the past time steps. By coupling 
the controller with the solution of the heat equation in Fourier space, they were able to determine the values of 
ultrasound absorption, heat diffusion, and perfusion. The optimization with the help of an algorithm for the 
multidimensional search of the local minimum was carried out by iterative calculation of the heat equation with 
modified tissue parameters. The evaluation of the approach resulted in a real-time, accurate determination of 

Table 1.  Summary of the related work. AEKF, adaptive extended Kalman filter; D, thermal diffusivity; α , 
energy absorption rate; ω , perfusion; k, thermal conductivity; FEM, finite elements method; SAR, specific 
absorption rate.

Temperature measurement Treatment Optimization Parameter Model Discretization Time [s]

9 MRI HIFU AEKF Covariance of the Process 
noise Q BHTE Rayleigh /Fourier –

10 MRI HIFU Binary feedback control – – – –

11 MRI FUS Rearrangement of the alge-
braic expression D and α BHTE Fourier 180-300

12 MRI HIFU PID controller – BHTE Rayleigh /Fourier –
13 MRI FUS Method of least squares Equation parameter Simple heat model – 1
14 Sensors Cryo Levenberg-Marquardt ω and k BHTE FEM 30

15 Sensors RFA Limited, nonlinear optimiza-
tion function ω and k BHTE SAR /CAD-software –

16 MRI LITT Adjoint-Newton function ω and k (non-linear) BHTE SAR / FEM 9

This work MRI MWA Levenberg-Marquardt D and Tmax BHTE FDM 1.05±0.26
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the parameters with little dependence on noise. These properties lead to a fast termination of the algorithm and 
therefore to the stability of their method. De Bever et al.13 developed another method, where a less complex 
model is used to describe the heat change. The heat input and removal are described by two simple and flex-
ible exponential equations. Their parameters are immediately updated for targeted voxels based on each new 
MRI measurement. Thus, any change, no matter the physical background, is taken into account. Because of the 
constant updating, the predictions of heat distribution need to be accurate only until the next measurement is 
obtained and not for the entire ablation period.

Finally, methods of inverse problems can be applied to heat propagation and thus to thermal ablation. In the 
work of Hafid et al.14 it was possible to calculate the propagation of temperatures during cryoablation using a few 
sensors in the tissue. The thermal behavior during the transition from soft to frozen tissue was integrated into the 
BHTE, which allowed for the prediction of the movement of the cold front. The most relevant thermophysical 
coefficients of the model could be obtained by inverse evaluation of the temperature sensor data. Verhaart et al.15 
also worked with point sensor data, two of which are located in different tissue types. Because they developed 
their approach on patients rather than simulated data, they were able to determine different diffusion and perfu-
sion values for tumor, muscle, and adipose tissue. Their stimulation of an RF hyperthermia could thus be tailored 
to different patients and sessions. Fuentes et al.16 performed in vivo ablations with the support of a BHTE model 
adapted to MRI temperature data. MRI slices acquired every 5 s made it possible to track the progress of LITT 
procedures in real time. By optimizing the complex nonlinear perfusion and diffusion terms, the simulation 
could be adapted to the interventional data.

Material and methods
Many of the related works utilize a mathematical model to simulate the ablation procedures. The prerequisite 
for clinical use is intervention-specific modeling, which includes both spatial and temporal adjustment of the 
coefficients. This is because the parameters are not only temperature-dependent and change in the course of the 
ablation, but different tissue and material types require a separate treatment. In addition, the needle not only 
acts as an energy source, but its material itself interacts with the emitted heat, which in turn shapes the pattern 
of heat distribution. Also, more complex geometries of the needle (e.g., in MWA) require special  modeling17. The 
consideration of so many physical interactions may lead to complex differential equations with many coefficients. 
In an interventional setup, these equations must be solved at each time step, and the set of parameters must be 
optimized regularly. The difficulty here is in reconciling the complexity and the resulting increased accuracy of 
the computation with a real-time capability.

