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Improving deep learning 
performance for predicting 
large‑scale geological CO
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sequestration modeling 
through feature coarsening
Bicheng Yan 1*, Dylan Robert Harp 2, Bailian Chen 2 & Rajesh J. Pawar 2

Physics‑based reservoir simulation for fluid flow in porous media is a numerical simulation method 
to predict the temporal‑spatial patterns of state variables (e.g. pressure p) in porous media, and 
usually requires prohibitively high computational expense due to its non‑linearity and the large 
number of degrees of freedom (DoF). This work describes a deep learning (DL) workflow to predict 
the pressure evolution as fluid flows in large‑scale 3‑dimensional(3D) heterogeneous porous media. 
In particular, we develop an efficient feature coarsening technique to extract the most representative 
information and perform the training and prediction of DL at the coarse scale, and further recover the 
resolution at the fine scale by spatial interpolation. We validate the DL approach to predict pressure 
field against physics‑based simulation data for a field‑scale 3D geologic CO

2
 sequestration reservoir 

model. We evaluate the impact of feature coarsening on DL performance, and observe that the feature 
coarsening not only decreases the training time by > 74% and reduces the memory consumption 
by > 75% , but also maintains temporal error 0.63% on average. Besides, the DL workflow provides 
predictive efficiency with 1406 times speedup compared to physics‑based numerical simulation. The 
key findings from this research significantly improve the training and prediction efficiency of deep 
learning model to deal with large‑scale heterogeneous reservoir models, and thus it can also be further 
applied to accelerate workflows of history matching and reservoir optimization for close‑loop reservoir 
management.

Many geologic  storage1–3 and energy extraction  processes4,5 can be described by fluid flow in porous media. So 
far the reservoir management of these processes, e.g., history  matching6, well placement  optimization7 and well 
schedule  optimization8, heavily relies on physics-based reservoir simulation. Based on certain assumptions, 
physics-based reservoir simulation is capable of characterizing the complexities of physics about what we observe 
in lab experiments or field data. The governing equations of fluid flow in porous media are represented as partial 
differential equations (PDEs), and the spatial-temporal evolution of the unknown state variables (e.g., pressure 
p and saturation S) can be solved by traditional numerical methods such as finite difference or finite volume 
 methods9,10. Nevertheless, as we perform history matching or reservoir optimization, physics-based reservoir 
simulation models often suffer prohibitively high computational expense, resulting from the high resolution of 
the geological model, the non-linearity due to  heterogeneities10, complex fluid phase  behavior11, and coupled 
physics processes such as thermo-hydro-mechanical (THM)  modeling12,13.

In recent years, deep learning (DL) gains remarkable advances and application in the science and engineer-
ing community, with its capability to process high dimensional  data14 and approximate continuous  functions15. 
In the domain of fluid flow in porous media, recent research has focused on enhancing the capability to predict 
the evolution of state variables in porous media with DL. A family of physics-informed neural network (PINN) 
models imposes certain forms of governing equations to regularize the loss function during the training pro-
cess through automatic or numerical  differentiation16–19. These approaches ensure that the neural networks are 
consistent with the governing physics of fluid flow in porous media through regularizing the training processes 
with physics constrains. While PINN is suitable for predicting processes governed by physics with medium 
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complexity, its computation cost may become expensive to solve problems with high dimension or high nonlin-
earity. Alternatively, image-based approaches have also been investigated to predict fluid flow in porous media, 
and mainly leverage convolutional neural networks (CNN) to approximate the nonlinear relationships between 
geological property maps (e.g., permeability) and fluid flow maps (e.g., pressure) in porous  media20–24. With 
sparse connectivity between input and output, image-based approaches tend to be more appropriate to deal with 
medium scale heterogeneous porous media.

