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Statistical evaluation of testing 
conditions on the saturated 
hydraulic conductivity of Brazilian 
lateritic soils using artificial 
intelligence approaches
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Thiago Augusto Mendes 2*, Rafaella Fonseca Costa 4, 
Gilson de Farias Neves Gitirana Junior 3 & Juan Félix Rodríguez Rebolledo 5

The saturated hydraulic conductivity, ksat, is a crucial variable to describe the hydromechanical 
behavior of soils. The value of ksat of lateritic soils that are typically found in tropical regions is highly 
affected by the soil’s structure, void ratio, and fine particle aggregation. As a result, the determination 
of ksat in the field or in the laboratory is complex and involves greater variability, depending on 
the type of test and on the spatial location of sampling. This paper presents a study of ksat values 
of lateritic soils, analyzing them using Statistic, Multilayer Perceptron Artificial Neural Networks 
(ANN) and Decision Trees (CHAID). This study aims to support decision-making regarding the type 
of test and depth chosen for sampling in laterite soils and understanding the factors influencing 
the permeability of such soils. An extensive literature review on the ksat values of lateritic soils was 
performed, providing data for the establishment of a database comprise of 722 registries. According 
to agronomic and geotechnical soil classifications, the Brazilian lateritic soils presents a “moderate” 
hydraulic conductivity. A significant variation of permeability values along the depth was identified, 
particularly for depths between 0.1 and 0.2 m. Regarding the importance of testing variables, the ANN 
indicated a high dependency on the type of test. The decision tree divided field test and laboratory 
test automatically, inferring the relevance of the type of test to the determination of ksat.

The hydraulic conductivity of the soil (k) is defined, by Darcy’s law, as the relationship between the percolation 
rate of water volume per unit of total area and the hydraulic head gradient. When k reaches its maximum value, 
it is called saturated hydraulic conductivity of the soil (ksat), a property that is dependent on the soil particle size 
distribution, particle morphology, pore continuity, particle orientation, volume of pores, among other  factors1–3. 
The testing methodology for determining ksat, whether in-situ or laboratory, also influences its value.

The dependence of ksat on these several factors turns this into a complex parameter with significant variability, 
reaching variations of over 200%3–6. In this context, understanding how ksat is affected by soil characteristics, the 
type of test performed and the sample depth becomes essential for determining this  parameter7–9.

In lateritic soils, ksat becomes particularly affected by the soil structure. Moreover, this soil, typical of tropi-
cal regions from Africa, South America, and Southeast  Asia10,11, are commonly formed from the weathering of 
rocks subjected to the high temperatures and humid climates typical of these  regions10,12,13, and are characterized 
by often having a high void ratio, high clay content, and significant presence of iron and aluminum oxides and 
hydroxides, resulting in the aggregation of these fine  particles10,14. Particle aggregation form macro and micropo-
res in the soil, resulting in a bimodal pore-size distribution. This structure particularity of the soil pores offers 
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preferential paths for water percolation, which can generate large variations in the values of ksat when comparing 
different samples obtained from the same location. As a result, understanding the permeability phenomena in 
this soil type becomes  challenging13.

The physical determination of ksat may employ field or laboratory tests. In field tests, the soil does not undergo 
significant deformations in its structure, allowing a better understanding of the permeability phenomenon. 
However, it is difficult to control the boundary conditions of field tests. The main field tests used for determin-
ing ksat are: Guelph permeater, slug test, pump test and concentric ring or double ring infiltrometer. The main 
laboratory tests available are: permeameters with constant and falling head, and triaxial tests.

Field and laboratory tests are costly and require considerable  times15. For his reason, indirect estimation meth-
ods have been developed, such as theoretical  equations3,16, pedotransfer  functions15,17,18, and machine learning 
 methods19–21. Machine learning methods, which can have either a regression or classification character, can be an 
essential tool for assessing the sensitivity of variables influewnced by complex relationships, as is the case for ksat.

This paper evaluates of the main factor influencing ksat values of Brazilian lateritic soils using statistics, 
multilayer perceptron artificial neural networks (ANN), and a CHAID-type decision tree. The analyses pre-
sented herein contribute to the understanding of hydraulic conductivity in Brazilian lateritic soils aind in the 
establishemtn of adequate methodologies for the determination of representative ksat values, according to the 
sample depth and test type.