Therefore, this work aims to reduce the mathematical problem to a diffusion process. Hence, the approach to 
the modeling of heat distribution shifts from the consideration of a physical optimization problem to the con-
sideration of an optimization problem in computer vision. In the following concept, the goal is not to describe 
an internal physical process as best as possible, but to extract suitable information from 2D thermometry data in 
order to map it to a 3D simulation. The measured data thus only adjust the progress of the ablation, while their 
values are not included in the simulation.

Isothermal filter. In this work, we utilize our publicly available data  set4, which consists of thermometry 
maps rotated around the applicator’s main axis. The data set can be found at Open Scien ce OVGU and consists 
of single slice 2D GRE images (TE = 3.69 ms, TR = 7.5 ms, flip angle = 7◦ , FOV = 256 × 256 mm, matrix = 256 
× 256, bandwidth = 40 Hz/Px, slice thickness = 5 mm). Because of the uniform distribution around the main 
axis of the applicator the current heat profile can be observed in every image acquired and the location of the 
applicator artifact (heat source) is always known. Using this information, no mathematical term for a treatment 
specific heat source needs to be introduced in the equation because the heat profile directly correlates with the 
heat source distribution. The thermometry maps are characterized by noise and artifacts caused by the applica-
tor. The inter-dependency between the applicator and MRI magnetic field may result in complete erasure or 
distortion of thermal information around the applicator. Furthermore, the major part of the measured 2D data 
consists of the baseline temperature of the non heated parts in the phantom (see Fig. 1). To overcome the image 
corruption problem and to compress the information, the maps are filtered by extracting isotherms. By placing 
the data in a relative relationship to a reference point, the determination of the isotherm is more robust against 
noise. This can be done by using Eq. (1):

with Di referring to the temperature deviation between the temperature isovalue Tiso and the measured tempera-
ture T for all pixel N in the image. The idea is that the fluctuations around the isovalue are considered only in 
the context of the total displacement. By adding up these positive and negative deviations in the calculation of 
the total distance, the stochastic noise can be eliminated. The global minimization of the Gaussian-distributed 
noise in the acquired data results in a path that follows temperature of interest. To reduce the complexity of this 
approach we consider the noise in the image as locally independent and equally occurring for heated and non-
heated areas. An example of the relative temperature distribution can be seen in Fig. 2.

The implementation in this work is based on Dijkstra’s  algorithm18. In the case of the isothermal filter the path 
can be forced only in the direction of the needle axis. In this way, outliers in the data are also robustly removed. 
Only directly connected pixels with values close to the thermal isovalue generate a path with low cost.

Adaptive Pennes’ bioheat simulation. A widely used mathematical model for studying the heat trans-
fer in biological tissue is given by Pennes’  BHTE19,20:

(1)Di = |Ti − Tiso|∀i ∈ N

http://open-science.ub.ovgu.de/xmlui/handle/684882692/89?locale-attribute=en


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20356  | https://doi.org/10.1038/s41598-022-24911-1

www.nature.com/scientificreports/

where ρ , c and k are the tissue density, tissue specific heat capacity and tissue thermal conductivity. The perfu-
sion term consists of wb , the blood perfusion rate, cb , the blood specific capacity and Ta , the temperature of the 
arterial blood. Qm describes the metabolic heat generation rate, Qr the regional heat source and T represents 
the temperature at a given time point t. Regarding the density of blood itself ρb there are different approaches. 
Some authors like Bourantas et al.21 treat the blood density individually in the simulation term. Other authors 
like Zhang et al.22 do not report the blood density in their optimization term because it is indirectly included in 
the blood perfusion rate wb . In the proposed method we follow the example of Zhang et al.22 and consider wb 
already included in the perfusion rate.