In order to effectively capture the heterogeneity with high resolution, the size of a realistic geological model 
can easily reach to millions of grid cells, which is likely to bring significant CPU cost and memory consumption 
to train deep learning models and predict the temporal and spatial evolution of state variables. Since many pre-
vious research  studies20–24 mainly focus on small to median-size reservoir models, while limited work has been 
done to systematically evaluate the memory and CPU performance of DL models when predicting the evolu-
tion of state variables in such large heterogeneous reservoir models. We highlight that this becomes a potential 
major challenge and research gap when we need to apply deep learning methods to accelerate the prediction of 
large-scale reservoir models for Geological CO2 sequestration or other subsurface flow and transport processes.

In this work, we describe a DL workflow to predict the evolution of pressure due to fluid flow in large-scale 3D 
geological models. This workflow falls into the category of image-based approaches, as it takes full advantage of 
CNN’s spatial topology predictive  capability25,26, specifically Fourier Neural Operator (FNO)24,27, which excels in 
predicting physics-based processes by replacing the kernel integral operator via a convolutional operator defined 
in Fourier space. Compared to our previous  work24, our main contribution in this work lies in two aspects. First, 
we successfully develop a feature coarsening technique to enable the FNO model to handle large-scale geological 
models with more than 106 grid cells. This is achieved by extracting the most representative information from 
the input maps (e.g., permeability and porosity), and perform the training and prediction of FNO at the coarse 
scale. This can significantly decrease the memory consumption of the training data and computational cost for 
training, and thus makes DL more affordable for large scale geological models. We remark that in our previous 
 work24, the reservoir model was in relatively median size with 104 grid cells, and FNO can efficiently deal with 
such a model without the need of feature coarsening. Second, using the principle of pressure continuity, we 
further recover the resolution of predicted pressure fields at the fine scale through spatial interpolation. This 
technique is expected to be applicable to state variables that have a relatively global and continuous distribution 
in the reservoir domain. To validate its predictive performance, we apply the DL workflow, which is trained from 
physics-based simulation data, to predict the pressure evolution in a field-scale 3D heterogeneous geological CO2 
sequestration reservoir model. We perform a comprehensive analysis of the DL workflow to assess its memory 
efficiency, training efficiency and predictive accuracy.

The manuscript is structured as below. In Sect. 2, we take the geological CO2 sequestration process as an 
example to introduce the physics governing equation of multi-phase flow in porous media. In Sect. 3, we provide 
the methodology of our deep learning approach, including feature selection and assembly, feature coarsening, 
architecture of deep neural network and the method to recover fine scale resolution of state variable. In Sect.
on 4, we illustrate our numerical results to validate the efficacy and accuracy of the DL methodology. In Sect. 5, 
we conclude with a few remarks.

Physics problem formulation
At a geologic CO2 sequestration site where CO2 is injected into a saline aquifer, the fluid phases include an aque-
ous phase (a) and a supercritical CO2 phase (SC-CO2 ), with water ( H2O ) and CO2 as the primary components in 
the aqueous and SC-CO2 phases, respectively. The flow and transport of each component in the porous media is 
governed by their respective mass(material) balance equations, shown as Eq. (1),

where subscript i indicates the primary component, including H2O and CO2 ; α indicates the fluid phase, includ-
ing the aqueous phase (a) and the supercritical CO2 phase (SC-CO2 ); t denotes time; φ is the rock porosity; Sα 
is the phase saturation; ρα is the fluid phase density; xα,i is the mole fraction of component i in fluid phase α ; K 
is the permeability of porous media; kr,α is the phase relative permeability; µα is the phase viscosity; pα is the 
phase pressure; g is the acceleration due to gravity; Z is depth; qα denotes the rate for extracting or injecting fluid 
phase α through well perforation l.

In Eq. (1), the first term is the fluid accumulation, the second is the advective flux based on Darcy’s law, and 
the third is the source or sink term. Equation (1) is constrained by several auxiliary relationships, including the 
equality between total fluid volumes and pore volume to ensure the volumetric  balance28, capillary pressure 
constraint to relate wetting phase pressure (a) with non-wetting phase pressure (SC-CO2 ), and fluid thermo-
dynamics equilibrium to calculate fluid phase properties ( xα,i , ρα and µα ). Additional details can be found in 
previous  literatures9,28. In a physics-based reservoir simulator, Eq. (1) along with the auxiliary relationships are 
solved iteratively to predict the state variables.

