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Machine learning did not beat 
logistic regression in time series 
prediction for severe asthma 
exacerbations
Anne A. H. de Hond 1,2,3*, Ilse M. J. Kant 1,2,3, Persijn J. Honkoop 3, Andrew D. Smith 4, 
Ewout W. Steyerberg 2,3 & Jacob K. Sont 3

Early detection of severe asthma exacerbations through home monitoring data in patients with 
stable mild-to-moderate chronic asthma could help to timely adjust medication. We evaluated the 
potential of machine learning methods compared to a clinical rule and logistic regression to predict 
severe exacerbations. We used daily home monitoring data from two studies in asthma patients 
(development: n = 165 and validation: n = 101 patients). Two ML models (XGBoost, one class SVM) and 
a logistic regression model provided predictions based on peak expiratory flow and asthma symptoms. 
These models were compared with an asthma action plan rule. Severe exacerbations occurred 
in 0.2% of all daily measurements in the development (154/92,787 days) and validation cohorts 
(94/40,185 days). The AUC of the best performing XGBoost was 0.85 (0.82–0.87) and 0.88 (0.86–0.90) 
for logistic regression in the validation cohort. The XGBoost model provided overly extreme risk 
estimates, whereas the logistic regression underestimated predicted risks. Sensitivity and specificity 
were better overall for XGBoost and logistic regression compared to one class SVM and the clinical 
rule. We conclude that ML models did not beat logistic regression in predicting short-term severe 
asthma exacerbations based on home monitoring data. Clinical application remains challenging in 
settings with low event incidence and high false alarm rates with high sensitivity.

The collection of home monitoring data via mobile applications, online surveys and wearables is becoming 
increasingly popular to remotely monitor patients. Monitoring has the potential to aid in detecting clinical 
deterioration earlier, which is associated with better clinical  outcomes1. For many applications, simple clinical 
rules have been developed to predict short-term events such as severe clinical  deterioration2–5.

The advent of machine learning (ML) means we can develop highly flexible models with the ability to auto-
matically learn from data, capture complex patterns, and incorporate time-series trends. ML models might 
overtake some of the moderately effective clinical  rules2–5. ML has shown great results in application areas such 
as image  recognition6–8. Its utility for home monitoring time-series data remains to be determined. Home moni-
toring time series data present a distinctive set of challenges for the application of ML predictive algorithms. A 
large effective sample size is  important9,10, which is challenging with a low incidence of the outcome of interest. 
For example, severe asthma exacerbations occur in less than 0.5% of days. All the other days are normal asthma 
control  days9,11. Moreover, fair external validation of ML predictive algorithms on a truly independent data is 
rare, commonly leading to an overoptimistic impression of predictive  performance12,13. Due to these challenges, 
only few models have been developed for home monitoring  data14, and even fewer have been externally validated.

We aim to develop and validate prediction models for short-term prediction of severe asthma exacerbations 
in patients with stable mild-to-moderate chronic asthma based on home monitoring data. We compare the 
performance of two machine learning algorithms, a statistical model, and a simple asthma action plan  rule5.
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Results
The development and validation cohorts consisted of 165 and 101 asthma patients respectively (Table 1). Patients 
were followed for a median period of 610 days in the development and 417 days in the validation cohort. Among 
the development data patients, 49 had one or more exacerbations (30%). This amounted to a total of 154 exacer-
bations across all patients (0.2% of total 92,787 daily measurements). For the validation data this was 38 patients 
(38%) and a total of 94 exacerbations (also 0.2% of total 40,185 daily measurements). The percentage of missing 
daily measurements was below 1% for the development and below 5% for the validation cohort for all candidate 
predictors (Table 1). Figure 1 provides an illustration of the time series for PEF, nocturnal awakening, and use 
of β2-reliever for three representative patients with various degrees of asthma exacerbations.

XGBoost included PEF, nocturnal awakening, and use of β2-reliever and their corresponding statistics as 
predictors with first differences and first lags. At validation, the algorithm obtained an AUC of 0.81 (95% CI 
0.78–0.84, Table 2, Fig. 2). The logistic regression model had a higher validated AUC of 0.88 (95% CI 0.86–0.90, 
p = 0.00, DeLong test). The probability distributions of the two models were heavily skewed (additional Fig. A1). 
Poor calibration with too extreme risk estimates was noted for the XGBoost model (calibration slope 0.56, 95% 
CI 0.50–0.61, Table 2, additional Fig. A2). It also underestimated the risks (calibration intercept 0.32 (95% CI 
0.15–0.48). Near perfect calibration was found for the logistic regression model (slope 1.02, 95% CI 0.93–1.10, 
Table 2, additional Fig. A2), with some underestimation of the risk of exacerbations (intercept 0.75, 95% CI 
0.60–0.90).