To utilize the Pennes’ BHTE, the position of the heat source must be identified within every acquired 2D 
image. Because we rotate the images around the applicator’s main axis the heat source must be located on this 
axis as well. In addition, we break down the simulation problem from a mathematical model to a diffusion 
process. Therefore, Qr(t) in Eq. (2) can be set to 0 for all voxel outside the applicator’s main axis. The BHTE, 
a parabolic partial differential equation, can be physically described as a non-homogeneous heat equation. In 
addition to the homogeneous part of the diffusion, it consists of positive and negative heat sources, which have 
no spatial or temporal derivative. By combining and rearranging the terms and coefficients, it can be reduced 
to the following general equation:

(2)ρ(T)c(T)
∂T(t)

∂t
= ∇(k(T)∇T(t))

︸ ︷︷ ︸

Diffusion Term

+wbcb(Ta − T(t))
︸ ︷︷ ︸

Perfusion Term

+Qm(t)+ Qr(t)

Figure 1.  (A) Temperature map after computation of the temperature values using the PRFS method. No color-
coding was applied for better visibility of baseline temperature (background temperature without any heating) 
and artifact affected pixels (within and around the needle axis caused by signal cancellation and air). (B) 
Pathfinding map for determining contour line of equal temperature. Darker areas depict regions of low cost for 
the path finding algorithm. Yellow = Extracted isoline. All values in (A) and (B) are in the range of [0,100]. (C) 
Eight extracted isotherms within a range of 24 ◦ C color-coded on a grey-scale. The highlighted yellow isotherm 
corresponds to 21 ◦C.

Figure 2.  (A) Absolute temperature map. (B) Relative temperature cost map with a reference value of 25◦ C. 
Darker areas depict lower costs for the path finding algorithm. (C) Relative temperature map with a reference 
value of 35◦ C. Note how the black outline for lower path finding costs shifted and became more narrow due to 
the different reference value.
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Here, P(x, t, T) describes the local heat sources and sinks and −→x  refers to the three dimensional point within the 
volume of interest. For each of the N heat sources on a point of the needle axis ri , the orthogonal distance to each 
of the M isotherms tm is determined and summed up. To obtain the relative temperature distribution along the 
axis, the total distances are divided by the maximum total distance qmax of all N points. This results in a relative 
strength of the heat points qi in the range [0,1] as given by Eq. (4):

By specifying a factor, an absolute distribution can be obtained from the relative distribution. This factor limits 
the heat input to a maximum temperature and can thus be understood as a vertical shift of the complete tem-
perature distribution. In the form of a newly introduced ablation parameter, Tmax assigns an absolute value Ti 
to each qi using Eq. (5)

The quantitative determination of unknown tissue and ablation parameters can be described by the inverse heat 
conduction problem. In this work, the inverse heat transfer for estimating the values of the simulation parameters 
is performed using a least-square norm estimation procedure.

The Levenberg-Marquardt algorithm, originally developed for nonlinear parameter estimation  problems23,24, 
has been successfully applied to the solution of the ill conditioned inverse heat conduction  problem25,26. Its 
combination of steepest descent and the Gauss-Newton method increases robustness and the likelihood for 
convergence. For optimizing our simulation, the following objective function f has to be minimized:

where 
−→
TE is the vector of estimated temperatures at the current discrete time step ti . 

−→
TE is obtained by the direct 

Pennes’ BHTE model. The simulation is based on the state of the optimization at time step ti−1 and is corrected 
by the updated unknown parameter set P = {D,Tmax} . 

−→
TR is the vector of real temperatures extracted from the 

live 2D thermometry map. The sum squared error between each data point j in the live data and the 3D simula-
tion is reduced for each new acquired thermometry map I1 . . . In . An example is shown in Fig. 3.

For defining the time varying tissue temperature T for every voxel at every time step t, we used Crank-
Nicolson’s scheme for finite  differences27 as in Equation 7.