Methodology
The aim of the DL workflow is to predict the temporal-spatial evolution of pressures in a 3-dimensional(3D) 
porous media reservoir, providing a computationally efficient alternative to physics-based reservoir simulators. 
In this section, we illustrate the details of the DL workflow including feature selection and assembly, feature 
coarsening, deep neural network architecture, training, prediction and fine-scale resolution recovery.
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Feature selection. Here, the features are the input variables to predict the evolution of pressure as fluid 
flows in porous media. To be consistent with the data structure of the 2-dimensional (2D) convolutional neural 
network architecture we apply in this work, the features are also assembled as 2D images.

Based on the theory of reservoir  simulation28, rock permeability (K) is a type of connection-based variable and 
contributes to the flux term (second term) in Eq. (1). It characterizes the degree of spatial connectivity of fluid 
flow in horizontal and vertical directions. Since the vertical permeability KV is typically significantly lower than 
the horizontal permeability KH , e.g., we use KV/KH = 0.1 in our work, the vertical connectivity contributes much 
less to the fluid flow than the horizontal connectivity. Therefore, we ignore the impact of vertical connectivity 
and slice the 3D permeability volume into 2D horizontal layer-wise images. When the impact of vertical con-
nectivity on pressure propagation cannot be ignored, we also consider the permeability of the upper and lower 
adjacent layers based on two-point-flux approximation, which was discussed in details in our previous  work29.

On the contrary, rock porosity ( φ ) is a type of grid cell-based variable contributing to the fluid storage or 
accumulation term (first term) in Eq. (1), so we can also slice 3D porosity volumes into 2D horizontal layer-wise 
images without the need to consider vertical connectivity.

Next, the fluid phase rates qα are functions of time, and also control the fluid source or sink term in Eq. (1). 
Since in a typical reservoir there are only a limited number of fluid injection or production wells, the 2D feature 
image of fluid phase rates is filled with the injection rate qα at the location where the wells are drilled, yet zeros 
elsewhere.

Finally, a feature image of time t is incorporated to capture the temporal evolution of the state variable pres-
sure (p), and to interpolate at intermediate time steps where no training data is available.

As we consider strong heterogeneity, e.g., the permeability K ranges from 10−4 to 104 milliDarcy in our work. 
In order to reduce the permeability range, we scale it through natural logarithm. Therefore, the features to predict 
the state variable pressure (p) includes logarithmic permeability log(K), porosity φ , fluid phase rate q and time 
t. All these features are further normalized between 0 and 1 through MinMax normalization. The details about 
how to assemble the feature and state variables are presented in the “Appendix” in Sect. 6.

Feature coarsening. The asssembly of the 2D feature images as a feature array consumes large amount of 
computer memory, which can potentially lead to memory allocation issue (or error) and remarkably low train-
ing efficiency. Therefore, we coarsen the image size before proceeding with the training process. The feature 
images are coarsened by selecting spatial points with a constant stride, which is defined as an increment value 
added to the preceding spatial point in order to generate the next spatial point, while we always honor the most 
representative information, such as high permeability and porosity zones and injection well locations. Corre-
spondingly, the output image of pressure is also processed in the same way.

An example of coarsening process is depicted in Fig. 1. By taking a stride of 5, the fine-scale images of feature 
and state variables of size 211× 211 are transformed into coarse-scale images of size 43× 43 . During this pro-
cess, the most representative information is well preserved in the coarsened images. Particularly, regions with 
warm colors in Fig. 1 represent the high permeability and high porosity zones, the nonzero injection rate values 
at the well locations and the pressure plume, and their shapes or spatial distributions are effectively captured at 
the coarse scale.