For the 0.2% threshold, the XGBoost model obtained a sensitivity of 0.59, a specificity of 0.89, a positive 
predictive value (PPV) of 0.02, and a negative predictive value (NPV) of 1 (Table 3). For the logistic regression 
model, this was 0.84, 0.82, 0.02, and 1 respectively.

The one class SVM obtained a sensitivity of 0.34, specificity of 0.87, PPV of 0.01 and NPV of 1 (Table 3). At 
the probability thresholds leading to the same number of positive predictions as produced by the one class SVM 
(5217 positive predictions), the XGBoost and logistic regression models had a higher sensitivity and PPV, and 
an equal specificity and NPV. The clinical prediction rule had a sensitivity of 0.05, specificity of 1, PPV of 0.07 
and NPV of 1 (Table 3). With 138 positive predictions as for the clinical rule, the XGBoost and logistic regression 
models again had a higher sensitivity and PPV, and equal specificity and NPV.

Similar results were found for the prediction of exacerbations within 4 and 8 days as the 2-days models (addi-
tional Tables A2–A5). The AUC of the XGBoost model increased for the 5-lag model (0.85, 95% CI 0.82–0.87, 
additional Table A6). No such improvement for a higher number of lags was found for the logistic regression 
model (based on AUC, additional Table A6). The one class SVM model showed a higher sensitivity, but lower 
specificity for the 2-lag and 3-lag models, and a sensitivity of (almost) 1 and specificity of almost 0 for the 4-lag 
and 5-lag models (additional Table A7). The differences between the AUCs of the best performing logistic 
regression model with one lag and XGBoost model with five lags were still significant (p = 0.02, DeLong test).

Table 1.  Descriptive statistics of the development and validation cohorts. Statistics were calculated for each 
individual patient over their respective observational periods. Then these statistics were pooled across patients. 
a No % missing is reported for maximum peak expiratory flow as this is a summary statistic calculated per 
patient over a run-in period of 4 weeks.

Development cohort Validation cohort

Demographics

Patient, N 165 101

Total daily measurements, N 92,787 40,185

Observational period, median (25–75) 610 (580–640) 417 (376–473)

Age, median (25–75) 38 (28–47) 46.5 (34–56)

Sex (female), N (%) 92 (56%) 62 (61%)

Predictors

Peak expiratory flow, mean (std) 438 (98) 404 (104)

 Missing (%) 477 (0.5%) 1171 (2.9%)

Peak expiratory flow personal  besta, mean (std) 467 (100) 437 (103)

Nocturnal awakening, mean % per patient 6.3% 4.7%

 Missing (%) 876 (0.9%) 1665 (4.1%)

Use of β 2 reliever, mean % per patient 7.2% 8.9%

 Missing (%) 302 (0.3%) 1188 (3.0%)

Outcome

Exacerbations per patient, N (%)

 0 exacerbations 116 (70%) 63 (62%)

 1 exacerbation 25 (15%) 20 (20%)

 2 or more exacerbations 24 (15%) 18 (18%)

Total exacerbations, N (%) 154 (0.2%) 94 (0.2%)
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Figure 1.  Time series for patients with no, one and many exacerbations. (a) Peak expiratory flow, (b) nocturnal 
awakening (yes/no), and (c) use of β 2 reliever (No M&E = No Morning & Evening, Yes M/E = Yes morning or 
evening, Yes M&E = Yes morning and evening) over time for three patients with no, one and many exacerbations 
respectively. The case of no exacerbations (top figure) is most prevalent in the data. Exacerbations are marked 
with red dots.

Table 2.  Discrimination and calibration for predicting exacerbation within 2 days (validation cohort). 
XGBoost gradient boosted decision trees, AUC  area under the receiver operating characteristics curve.

AUC Calibration intercept Calibration slope

XGBoost 0.81 (0.78, 0.84) 0.32 (0.15, 0.48) 0.56 (0.5, 0.61)

Logistic regression 0.88 (0.86, 0.90) 0.75 (0.6, 0.90) 1.02 (0.93, 1.10)
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Discussion
In this study, we aimed to assess the performance of ML techniques and classic models for short-term prediction 
of severe asthma exacerbations based on home monitoring data. ML and logistic regression both reached higher 
discriminative performance than a previously proposed simple clinical rule. Logistic regression provided slightly 
better discriminative performance than the XGBoost algorithm. However, logistic regression still produced many 
false positives at high levels of sensitivity.