Materials and methods
Data collection. First of all, a wide literature review was carried out on scientific articles that deal with the 
determination of the saturated hydraulic conductivity (ksat) of Brazilian lateritic soils, especially from the Mid-
west region. Test results on soils with the presence of roots were disregarded. The data collected included various 
types of equipment, testing methodologies, and variable soil sample depth. The following databases were used: 
(a) Scopus, (b) Web of Science, (c) ASCE and (d) Google Scholar, emphasizing the latter due to the ease, acces-
sibility, and practicality in searching and obtaining journals, dissertations, and theses.

Search strings were established to identify publications presenting the measurement of the hydraulic conduc-
tivity of lateritic soils, considering various testing methodologies, equipment, and depths. Initially, the geographic 
location was not specified since lateritic soils are present in several Brazilian locations. There was no limitation 
on the publication period for the scientific articles researched. Combination of words for publications written 
in Portuguese were: ("permeabilidade" AND "ensaio" AND "laterítico") OR ("condutividade hidráulica" AND 
"ensaio" AND "laterítico") OR ("condutividade hidráulica saturada" AND "ensaio" AND "laterítico"). The cor-
responding combinations of words for publications written in English were ("permeability" AND "test" AND 
"lateritic") OR ("hydraulic conductivity" AND "test" AND "lateritic") OR ("saturated hydraulic conductivity" 
AND "test" AND "lateritic").

Altogether, 6414 scientific articles were found: 60 from Scopus, 10 from Web of Science, 154 from ASCE, 
and 6190 from Google Scholar. Because of the large number of articles found, these were screened based on the 
rejection criteria shown in the flowchart presented in Fig. 1.

Using the collection of ksat data obtained in the literature review, a database was built to support statistical 
and computational analyses, aiming to understand better the influence of the type of test, method or equipment 
and depth of sample. Machine learning methods, including Artificial Neural Networks (ANN) and decision 
trees, were used as described later.

Materials. Data used in this paper comprise exclusively lateritic soils. According to Fortes and  Merighi22, 
lateritic soils’ colors are yellow and red because of aluminum hydroxides and ferric hydrates. The Unified Soil 
Classification System (USCS) is generally considered not suitable for tropical soils. In fact, lateritic materials 
are better characterized and classified using the MCT (Miniature, Compacted, Tropical) classification system. 
In terms of location, lateritic soils are typically found in the regions indicated by the  Charman23 map (Fig. 2).

The magnitude of the ksat of tropical soils can be classified according to the flow rate ranges established by 
Ferreira (1999) apud Freire et al.24, and presented in Table 1. It could be noted that the values shown in Table 1 
are for agronomic studies, and were initially presented in meters  day−1, being converted to meters  seconds−1 in 
this paper. A permeability classification for use in civil works was not found in the literature. However, a clas-
sification of permeability values by type of soil was published by Das and  Sobhan25, as shown in Table 2.

Figure 1.  Criteria for selecting publications.
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Regarding the types of tests on laterite soils, the two main laboratory apparatuses used to determine ksat are 
the constant load and the falling head permeameters. These tests are standardized in Brazil through technical 
standards NBR 13,29226 and NBR 14,54527, respectively. Undisturbed and remolded specimens can be used in 
these tests, with the constant head test being commonly adopted for granular soils, while the falling head test is 
aimed at clay soils with relatively low permeability.

The main approached for determining ksat in the field are the Guelph test, the slug test, the pump test, and 
the concentric rings test. The Guelph apparatus is commonly used, being practical, easy to perform, having a 
low cost, and offering a quick means of determination of ksat. The Guelph apparatus is generally used for small 
depths, up to 75  cm28,29. The slug test is a field test that consists of inserting a cylinder into the soil and monitor-
ing the flow of water.

The pump test is a more complex procedure that uses a suction pump to assess variations in water flow in the 
soil. The concentric ring method consists of placing two rings of different diameters on the soil surface. Water is 
added to the two circles, where an initial reading of the water height is performed and readings are taken at prede-
termined time intervals, evaluating the height variation in the inner circle to calculate the hydraulic conductivity. 
This method does not have many difficulties in its execution and results in more homogeneous values. Unfor-
tunatelly, the concentric ring method offers overestimated values of ksat, due to the imposed hydraulic  head30.

Figure 2.  Regions with the occurrence of lateritic soils  (Charman23).

Table 1.  Saturated hydraulic conductivity classes established by Ferreira (1999) apud Freire et al.24.