Table 1 shows the memory consumption of feature array changes with the feature image size as we perform 
the feature coarsening in Fig. 1. Notice here the feature array dimension equals to number of samples × image 
width × image length × number of feature types, and here the image width and length are consistent with the 

Figure 1.  Transformed images of feature and state variables from fine-scale to coarse-scale.
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number of grid cells along the x and y directions in the reservoir model. The feature arrays are saved in float-32 
(single) precision consistently to reduce redundant memory usage. It demonstrates that as we increase the stride 
from 1 to 10, the size of the 2D images decreases from 211× 211 to 22× 22 , and the corresponding memory 
allocated to the feature array decreases by about 2 orders of magnitude (from 53.50 gigabytes to 0.58 gigabytes). 
The sensitivity analysis in Table 1 clearly demonstrates that the feature coarsening strategy significantly saves 
memory consumption.

Deep neural network (DNN) and training process. As we tackle large-scale heterogeneous geological 
models, an image-based approach is preferred to regress the high dimensional problem. The DNN we adopted in 
this work is the Fourier Neural Operator (FNO) proposed  by27, which is demonstrated to excel in prediction for 
complex physics-based  processes24. In FNO, the feature array X is first mapped into a high dimensional represen-
tation V0 with 32 channels through a fully connected dense layer without applying activation function, shown as,

Next, Vl is recursively updated through Eq. (3),

where Vl are the feature maps at layer l, and is a function of Vl−1 preceding it; σ denotes the nonlinear activation 
function; W is a linear operator defined by a 1D convolutional operator; κ is a 2D convolution operator defined 
in the Fourier space. Ultimately, VL is transformed back to the state variable p through several fully connected 
dense layers.

Further, the feature maps is further propagate to even higher dimensional representation VL+1 through a fully 
connected dense layer with applying activation function, shown as Eq. (4). Ultimately, VL+1 is transformed back 
to the output layer with 1 channel through a fully dense layer without activation function, similar to Eq. (2).

The architecture of FNO is shown in Fig. 2. To simplify the illustration, layers related to the operation in Eq. 
(3) are labeled as a “Fourier” layer, and fully connected dense layers based on Eqs. (2) and (4) are denoted as a 
“FC” layer. FNO takes 4 feature images ( log(K),φ, q, t ) at layer FC-1, then sequentially goes through 4 Fourier 
layers and 2 FC layers to predict the output image of state variable p.

In Fig. 2, there is no activation function σ involved in FC-1 and FC-3 layers, and the activation σ used through 
Fourier-1 to Fourier-4 is a LeakyReLU defined as Eq. (5).

The activation σ adopted in FC-2 is ReLU defined as Eq. (6),

(2)V0 = W0 · X + b0

(3)Vl = σ(WVl−1 + κ(Vl−1)), l = 1, . . . , L.

(4)VL+1 = σ(WL+1 · VL + bL+1)

(5)σ(x) =

{
x if x ≥ 0

0.01 otherwise

Table 1.  Sensitivity of stride with memory consumed by the feature array.

FNO stride Image size Array dimension Memory (M), Gigabytes Normalized M, %

1 211× 211 80640× 211× 211× 4 53.50 100%

2 106× 106 80640× 106× 106× 4 13.50 25.24%

3 73× 73 80640× 73× 73× 4 6.40 11.97%

4 55× 55 80640× 55× 55× 4 3.64 6.79%

5 43× 43 80640× 43× 43× 4 2.22 4.15%

10 22× 22 80640× 22× 22× 4 0.58 1.09%

Figure 2.  Architecture of Fourier Neural Operator with 3 fully connected (FC) and 4 Fourier layers. α@nx × ny 
at the top of each layer denotes: a - number of features; nx - the image width; ny - the image length.
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Different from other convolutional neural networks, there is no pooling layer in FNO for down sampling and 
summarizing the average or the most activated presence of the feature maps. The loss function L in our FNO 
approach is defined as Eq. (7),

where θ are the learnable parameters; || · || is the operator of root-mean-square-error (RMSE); �p is the ground 
truth of the pressure field; �̂p is the prediction of �p by FNO; � is a weighting factor; pw is the ground truth of p 
at the well locations; p̂w is the prediction of pw by FNO. The second term in Eq. (7) is a regularization term for 
enhancing the resolution at the well locations.

The goal of training FNO is to find θ∗ by minimizing the loss function L , as shown in Eq. (8). We imple-
mented FNO and the associated training module with the deep learning library  PyTorch30, and adopted the 
Adam optimizer to train FNO.