Our finding that ML models do not outperform classical prediction methods is in line with other recent 
 studies14–17. This finding may be explained by the (lack of) complexity of the data that was studied. An advantage 
of ML techniques is the natural flexibility they offer to model complex (e.g. highly nonlinear) relationships, versus 
logistic regression techniques that have the advantage of being easily interpretable. Our findings illustrate that the 
flexibility provided by ML models may not always be needed to arrive at the best performing prediction model 
for medical data. The benefits of ML methods may differ between settings and should be further investigated.

Second, we found a substantial number of false positive predictions at high levels of sensitivity. The false 
positive rate (reflected by the low PPV) can be linked directly to the low incidence rate. Similar results can be 
found in the  literature2,18–21. The potential implications of the high false positive rate are alarm fatigue, loss of 
model acceptance and trust, and ultimately disuse of the prediction  model22. Improvement in discriminative 

Figure 2.  ROC-curve for predictions from XGBoost and the logistic regression model. The sensitivity and 
specificity of the one class SVM and clinical prediction rule are also plotted on the left curve. On the left the 
points corresponding to the 0.001 (‘t = 0.001’) and 0.002 (‘t = 0.002’) probability thresholds are plotted for the 
XGBoost and logistic regression model. On the right the points corresponding to the thresholds resulting in 
138 positive predictions (‘t for 138 pos pred’, equaling the clinical rule positive predictions) are plotted for the 
XGBoost and logistic regression model.

Table 3.  Threshold specific performance metrics for predicting exacerbation within 2 days (validation 
cohort). SVM support vector machine, XGBoost gradient boosted decision trees, ppv positive predictive value, 
NPV negative predictive value. a Peak Expiratory Flow < 60% personal best. b This threshold is set so that the 
XGBoost and logistic regression models produce the same number of positive predictions as the one class SVM 
or clinical rule.

Probability threshold Model Sensitivity Specificity PPV NPV

0.001
XGBoost 0.71 (133/188) 0.81 (32,178/39,904) 0.02 (133/7859) 1.0 (32,178/32,233)

Logistic regression 0.93 (174/188) 0.56 (22,227/39,904) 0.01 (174/17,851) 1.0 (22,227/22,241)

0.002
XGBoost 0.59 (110/188) 0.89 (35,326/39,904) 0.02 (110/4688) 1.0 (35,326/35,404)

Logistic regression 0.84 (158/188) 0.82 (32,720/39,904) 0.02 (158/7342) 1.0 (32,720/32,750)

Resulting in 5217 positive 
 predictionsb

One class SVM 0.34 (64/188) 0.87 (34,751/39,904) 0.01 (64/5217) 1.0 (34,751/34,875)

XGBoost 0.6 (112/188) 0.87 (34,800/39,904) 0.02 (112/5216) 1.0 (34,800/34,876)

Logistic regression 0.73 (137/188) 0.87 (34,823/39,904) 0.03 (137/5218) 1.0 (34,823/34,874)

Resulting in 138 positive 
 predictionsb

Clinical  rulea 0.05 (10/188) 1.0 (39,776/39,904) 0.07 (10/138) 1.0 (39,776/39,954)

XGBoost 0.11 (21/188) 1.0 (39,787/39,904) 0.15 (21/138) 1.0 (39,787/39,954)

Logistic regression 0.11 (20/188) 1.0 (39,787/39,904) 0.15 (20/137) 1.0 (39,787/39,955)
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ability may be achieved by reducing the noise in the exacerbation event at the time of data collection. For exam-
ple, the recording of severe exacerbations in our dataset might have been incomplete or there might have been 
a delay between the recording of the exacerbations and their true onset. Moreover, better predicting variables of 
exacerbations may be needed, which need evaluation in large data sets.

Another insight based on our findings is that the interpretability of a prediction algorithm does not always 
have to come at the cost of model performance. An argument in favor of black-box ML and its broader field 
of artificial intelligence (AI) techniques is their potentially superior predictive performance. For this superior 
performance, it is deemed acceptable to not exactly know how a prediction is made: the accuracy-interpretability 
trade-off23,24. Our findings form a counterexample by showing that inherently interpretable techniques such 
as logistic regression may outperform ML for certain application types and clinical settings. Interpretability is 
especially relevant for clinical settings, as physicians often prefer interpretable models to assist in clinical deci-
sion making.