Classes ksat (m  s−1)

Very fast > 6.94 ×  10–5

Fast 3.47 ×  10–5–6.94 ×  10–5

Moderately fast 1.74 ×  10–5–3.47 ×  10–5

Moderately 5.56 ×  10–6–1.74 ×  10–5

Moderately slow 1.39 ×  10–6–5.56 ×  10–6

Slow 3.47 ×  10–7–1.39 ×  10–6

Very slow < 3.47 ×  10–7

Table 2.  Saturated hydraulic conductivity classes presented by Das and  Sobhan25.

Classes ksat (m  s−1)

Clear gravel 1 ×  100–1 ×  10–2

Coarse sand 1 ×  10–2–1 ×  10–4

Fine sand 1 ×  10–4–1 ×  10–5

Silty clay 1 ×  10–5–1 ×  10–7

Clay  < 1 ×  10–8
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Description of the ANN used. The software used for building the ANN was IBM SPSS  Statistics31, adopt-
ing a multilayer perceptron  network32–34. The multilayer perceptron network is a commonly adopted supervised 
learning method among the various ANN methodologies developed. The approach requires the availability of 
training data, used to adapt the model. This network is commonly used to evaluate databases, images, and other 
types of  data35–38, and consists of a set of layers subdivided into: input, hidden, and output layers. The input layer 
consists of the data region used for training, while the output layer returns the desired parameter. The hidden 
layer is an intermediate layer and aims to connect the input values with the output values. The connections 
between each layer are made through weights, which are values assigned initially at random, and later adjusted 
by the ANN during training. Weights are assigned from the input layer to the hidden layer and from the hidden 
layer to the output layer.

The values that feed the hidden layer come from the scalar product between the assigned weights and the input 
layer values, being applied through a mathematical function called activation function, which has the purpose of 
linearizing the  data39. The most used activation functions are the ReLU and the hyperbolic  tangent34. The final 
value that comes out of the hidden layer is the scalar product applied to the activation function arriving at the 
output  layer39. The resulting value that leaves the output layer is the value predicted by the  ANN39.

To minimize the errors computed during training, a backpropagation process was used: the application of 
the descending gradient, an interactive method of non-linear  optimization33,34. The descending gradient method 
requires two critical parameters: the learning rate and the momentum. The learning rate determines the learning 
speed of the algorithm. In general, values between 0 and 1 are adopted. Momentum is a parameter that gives 
the network stability, allowing for rapid convergence. Like the learning rate, its values vary between 0 and 1.

Another parameter determined during training is the Bias, a unitary component used to compensate for 
random weight  assignments34. Its incorporation into an ANN is essential, as it allows the translation of the scalar 
product between the components of a layer and their respective weights, preventing the ANN from assigning 
greater weight to a component of a specific layer due to the lack of freedom of movement of the scalar product.

Figure 3 outlines the ANN model used, based on the concepts, parameters and methodology described herein. 
As activation functions, hyperbolic tangent and identity were used for the input and the output, respectively. 
In the modeling of the ANN, a single hidden layer was used. The ANN method with a multilayer perceptron 
network used in this paper offers also a quantitative assessment of the importance of the variables used in the 
determination of ksat, through the assigned weights.

A fraction of 69.3% of the data was used for network training, 20.1% for testing, and 10.6% for model valida-
tion (holdout). In the validation, cross-validation was adopted, and the training was carried out in batches. Cross-
validation is characterized by dividing the data into a specific integer value n, selecting for each n a percentage 
of data for training and another for testing. The process is repeated for each division n and the model with the 
best fit is adopted. The initial learning rate was 0.4 and the moment was 0.9.

Figure 3.  Diagram of the ANN adopted.
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Chis-square automatic interaction detector (CHAID) decision tree. According to Biggs et  al.40, 
decision tree and classification techniques are powerful tools used for dividing analysis data into homogeneous 
groups. One of these methods is the automatic interaction using chi-square (CHAID), implemented through an 
algorithm developed by  Kass41 and improved by Biggs et al.40. The population subdivision criteria must meet the 
selected statistical significance, maximum depth of the tree and minimum number of cases (parent node and 
child node). If the criteria not reached, the values are not divided concerning the studied  variable42.

According to  Kass41, CHAID comprises the following steps: (a) best partition for each predictor; (b) the 
predictors are compared and the best one is chosen; (c) the data are subdivided according to the predictors and 
the division criteria; (d) each subgroup is independently analyzed to produce other subdivisions.