Prediction resolution at fine scale. FNO performs prediction at the coarse scale, but in tasks like data 
 assimilation31,32, we need to predict pressures at monitoring wells whose spatial locations are defined at the 
original fine scale coordinates but may not coincide with the coarser scale coordinates. The fine scale predic-
tions are performed via spatial interpolation. During feature coarsening, we select the spatial points with a 
pre-defined stride, so the coarse-scale spatial coordinates (xc , yc) can be easily tracked based on the fine-scale 
spatial coordinates (xf , yf ) and the stride, where superscripts f and c denotes fine and coarse scales, respectively. 
Assuming that the pressure pf  at the fine scale is spatially continuous in the whole reservoir, pf  can be recovered 
by interpolation based on the predicted pressure pc by FNO at the coarse scale and the coordinates (xc , yc) and 
(xf , yf ) , shown as Eq. (9),

where F  is a spatial interpolation operator. The interpolation scheme adopted by this work is the 2D piecewise 
cubic  interpolation33. The hypothesis of pressure continuity in the whole reservoir holds well in most cases, 
except in scenarios that there is a no-flow boundary such as a sealing fault traversing the geological model, 
which induces local pressure discontinuity nearby the boundary. However, this type of scenario is not in the 
scope of this work.

We also remark that in multi-phase porous flow like CO2 injection into saline aquifer, the evolution of the 
pressure plume is often much faster than that of the saturation  plume34. Especially when there is not water 
production well for active pressure management, the CO2 plume will not move far away from the injection well 
vicinity, due to the slightly compressible water phase. As a result, compared to pressure evolution, the evolution 
of CO2 saturation is not necessary a global reservoir behavior. Since the fine-scale resolution recovery relies on 
the global continuity of the predicted state variable, this makes saturation not quite suitable to be predicted by 
the proposed methodology, if saturation plume is not globally distributed.

In a nutshell, the whole deep learning workflow is presented in Fig. 3, which includes 5 different steps as dis-
cussed above. In conventional deep learning workflow, there are only steps 1, 3 and 4 in Fig. 3. In this scenario, 
our training step cannot proceed due to memory shortage (total memory consumption of feature array: 53.50 
gigabytes), unless we manually de-allocate some memories. As the DNN prediction is calculated in a coarse 
scale (step 4), the resolution recovery in step 5 becomes necessary in order to recover the full resolution. As we 
treat each individual horizontal reservoir layer as a single sample to FNO, the full 3D prediction of pressure field 
iterates through the prediction of each reservoir layer at each time step.

Numerical experiments
Reservoir model description. We use a 3D heterogeneous reservoir model with 211× 211× 30 grid cells 
in the x, y and z directions respectively, resulting in 1335630 grid cells in total. The grid cell size is 500× 500× 10 
ft3 in the x, y and z directions respectively, and is uniform throughout the model domain.

The schematic of the reservoir model is shown in Fig. 4. There are 2 “caprock” layers (layers 1 and 2) to seal 
CO2 at the top, and the “storage zone” is made up of 28 layers (layer 3 to 30) to store CO2 . There are 4 CO2 injec-
tion wells perforated and injecting in all the 28 layers in the “storage zone”, and in the x − y plane they are drilled 
at grid cell indices (71, 71), (71, 141), (141, 141) and (141, 71), respectively. Approximately 2× 106 tons/year of 
CO2 was continuously injected into the reservoir for 10 years. The simulation results were reported and saved 
in 32 time steps, including monthly resolution at the beginning 2 years and yearly resolution from year 3 to 10.

The permeability and porosity fields are correlated to each other. 100 equiprobable realizations of permeability 
and porosity fields are generated following the same geological facies model. Figure 5 presents the present the 
permeability realizations of the storage zone (left to right: P10, P25, P50, P75, P90), and the corresponding poros-
ity realizations are presented in Fig. 6. In each example the shapes of the high permeability and porosity zones 
are quite similar, following the distribution of the rock facies, but the magnitudes of permeaility and porosity in 
these zones vary among different realizations.