(3)

∂T(−→x , t)

∂t
= D · ∇2T(−→x , t)+ P(−→x , t,T)

P(x, t,T) =
wbcb(Ta − T(t)+ Qm(t)+ Qr(t))

ρ(T)c(T)

D =
k

ρ · c

(4)qi =
1

qmax

M∑

m=0

|ri − tm|∀i ∈ N

(5)Ti = qi · Tmax

(6)f
(
Pi
)
=

N∑

j=0

[−→
TE

i
j

(

Pi ,
−→
TE

i−1
j

)

−−→
TR

i
j

]2
∀ti ∈ In

Figure 3.  (A) Uniformly distributed thermometry maps around the main axis of the applicator. Only three 
slices are shown as examples. (B) 3D simulation (red volume) fitting using a least-square norm estimation (t = 
66). (C) Final simulation and fitting of the 3D simulation (red volume) (t = 112). Note that the deformation on 
the left and right side of the simulation is caused by heat sink effects.
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This method combines the explicit and implicit Euler method in time and central differences in space. Hence, 
this scheme is unconditionally stable for diffusion equations and has second order spatial and temporal accuracy. 
For reducing the computational effort to solve the implicit equations in multiple dimensions, we implemented 
an alternating-direction implicit  method28. This allows for solving the linear system by only considering tridi-
agonal matrices, which can be done by the Thomas algorithm. The presented method was implemented on a 
GPU architecture using the alternating-direction implicit method for parabolic differential equations to further 
increase the computational speed. All source code is publicly available on GitHub via https:// github. com/ jalpe 
rs/ Scien tific Repor ts2022_ Adapt ivePe nnesS imula tion/ tree/ main.

Evaluation

Initial parameter estimation. The initial condition is determined by the baseline temperature before the 
ablation, with x = (x, y, z) representing the 3D coordinate in the final output volume:

The huge amount of unaffected tissue in the peripheral boundary and a constant ambient temperature are suit-
able for using the Dirichlet boundary condition ŴE:

Due to the use of bio protein phantoms, the following parameters are set for the Penne’s BHTE:

The studies summarized by Mohammadi et al29 give a range of thermal diffusivity D from 0.142 to 3.68 mm2

s  at 22 
◦ C. Considering the increasing values due to temperature dependence, the optimization range is set to [0.1, 5] 
mm2

s  with an initial value of mm2

s  . The second parameter to be optimized, Tmax , has an optimization range from 
80 to 300 ◦ C and starts at the homogeneous and known ambient temperature T0.

Experimental setup. In this setup, we utilize our publicly available data base for  evaluation4 . Here, a data 
base of 13 bio protein phantoms was created according to Bu Lin et al.30, and images were acquired by utilizing a 
2D GRE sequence (TE = 3.69 ms, TR = 7.5 ms, flip angle = 7 ◦ , FOV = 256 × 256 mm, matrix = 256 × 256, band-
width = 40 Hz/Px, slice thickness = 5 mm) using a 1.5T MR scanner (Siemens Avanto, Siemens Healthineers, 
Erlangen, Germany). Note that the TE/TR are in general too short for good temperature-to-noise ratio but are 
needed in order to speed up the image acquisition and adjust it to the actual clinical protocol. Here, the images 
need to be acquired during the after respiratory phase, which limits the maximum acquisition time. Using an 
optimal TE of roughly 15–20 ms the acquisition time would increase approximately by a factor of 3, which is not 
suitable in the proposed setup. The acquired images are rotated around the main axis of the applicator, uniformly 
distributed in eight different orientations. This ensures that the needle artifact is centered in all acquired images. 
Therefore, the heat profile is comparable for all images and always covers the heat distribution from the heat 
source to the peripheral ablation margin. The images are used as a sequential input for the algorithm to simulate 
a live fetching from the MR device, e.g., by using the Siemens Healthineers Access-I Framework for direct scan-
ner control. Because the optimization of the simulation parameters is global and not local, heat sinks caused by 
vessels are not reflected by the simulation alone. Therefore, we assume that big vessels have been extracted from 
the pre-clinical data and can be applied to the final simulation outcome to a certain degree.