The advantages of CHAID are its straightforward interpretation and reading, little computational time and 
the possibility of having multiple divisions in a  node42,43. Regarding the disadvantages, the method requires a 
large amount of data to achieve adequate  results44. This method was used herein to evaluate the influence of the 
different variables involved (types of tests, method or equipment and sample depth) in the determination of ksat, 
proposing a class of the importance of these variables through the generated model (CHAID), is also used for 
validating the results of ANN modeling.

Results and discussions
Overview of selected publications. A total of 6414 scientific papers, theses and dissertations were found, 
but only 18 were selected, 7 of which were doctoral  theses45–51, 6 master’s  dissertations52–57, 1  monography58 and 
only 4 scientific  papers14,59–61. In addition to the documents searched in the databases, the ksat data presented in 
the Brazilian Agricultural Research Corporation (EMBRAPA) bulletin, Filizola et al.9, was also included. The 
geographic distribution of the ksat data selected is shown in Fig. 4.

The selected publications presented results obtained using the constant head, the falling head, the Guelph, 
the double ring, the flexible wall, and the field-falling permeameters. Some studies also presented data obtained 
from infiltration well, and well pumping tests. The depths of the tests or samples varied from 0.00 to 3.00 m. 
Figure 5 shows the distribution of ksat registries by each method. The most common laboratory permeability test 
was the constant head, and the most common field test was the Guelph test. According to Elmashad and  Ata62, 
the most common field test is the ring infiltrometer, but not the Guelph test.

Analysis of collected data. The main statistical parameters describing the collected soil permeability 
dataset are presented in Tables 3, with ksat values in their original form and in the natural logarithmic scale. 
Table 3 shows higher coefficient of variation (COV) values, while logarithmic ones show a significant reduction. 
This reduction is associated with the scaling effect of the logarithm operator.

The ksat values of the Brazilian lateritic soils surveyed were classified according to the flow rate ranges shown 
in Tables 1 and 2. The corresponding ranges, in terms of infiltration speed are shown along with the box diagrams 
presented in Figs. 6 and 7. The box plot limits are presented for p = 0.05.

The values of the natural logarithm of ksat (Fig. 6a) were plotted in the box diagrams, considering that these 
values follow the lognormal distribution, as suggested by Gitirana and  Fredlund63, and the original ksat values 
(Fig. 6b). It is important to note that the original ksat values have an asymmetric distribution. The use of perme-
ability values in their original form, as shown in Fig. 6b, leads to the identification of outliers only above the 

Figure 4.  Geographic distribution of selected ksat data.
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superior range limit. These evidences indicate that the statistical interpretation of the natural logarithm of ksat 
may provide more intuitive and useful information.

It can be inferred from Fig. 6a that the values between the first quartile and the third quartile, comprising 
50% of the dataset, in addition to the median and average data, were in the “moderately slow”, “moderate” and 
“moderate fast” classification classes. According to the criteria proposed by Ferreira (1999) apud Freire et al.24, 
this indicates that the infiltration capacity of the studied lateritic soils is high. Although there is a wide variety of 
textural characteristics among Brazilian oxisols, previous studies have not shown a clear relationship between 
these characteristics and hydraulic  properties59. The dataset presents numerous outliers with respect to the depth 
data, both above and below the range limits, reflecting its wide sample variability. This fact can be explained by 
the different types of tests used to obtain the ksat values.

Figure 6a shows that most of the ksat data surveyed fall within the range classified as “very fast”, mainly for 
low depths, up to 60 cm, then moving to the “fast” class for depths between 0.6 and 1.20 m, and increasing again 
to the “very fast” class for greater depths of the soil profile i.e., higher than 1.20 m).

In Fig. 7, the ksat values are presented along with depth ranges and separated according to the ranges shown 
in Table 2. In Fig. 7a, the permeability values are presented in the natural logarithm, while in Fig. 7b the values 
are presented on their original scale. Again, it is possible to notice that, in Fig. 7b, the diagram is skewed, since 
the hydraulic conductivity data do not follow the normal distribution and are  asymmetric63. A significant por-
tion of the values is found in the range of clay with silt and fine sand, showing the moderate infiltration capacity 
of lateritic soils presented in Fig. 6a.

To assess the influence that the type of equipment, instrument or test method may have on the determina-
tion of ksat, three approaches were adopted: (a) 3D graphing; (b) Artificial Neural Networks (ANN) and (c) 
CHAID Decision Tree. Figure 8 shows all the ksat data, with an average ksat equal to 4.5 ×  10–6 m  s−1. The dataset 

50,97%
33,24%

4,16%

3,74%
3,32%

2,77% 1,25%
0,55%

Constant head permeability
Guelph
Variable head permeability
Well permeameter
Double ring permeameter
Flexible wall permeameter
Field-falling permeameter
Infiltration well

Tests for determining ksat

Figure 5.  Distribution of the methods used in the collected data.