(6)σ(x) =

{
x if x ≥ 0
0.0 otherwise

(7)L(θ) = ||�p− �̂p|| + � · ||pw − p̂w||

(8)θ∗ = argmin
θ

L(θ)

(9)pf = F(pc , xc , yc , xf , yf )
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Figure 3.  Deep Learning Workflow based on FNO considering feature coarsening and resolution recovery.

Figure 4.  Schematic of the reservoir model for geological storage of CO2.

Figure 5.  Realizations of permeability of the storage zone.
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Numerical simulations of CO2 injection were performed with each of these 100 realizations using the com-
mercial reservoir simulator, GEM by  CMG35 in order to generate training data for the DL workflow. The average 
CPU time per simulation run is about 168.75 seconds. The ensemble of realizations is split based on the perme-
ability and porosity realizations where we choose 90 simulation runs for training ( 90% ), 5 runs for validation 
( 5% ) and 5 runs for testing ( 5%).

Training and prediction efficiency with feature coarsening. The remarkable reduction of memory 
consumption due to feature coarsening has been demonstrated in in Table  1. In this subsection, we further 
investigate the impact of feature coarsening on training and prediction efficiency. Different strides were chosen 
to coarsen the feature images and feed them to train the FNO model. The training samples are divided into mini-
batches with 20 samples/batch, and we train the FNO models with 100 epochs on a GPU (NVIDIA Quadro RTX 
4000), and weight factor in Eq. (7) is set to 0.1 based on our sensitivity analysis.

Table 2 illustrates the training and prediction efficiency with different strides to coarsen the feature image 
size. Training at the full image size ( 211× 211 ) requires 40.23 hours of CPU cost. As we coarsen the image by 
increasing the stride value, the training CPU time decreases by 74% (10.47 hours for stride = 2) or 79% (8.36 
hours for stride = 10). This is primarily because smaller size images require less computation during the back-
propagation process of training FNO. Therefore, the feature coarsening makes the training process much more 
affordable as we are dealing with a large scale geological model. The prediction includes FNO prediction and 
resolution recovery by spatial interpolation, except when stride is 1, where FNO predicts at the original fine scale 
and interpolation is not necessary. Overall, the prediction time decreases as we coarsen the feature image. We 
calculate the prediction speedup of DL compared to CMG GEM. The speedup compared to the CPU time needed 
for CMG’s GEM simulation run is remarkable, varying from 703 times (stride = 2) to 7337 times (stride = 1).

Prediction accuracy. To measure the pressure relative error at each time step or each layer for the DL pre-
diction, we calcualte the relative error of pressure based on L− 2 norm, shown as,

Where i = 1, . . . , nts for the relative error at each timestep, with total number of time steps nts = 33 ; or 
i = 3, . . . , nz for the relative error at each storage layer, with total number of storage layers nz = 30 ; �pi is the 
pressure field of all cases at ith time step or layer predicted by CMG; �̂pi is the pressure field of all cases at ith time 
step or layer predicted by DL;

In Fig. 7, we plot the pressure relative error with time for different strides used for coarsening. It demonstrates 
that as the stride is increased to coarsen the feature images, the temporal error generally increases, and FNO with 
stride = 10 (cyan curve) has the highest temporal error (mean relative error = 0.81% ). This can be explained by 
the fact that a coarsened image with larger stride will lose more information in the feature images and thus will 
lose more prediction fidelity. On the other hand, FNO with stride = 1 (red curve) that predicts at the original 
fine scale does not actually lead to the highest accuracy, which is likely due to the fact that the original fine-scale 
feature images, specifically permeability and porosity images, provide the FNO model with more information 
than necessary and make it less generalized as the scenarios with slightly coarsened resolution (e.g. stride = 2, 3).

(10)ep =
||�pi − �̂pi||2

||�pi||2
× 100%

Figure 6.  Realizations of porosity of the storage zone.

Table 2.  Sensitivity of FNO stride with training and prediction efficiency.