Strengths of our study include that we performed a comparison of ML models with a statistical model and 
a clinical prediction rule, which to our knowledge has not, or only partly been performed for this type of home 
monitoring  data14. Our findings therefore contribute to answering the question when and how to apply ML 
methods safely and effectively, thereby putting ML in perspective. Moreover, the data used in this study contained 
few missing values, possibly due to the trial setting. The quality of the data was therefore high.

The current investigation also had limitations. First, by opting to predict exacerbation in the short-term 
(exacerbation within 2 days), the exacerbation window became small. Such a small window was chosen to keep 
the predictions clinically meaningful and relevant. This resulted in a very low incidence rate. We performed a 
sensitivity analysis in which we expanded the window to four and 8 days without noticeable differences in model 
performance. We therefore recommend investigating the best way to operationalize and capture the clinical 
definition of a severe asthma exacerbation in home monitoring data. Second, the low event rate may have caused 
the (best performing) logistic regression model to consistently underestimate the predicted  risks25. Low event 
rates are common for the home monitoring setting. We therefore advise future researchers to investigate tech-
niques that address any associated calibration issues. Poor calibration forms an obstacle for the implementation 
of any algorithm in clinical practice, since reliability of the predicted probabilities is required to be clinically 
 meaningful26. Lastly, home monitoring patients based on daily diary entries can be perceived as old fashioned. 
Clinicians nowadays will often opt for digital telemonitoring approaches. Yet, the monitored parameters have 
remained largely the same across different registration modes (on paper or digitally)18,27–29. This implies that the 
registration method is unlikely to affect our conclusions.

Conclusion
ML models may not outperform classical regression prediction model in predicting short-term asthma exacerba-
tions based on home monitoring data. A simple regression model outperforms a simple rule. Clinical application 
may be challenging, due to the high false alarm rate associated with the low probability thresholds required for 
high sensitivity.

Methods
Development and validation cohorts. We analyzed two previous studies which had as the primary 
aim to study adjustments in asthma  treatment30,31. The development cohort was a randomized controlled trial 
comparing different inhaler medications with follow up of approximately 84  weeks31. The validation cohort was a 
single-blind placebo-controlled trial examining alternative treatment pathways with follow up of approximately 
60  weeks32. All patients had stable mild-to-moderate chronic asthma. Both studies were conducted in an asthma 
clinic in New Zealand on patients referred by their general practitioners. For both studies, patients recorded 
their peak expiratory flow and use of β2-reliever (yes/no) in the morning and evening of every trial day in diaries. 
Nocturnal awakening (yes/no) was recorded in the morning (see below).

Outcome. The outcome variable was measured daily and was defined as the occurrence of a severe asthma 
exacerbation within 2 days (the day of the measurement or the following day). Table 4 provides a visualization of 
this 2-day window outcome. Severe asthma exacerbations were defined as the need for a course of oral corticos-
teroids (prednisone) for a minimum of 3 days, as documented in medical  records30,31.

Table 4.  Definition of the outcome variable. This is a hypothetical example of the definition of the outcome 
variable over 15 days of measurement. The patient experiences an exacerbation at day 9 and day 15. The 
outcome variable corresponding to a severe asthma exacerbation within 2 days is displayed on the 2-day 
window row. For example, at day 8 an exacerbation will occur within 2 days—it occurs the next day—and day 
8 is therefore part of the 2-day window outcome. Similarly, the outcome variable definitions corresponding to 
exacerbations within 4 and 8 days are displayed on the 4- and 8-day window rows.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Exacerba�on
2-day window
4-day window
8-day window
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Predictors. All predictors were measured or calculated daily. Nocturnal awakening (yes/no), the average of 
morning and evening peak expiratory flow (PEF, measured in liters per minute) and the use of β2-reliever in 
morning and evening (used in both morning and evening/used in morning or evening/not used in morning and 
evening) were considered as potential predictors. For a rolling window of 7 days, we also calculated the PEF aver-
age, standard deviation, maximum and minimum and added these as predictors. This rolling window consisted 
of the current day and all 6 preceding days. The PEF personal best was determined per patient during a run-in 
period of 4 weeks and added to the models. Lastly, we constructed and added first differences (the difference 
in today’s measurement with respect to yesterday’s measurement) and lags (yesterday’s measurement) for PEF, 
nocturnal awakening, and use of β2-reliever.

Model development. Demographics and descriptive statistics of predictors (i.e., age, sex, mean PEF, PEF 
% personal best, nocturnal awakening, and use of β2-reliever) were calculated for each individual patient over 
their respective observational periods.