Table 3.  Data statistics for ksat values and absolute values of ln(ksat). COV Coefficient of variation, N number of 
samples.

Group Min Max Median Mean Std. Dev COV % N

Original scale

Constant head 4.00E−09 1.22E−03 1.13E−05 1.56E−05 6.32E−05 404.8% 368

Falling head 6.56E−09 7.40E−05 2.08E−06 6.90E−06 1.47E−05 212.6% 30

Guelph 2.11E−08 1.50E−03 8.58E−06 7.17E−05 1.77E−04 246.9% 240

Double ring permeameter 4.17E−07 8.30E−05 8.89E−06 1.69E−05 2.25E−05 133.3% 24

Flexible wall permeameter 2.70E−09 1.42E−05 6.08E−06 6.59E−06 5.94E−06 90.0% 20

Field-falling permeameter 2.64E−07 1.33E−05 4.73E−06 5.79E−06 5.19E−06 89.6% 9

Infiltration well 1.60E−04 1.52E−03 7.77E−04 8.09E−04 7.38E−04 91.3% 4

Well permeameter 1.00E−06 1.00E−04 1.00E−05 3.09E−05 3.85E−05 124.7% 27

Natural logarithmic scale (absolute values)

Constant head 6.71 19.34 11.39 11.53 0.92 8.0% 368

Falling head 9.51 18.84 13.14 13.29 1.98 14.9% 30

Guelph 6.50 17.67 11.67 11.59 2.19 18.9% 240

Double ring permeameter 9.40 14.69 11.63 11.91 1.56 13.1% 24

Flexible wall permeameter 11.16 19.73 12.01 13.06 2.35 18.0% 20

Field-falling permeameter 11.23 15.15 12.26 12.73 1.48 11.6% 9

Infiltration well 6.49 8.74 7.60 7.61 1.23 16.2% 4

Well permeameter 9.21 13.82 11.51 11.11 1.23 11.1% 27
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is separated according to the type of permeameter (constant head, falling head and Guelph) and infiltrometer. 
This average value is similar to that obtained using triaxial permeameter tests, as presented by  Mendes64,  Vaz65, 
and Araújo54,66, all for lateritic soil from the city of Goiânia, state of Goiás, Brazil.

It could be noticed that the average ksat values are overestimated when combining all depths (Fig. 8). This is, 
once again, a results of the skewed distribution, as presented in Fig. 6a.

Figure 9 presents the procedure for assessing the influence of testing conditions (i.e., test type and testing 
depth) using the ANN. In Fig. 9, each box represents the layer variables that return the value of the next layer. 
The thickness of the connections between each box represents the modulus of the weight assigned to that value 
in determining the value of the next layer. The greater the thickness of the connection, the greater the value of 
the modulus of the weight of that element. In addition, the weight module signals are represented in gray for 

Figure 6.  Distribution of saturated hydraulic conductivity of lateritic soils by depth range, classified according 
to Table 1: (a) ln ksat; (b) ksat.
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positive values and blue for negative values. The weight signals are interpreted as being directly proportional in 
determining the value of the next layer, when positive, and inversely proportional when negative.

A sensitivity analysis was made based on the training and testing samples to determine each predictor’s impor-
tance in the neural network. These values represent the relative importance for the main predictor. The testing 
method had a 82.2% relative influence, whereas the testing depth has a 17.8% relative influence. Figure 9 indicates 
that the type of equipment, instrument and test performed has a stronger connection with the hidden layer of 
the ANN and, consequently, more significant importance in the determination of ksat than the sample depth.

Comparing the results obtained using the ANN (Fig. 9), a decision tree of the CHAID type (Fig. 10) was 
developed using a division criterion node relative with a minimum of 60 tests, and child node with a minimum 
of 30 trials. The CHAID decision tree has three classification levels: the upper level (Node 0), determined by the 
ksat values; the intermediate level (Nodes 1–7), showing the depths of sampling/testing and the last level (Nodes 
8–11), with the types of test used for determining ksat.

The levels of the decision tree indicate the hierarchy or degrees of relative importance of the parameters and 
variables evaluated by the algorithm, the first level being the ksat values. This level was subdivided into seven 

Figure 7.  Distribution of the saturated hydraulic conductivity of lateritic soils by depth range, classified 
according to Table 2: (a) ln ksat; (b) ksat.
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branches or nodes (Nodes 1–7), with the statistical parameters of each node and its significance being indicated 
in each node box (Fig. 10).