FNO stride Training CPU, h Prediction CPU, s Speedup to CMG

1 40.23 0.023 7337

2 10.47 0.24 703

3 9.02 0.12 1406

4 8.78 0.076 2220

5 8.86 0.066 2557

10 8.36 0.041 4116

CMG – 168.75 -
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We also plot the pressure relative error with different storage layers (from layer 3–30) under different strides, 
and the results are shown in Fig. 8. For FNO with different strides, we consistently observe that the prediction 
accuracy is quite stable in different layers. FNO with stride = 2 and 3 show the lowest mean relative errors. The 
stable performance of DL to different storage layers gives confidence to use the DL workflow to predict the pres-
sure evolution in 3D.

Ultimately FNO with stride = 2, 3 brings the highest prediction accuracy, with mean relative error = 0.63% 
among all time steps (Fig. 7) and mean relative error among all storage layers = 0.64% (Fig. 8). However, FNO 
with stride = 2 takes longer time (10.47 hours) for training than FNO with stride = 3 (9.02 hours). Therefore, 
FNO with stride = 2 strikes the best balance between prediction accuracy and training efficiency. Besides, it also 
makes the prediction with a speedup of 1406 compared to physics-based reservoir simulator based on Table 2.

In Figs. 9 and 10, we present a representative example of the pressure fields at different time steps in the top 
(layer 3), middle (layer 16) and bottom (layer 30) layers in the “storage zone” for predictions of the DL workflow 
with FNO (stride = 3), and compare them with the ground truth from physics-based reservoir simulation by 
 CMG35. In Fig. 9, at the early period (1 year) the pressure plumes grow surrounding the 4 injection wells, and the 
plume sizes nearby different injection wells at layer 3 vary due to the difference of injectivity caused by perme-
ability heterogeneity. Besides, the plume becomes larger with increasing depth (larger layer number) because 
of gravity. These details are captured by the predictions of our DL workflow (mean absolute error 2.826 psia 
and mean relative error 0.149% ), and there are only small errors in the injection well locations. In Fig. 10, at the 
end of the CO2 injection period (10 years) the pressure plume reaches its maximum size with the pressure error 
increasing slightly (mean absolute error 3.906 psia and mean relative error 0.202% ). Besides, we observe that 
the DL workflow can generally predict smooth pressure field and delineates the irregular pressure plume shape 
driven by permeability and porosity heterogeneity quite well, which is benefited from the fine-scale resolution 
recovery by spatial interpolation based on the hypothesis of pressure continuity.

In Fig. 11, we plot the pressure in the four injection well locations versus time. Notice that here we only 
choose the well grid at the middle storage layer (layer 16), and the well locations can be referred to Fig. 4. In the 
10 years of CO2 injection, the pressure in the well grid cells is relatively stable, with about 100 psia changes. The 
prediction by DL workflow (FNO with stride = 3) is quite close to CMG simulation, and the maximum relatively 
error is about 0.50% . In Fig. 12, we plot the pressure in the four injection well locations versus different layers 
at 10 years, and this helps to observe the prediction accuracy of DL at different vertical depths. As the reservoir 

Figure 7.  Pressure relative error with time under different strides based on the testing cases.

Figure 8.  Pressure relative error with storage layers based on the testing cases.
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Figure 9.  Pressure after 1 year injection. Mean absolute error: 2.826 psia, mean relative error: 0.149%.

Figure 10.  Pressure after 10 year injection. Mean absolute error: 3.906 psia, mean relative error: 0.202%.

Figure 11.  Pressure in the 4 injection well grid cells at layer 16 versus time.
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depth increases with increasing layer number, we clearly see a monotonically increasing trend of well grid pres-
sure. This is because of gravity, similar to what we observe in Figs. 9 and 10. The physics is accurately captured 
in the DL Workflow (FNO with stride = 3) and very consistent to the ground truth of CMG simulation, with 
maximum relative error 0.54% . The high prediction accuracy in the well grid cells is essential, since ultimately 
such data can be valuable prediction data for history matching or reservoir model calibration, which can be the 
next phase of this work.