Statistical evaluation. For statistical evaluation purpose, the simulated heat map has to be converted in a 
binary coagulation necrosis. To achieve this, the same thresholds as described in our previous  work4 and publicly 
available data sets are applied in the range of [50, 60] ◦ C for each phantom individually (Global threshold).

Regarding the accuracy, we performed a similarity measurement between our simulation and the ground 
truth using the Dice Score Coefficient (DSC) computed by Eq. (11):

taking into account the relation between true positives (TP), false positives (FP) and false negatives (FN). To 
analyze the error of our results, we used the standard error of the mean (SEM) at a confidence interval level of 
95% (p = 0.05) using Eq. (12).

(7)
Ti+1
j − Ti

j

�t
=

1

2

(

D
Ti
j+1 − 2Ti

j + Ti
j−1

(�x)2
+ Pij + D

Ti+1
j+1 − 2Ti+1

j + Ti+1
j−1

(�x)2
+ Pi+1

j

)

(8)T(−→x , t) = T0,

(9)T(−→x , t) = TŴ , t > t0,
−→
x ∈ ŴE

(10)

Qm = 0 (no metabolic activity)

cb = 4182[
J

Kg · K
]

wb =
flow rate of pump * density of water

r2π · l
Ta = 25C◦

(11)DSC =
2 ∗ TP

2 ∗ TP + FP + FN

https://github.com/jalpers/ScientificReports2022_AdaptivePennesSimulation/tree/main
https://github.com/jalpers/ScientificReports2022_AdaptivePennesSimulation/tree/main
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with σ = standard deviation, xi = current sample, x̄ = mean value, N = sample size and 1.96 = approximated 
value of the 97.5 percentile of the standard normal distribution. The SEM provides an assumption on how far 
the sample’s mean is likely to be from the real population mean. In combination with the standard deviation σ , 
these statistical values are able to give a decent overview of the performance of our method. We used our publicly 
available interpolation method as reference to compare to our  results4.

In addition, we performed tests regarding the robustness of our method. For this purpose, the optimization is 
performed, on the one hand, with less real-time data, and, on the other hand, with less a priori knowledge about 
the expected values of the coefficients. The reduction of data can be achieved by not considering thermometry 
maps from certain orientations. Thus, an experimental setup is generated in which a modified recording protocol 
is simulated. Reducing the amount of data results in the following configurations: config. 1 = [0◦, 22.5◦, 45◦, 67.5◦] , 
config. 2 = [90◦, 112.5◦, 135◦, 157◦] , config. 3 = [0◦, 22.5◦] , config. 4 = [90◦] and config. 5 = [22.5◦] . Additional 
tests were performed by variation of the optimization parameters initial values and search criteria. Here, the fol-
lowing two configurations were tested: config. 6 = Unrestricted search range with D in the range [0.1,1000] and 
Tmax also in the range [0.1,1000] and config. 7 = Unrealistic initial parameters with D = 10 mm2

s  Tmax = 500◦C . 
All robustness tests were also conducted with an additional threshold configuration (Median). Instead of using 
the global threshold as explained in our previous  work4 the best threshold for each individual orientation was 
identified. Afterwards, the median of these eight thresholds was computed and used for better reflection of the 
varying conditions inside the tissue.

Finally, we performed an ANOVA test paired with post-hoc pairwise t-tests to analyze the significance of 
each conducted test scenario. All p-values are adjusted using the Bonferroni correction method and reported 
as horizontal lines in Figs. 4 and 5.

Results
ANOVA test results can be seen in Table 2. Evaluation results regarding the similarity and the corresponding 
post-hoc results can be observed in Fig. 4. Observations show an average overall DSC of 0.89±0.04 exceeding our 
previous temperature interpolation  approach4 by a total of 0.10 regarding the overall average DSC. With respect 
to the homogeneous and perfusion phantoms separately, we can observe an average DSC of 0.91 ± 0.02 and 0.86 
± 0.03, respectively. The SEM values are constant at 0.01 for all three groups. Regarding the standard deviation, 
our initial method shows values of 0.3 and 0.17 for the homogeneous and perfusion phantoms, respectively. The 
simulation approach presented in this work shows a standard deviation of 0.02 and 0.03 for the homogeneous 
and perfusion phantoms, respectively. In conclusion, the proposed method does not only exceed our previous 
version by a mean DSC of 0.10, but it is also more robust towards corrupted images, which caused the tempera-
ture interpolation method to fail.