For Nodes 2 and 4, that is, the most superficial depths and the most suitable for hydrological and agronomic 
studies (0.13–0.15 and 0.3–0.6 m), there was a division of the ksat values as the representativeness of the testing 
method (Nodes 8–11). Thus, the algorithm classified for each node the type of test (field and laboratory) most 
likely recommended for the determination of ksat, according to the testing depths, indicating the values that are 
closer to the mean and standard deviation.

Figure 10 indicates that the permeability values obtained from laboratory and field tests have characteristics 
in common between them. This finding may allow the optimization of testing programs and reduce costs and 
result in testing time savings due to the similarity between the methods. Furthermore, it was possible to observe 
that the ksat values obtained from laboratory tests are lower than those obtained from field tests. Some authors 
have reported this finding previously, such as Gribb et al.67,  Elfaki68, and  Elhakim69. For the other nodes (other 
depths evaluated), there was no significant difference in ksat obtained in the field or in the laboratory, as perceived 
by the CHAID decision tree generator algorithm.

In general, the results demonstrate a significant relevance of the type of test and sample depth to the measured 
ksat values of Brazilian lateritic soils. The statistical assessment of the testing approach is essential for the analysis 
of the results obtained in testing programs. A high variability in the ksat values was observed both considering 
the type of test and the sample depth. COV values of 247% were observed for the Guelph test and 405% for 
the constant head. Along the depth a variation between  10–2 and  10–9 m  s−1 was observed for the ksat values. 

Figure 8.  Distribution of the saturated hydraulic conductivity of the lateritic soil by depth range and type of test 
by different authors, considering all the researched data.

Figure 9.  ANN approach for the evaluation of the hydraulic conductivity data of the lateritic soils.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20381  | https://doi.org/10.1038/s41598-022-24779-1

www.nature.com/scientificreports/

Considering the average values of ksat, it was possible to verify that, despite its variability, the average values were 
similar when comparing determinations using the same type of test and the same depth. Moreover, the constant 
head permeameter determinations and testings on samples obtained between 0.7 and 1.2 m in depth showed the 
lowest standard deviations. As a result, these testings specifications (i.e., constant head on specimens between 
0.7 and 1.2 m) should result in more consistent permeability data.

Conclusions
According to the results and analyses presented herein, the the following conclusions may be drawn from this 
study:

(1) Most saturated hydraulic conductivity data published for Brazilian lateritic soils corresponds to laboratory 
tests using constant and falling head permeameters (around 65%) and Guelph field tests (around 35%), 
These tests where carried out for depths between 10 cm and 3 m. The obtained values of ksat are usually clas-
sified as “moderate” for agronomic purposes and correspond to the behavior of sands, from a geotechnical 
engineering perspective.

(2) The artificial neural networks (ANN) and the CHAID decision tree proved to be efficient tools to support 
the selection of testing methodology, the depth of execution of the tests for the determination of ksat, and 
to raise awareness regarding difficulties in interpreting results obtained for Brazilian lateritic soils. For 
instance, the depths of soil profiles between 0.13 to 0.6 m showed the highest standard deviation values. 
Therefore, it is necessary to provide carefull interpretations of testing results obtained from this depth range.

(3) The ANN showed that the type of test has more influence on the value of ksat than the sampling depth 
(about 4.6 times superior significance). It is important to note that the soil condition (e.g., landfills, cuts, 
pre-densification) may also play a role in the value of ksat, requiring further studies.

(4) It could be noted that the CHAID decision tree indicated that it is possible to separated field test and labora-
tory test in the same data sample. In general, the results obtained with the CHAID decision tree indicated 
lower values of ksat obtained by laboratory tests than those performed in the field. Moreover, the constant 
head permeability and the range of depth between 0.7 and 1.2 m. showed the lowest standard deviation 
values. Therefore, this type of test and this interval of depth was suggested for lateritic soils.

Finally, it is important to emphasize that the results presented herein do not replace traditional testing 
programs. These results may provide preliminary estimations of ksat. The reported statistical values may aid the 
design of testing programs, allowing a better understanding of variability of testing results.

Received: 22 December 2021; Accepted: 21 November 2022

Figure 10.  CHAID decision tree for hydraulic conductivity values of Brazilian lateritic soils surveyed.
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