Missing values were interpolated based on previous and succeeding values and the data was normalized. The 
first ML model developed through supervised learning was a gradient boosted decision trees (XGBoost) model. 
This model was chosen as it is one of the most popular ML techniques, and it performs well for a wide selection 
of problems, including time series  prediction33. The XGBoost model estimates many decision-trees sequentially. 
This is also called boosting. These decision tree predictions are combined into an ensemble model to arrive at 
the final predictions. The sequential training makes the XGBoost model faster and more efficient than other 
tree-based algorithms, such as random forest. A downside of this model is that, due to its complexity, it becomes 
hard to interpret. Moreover, when the missingness is high, tuning an XGBoost model may become increasingly 
difficult, which is less of an issue with other tree-based models like random forest.

Second, we trained an outlier detection model (one class SVM with Radial Basis Kernel)34. The one class SVM 
aims to find a frontier that delimits the contours of the original distribution. By estimating this frontier, it can 
identify whether a new data point falls outside of the original distribution and should therefore be classified as 
‘irregular’. An advantage of this model is that it is particularly apt at dealing with the low event rate in the asthma 
data. A downside of this model is that it does not provide probability estimates like a regular support vector 
machine and we therefore must base its predictive performance on its classification metrics only (see below).

Additionally, we developed a prediction model using logistic regression as the popular classical prediction 
counterpart of these two ML models. Logistic regression assumes a probability distribution for the outcome vari-
able and models the log-odds of each patient experiencing the outcome linearly. The log-odds are converted into 
probabilities via the logistic function. Logistic regression is an inherently interpretable technique and a hallmark 
of classical prediction  modelling35,36. Due to its linearity restriction, it may however not provide the level of 
complexity needed to adequately model certain prediction problems. Machine learning methods, like XGBoost 
and one class SVM, provide more flexibility, which comes at a cost of the interpretability of these methods.

The hyperparameters of the XGBoost, one class SVM, and logistic regression models (see additional Table A4) 
were set using a full grid search and 5 × 5-fold cross-validation (stratified by patient) on the development cohort. 
We trained the final models using all data with optimized hyperparameters. We compared these model outcomes 
with a clinical rule that is currently proposed as action point in an asthma action plan by the British Thoracic 
Society: start oral corticosteroids treatment if PEF < 60% of personal  best2,5.

Model performance. After completing model development on the development cohort, all models and 
the clinical rule were applied to the validation cohort. The discriminative performance of the models producing 
probabilities (XGBoost and logistic regression) was measured via the area under the receiver operating charac-
teristic curve (AUC) and histograms of the probability distributions were plotted. We applied the DeLong test 
to compare the AUCs from these two models. Calibration was assessed graphically and quantified through the 
calibration slope and  intercept26. Confidence intervals were obtained through bootstrapping (based on a 1000 
iterations). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 
calculated for all models at the following probability thresholds (the cut-off point at which probabilities are 
converted into binary outcomes): 0.1% and 0.2%. These were chosen as they circle the prevalence rate of the 
outcome in our data. For a fair comparison with the clinical rule, we also calculated these performance metrics 
(sensitivity, specificity, etc.) for the XGBoost and logistic regression models at the probability thresholds produc-
ing the same number of positive predictions as produced by the one class SVM and the clinical rule.

Sensitivity analysis. We performed a sensitivity analysis for predicting exacerbations within 4 and 8 days 
as opposed to 2 days (Table 4). This enabled us to study the effect of a variation in the length of the outcome 
window on the models’ discrimination and calibration capacities.

Second, we performed a sensitivity analysis to assess the effect of the number of lags on model performance. 
For this analysis, we varied the number of lags from 1 to 5 for the models predicting exacerbations within 2 days. 
For the XGBoost and logistic regression model, the AUC was compared. For the one class SVM model, the 
sensitivity, specificity, PPV, and NPV were compared.

Software. All analyses were performed in Python 3.8.0. with R 3.6.3 plug-ins to obtain calibration results. 
The key functions and libraries can be found in additional file 2. The complete code is available on request.

Ethics approval and consent to participate. Ethics approval was obtained for the original data collec-
tion. These studies were conducted in accordance with the principles of the Declaration of Helsinki on biomedi-
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cal research. The protocols were approved by the Otago and Canterbury ethics committees and all patients gave 
written informed consent prior to participation.

Data availability
The datasets analyzed during the current study are not publicly available due to privacy restrictions, but are 
available to reviewers on reasonable request.

Received: 11 June 2022; Accepted: 22 November 2022
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