With respect to the robustness tests, we are able to observe slight differences in the overall mean DSC for all 
phantoms, but we were not able to detect any significant changes between the different configurations. Therefore, 

(12)
σ =

√
∑

(xi − x̄)2

N − 1

SEM =
σ

√
N

∗ 1.96

Table 2.  ANOVAs’ results describing the significance of findings over the test configurations in comparison 
with our previous  method4. The configurations are separated in accuracy and robustness tests. To ensure 
reproducibility of the p-values the following values are reported: Df = degrees of freedom, F = F-value, p = 
probability of the data given the null hypothesis, Sig. = p-values less than the traditional α <0.05 are marked 
with a “*”, η2 = Generalized Eta-Squared measure of effect size.

Variable df F p Sig. η
2

Accuracy

Algorithm for all phantoms (overall) 2 23.97 <0.001 * 0.48

Algorithm for perfusion phantoms 2 6.82 0.001 * 0.43

Algorithm for homogeneous phantoms 2 77.69 <0.001 * 0.89

Robustness

Local threshold 84 0.96 0.44 0.02

Global threshold 84 1.03 0.42 0.02

Reference configuration 12 10.38 0.007 * 0.21

Test configuration 1 12 7.86 0.016 * 0.14

Test configuration 2 12 5.95 0.031 * 0.15

Test configuration 3 12 8.12 0.015 * 0.07

Test configuration 4 12 10.09 0.008 * 0.23

Test configuration 5 12 11.14 0.006 * 0.12

Test configuration 6 12 7.05 0.021 * 0.16

Test configuration 7 12 5.5 0.037 * 0.13
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we can assume that the number of different orientations during image acquisition, as well as the initial parameter 
values and boundary conditions, do not influence the performance of our method. Regarding the variation of 
the threshold configuration we can observe significant differences between the global and median approach. All 
results can be observed in Fig. 5 including the post-hoc pairwise t-test results as horizontal lines.

All results were generated on a Desktop PC (Intel Core i7-2600K, 16GB RAM, NVIDIA GeForce GTX 1060 
with 6GB memory) with GPU acceleration and computation of the parameters D and Tmax took 1.05± 0.26 s 
for each newly acquired image. Computation times are based on a volume size of 60 × 60 × 60 voxels and 100 
repetitions.

Discussion and conclusion
One of the advantages of the proposed method is the rotation of the acquired images around the main axis of 
the applicator. This results in a typical shape of heat propagation, even when vessels causing a heat sink effect are 
present. Hence, the measurement can be easily verified and corrected. In addition, every image contains the heat 
source in the form of the elongated artifact of the applicator. This artifact can be detected and traced back to find 
the source of the heat distribution used for simulation. Nonetheless, the preparation of this sequence protocol 
can be troublesome for inexperienced MRI users. In order to work as accurately as possible, the rotated images 

Figure 4.  Results of the similarity measurements. The DSC is separated for each phantom category with: 
Homogeneous = Phantoms without PVC tubes and water perfusion (n = 7). Perfusion = Phantoms with PVC 
tubes and water perfusion (n = 6). Overall = All phantoms (n = 13). Horizontal lines indicate statistically 
significant post-hoc pairwise t-test results. No values are located below a DSC of 0.3.

Figure 5.  Results of the robustness analysis. Configuration (Config.) 1–5 represent the variation of the number 
of orientations. Configuration 6 and 7 represent the variation of optimization parameters. Global = globally 
optimized threshold. Median = Median from the optimized thresholds of each of the eight image orientations. 
Horizontal lines indicate statistically significant post-hoc pairwise t-test results. No values are located below a 
DSC of 0.4.
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should intersect in the center of the field of view, and this intersection should correspond to the applicator’s main 
axis. Even though this should not be troublesome for an experienced MRI user, it might be cumbersome for new 
radiologists or medical technical assistants. Another problem may arise from out-of-plane angulation or bending 
of the needle. The more the needle is away from the intersection of the rotated planes, the less accurate the simu-
lation method will be because the simulated applicator axis (heat source) is inaccurate. Here, a possible solution 
could be the inclusion of a priori knowledge about the applicator’s position, either from manual annotation or 
planning. Additionally, an automated slice positioning algorithm can be used to find the optimum positioning 
of the images during intervention. Van der Kouwe et al.31 introduced an atlas-based approach for aligning the 
MRI plane in the region of interest. This approach may be applied to our simulation by acquisition of a 3D refer-
ence volume after needle insertion and prior treatment. The needle artifact can be extracted automatically, and 
an optimal MRI plane position can be computed and applied. In addition, to the automated definition of plane 
orientation the restrictions regarding the sequence parameters need more attention. The used TE of 3.69 ms is not 
optimal regarding the temperature-to-noise ratio. Here, a proper study has to be conducted to identify the best 
trade off between image acquisition time and temperature-to-noise ratio in order to optimize the setup. Another 
problem with our approach arises from the used bio protein heat phantoms. According to Bu Lin et al.30, the 
coagulation of the phantom highly depends on the pH-value, which can vary within the phantom itself. For this 
reason, the computation of the coagulation necrosis using, e.g., a threshold approach, will introduce an error of 
unknown size. In addition, the used PVC tubes to simulate a heat sink effect do not provide real tissue depend-
ent parameters. Hence, the approximation of the perfusion term does not reflect the real heat distribution. This 
problem can be addressed by evaluation of the method in a more clinical context. Here, perfused ex vivo porcine 
livers can be used, as introduced by Becker et al.32, to create a more realistic data base. Regarding the algorithm, 
we used a global approach for optimization of the parameters. This leads to a more or less homogeneous pre-
diction of the ablation zone, but does not take into account local tissue variation or heat sinks without a priori 
knowledge based on e.g., segmentation of structures. Here, it would be suitable to look for a computationally 
efficient solution for local optimization of the parameters. This approach could be combined with our previous 
method. The local parameters could be optimized for one image locally and then interpolated between the other 
acquired images. In this context, the image noise should also be analyzed regarding local dependencies especially 
in regions around the applicator’s main axis. Lastly, it is important to not just compare our results with other 
2D–3D reconstruction methods but also to other full 3D thermometry approaches. Especially the work of Zhang 
et al.33 provide promising results and could be considered for a in depth comparison study.

Conclusion. We proposed a new approach for an adaptive Penne’s BHTE for interventional MR-guided 
tumor ablation. Our approach is robust towards outliers and artifacts and shows promising results of up to 90% 
similarity to a manually extracted ground truth. Due to the unique image acquisition protocol, we are able to 
identify the heat source in every image and therefore are not limited to a specific heat source term. This reduces 
the computational effort and allows the method to be applicable to a wide range of clinical setups. Future work 
should focus on a local optimization of the simulation parameters instead of a global optimization. We believe 
that this approach would be able to accurately detect heat sinks in the data. In summary, our method shows a 
high potential to aid the performing radiologist during minimally-invasive thermal procedures and increase the 
success rate, while not necessarily hampering the workflow of the individual clinician.

Data availability
The data sets processed and analysed during the current study are available in the Open Science Repository for 
Research Data and Publications of OVGU (Creative Common License 4.0), Open Scien ce OVGU. In addition, 
the data sets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request. The source code used for generating the results presented in this study are publicly 
available via https:// github. com/ jalpe rs/ Scien tific Repor ts2022_ Adapt ivePe nnesS imula tion/ tree/ main.
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