Conclusions
In this work, we developed a deep learning (DL) workflow to predict the pressure evolution due to fluid injection 
in 3D large-scale heterogeneous porous media. With a pre-defined stride, we performed feature coarsening to 
extract the most representative information of geology and well controls, which can help reduce memory con-
sumption of feature arrays and improve training efficiency. Further, we recovered the resolution of the predicted 
pressure field to the fine scale based on the hypothesis of pressure continuity for fluid flow in porous media.

We evaluated the overall performance of the proposed workflow by applying it to the problem of CO2 injec-
tion into a large-scale 3D heterogeneous aquifer. We demonstrated that the feature coarsening strategy signifi-
cantly reduces the memory consumption by > 75% and decreases the training time by > 74% , due to the fact 
that smaller feature image takes less computational time for the back-propagation in the training process. The 
feature coarsening process results in some fidelity loss during the prediction. On the other hand, the model 
trained at the original scale does not lead to the highest accuracy, due to the fact that fine scale images provide 
the DL workflow with too detailed of information and lead to a loss of generalization. In 3D pressure predic-
tion, we obtained good temporal stability with relative pressure error 0.63% across different time steps, and we 
also achieved decent spatial stability across all the layers with the layer-wise mean relative error 0.64% . The DL 
workflow can delineate with pressure plume shape accurately with great smoothness, which is benefited from 
the fine-scale resolution recovery by spatial interpolation based on the hypothesis of pressure continuity. The 
speed of prediction by the DL workflow is 1406 times faster than that of physics-based simulation, which is quite 
favorable for optimization and uncertainty quantification in many applications including CO2 sequestration 
where physics-based simulations are computationally expensive.

Data availability
The data used and/or analyzed during the current study available from the corresponding author on reasonable 
request.

Appendix: Feature and state variables assembly
The input features of log permeability ( log(K) ) and porosity ( φ ) can be directly wrangled from the simulation 
data in terms of these 3-dimensional (3D) property fields, and further saved as a high dimensional array with 
the size of nrun × nx × ny × nz . Here nrun denotes number of simulation runs, nx , ny and nz represent the number 
of grid cells in the x, y, and z directions, respectively. The fluid phase rates qα , specifically CO2 injection rate in 
our numerical example, are wrangled from the simulation data and saved in time series data with the size of 
nrun × nts × nwell . Here nwell represents number of injection wells, and nts denotes the number of time steps in 
reservoir simulation, which is fixed among all the simulation runs. On the other hand, the feature of time step t 
is an 1-dimensional array with the size of nts . The state variable, e.g., pressure p, is wrangled from the simulation 
output data and saved as a high dimensional array with the size of nrun × nts × nx × ny × nz.

As we treat each storage layer per time step per simulation run as a single sample, the total number of samples 
nsample = nrun × nts × nz . Algorithm 1 below is a workflow to convert the input features and state variables from 
CMG simulations into the data structure required by the DL framework.

Figure 12.  Pressure in injection well grid cells at year 10 versus storage layers.
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Algorithm 1 : Convert simulation data to the data structure required by DL framework.
1: Get features log(K), φ with the size of nrun × nx × ny × nz.
2: Get feature qα with the size of nrun × nts × nwell.
3: Get feature t with the size of nts.
4: Get state variable p with the size of nrun × nts × nx × ny × nz.
5: Get well location grid block i, j indices of each injection well, and save as Iwell, and Jwell

with the size of nwell.
6: Initialize a feature array of rate Q = 0 with the size of nrun × nts × nx × ny.
7: for iw = 1 to nwell do
8: Q[:, :, Iwell[iw], Jwell[iw]] = qα[:, :, iw]
9: Normalize log(K), φ,Q, t, p to be between 0 and 1 by x′ = x−xmin

xmax−xmin
.

10: Initialize a feature array X = 0 with the size of nsample × nx × ny × 4.
11: Initialize a state variable array Y = 0 with the size of nsample × nx × ny × 1.
12: iter = 1
13: for ir = 1 to nrun do
14: for k = 1 to nz do
15: for jt = 1 to nts do
16: X[iter, :, :, 1] = K[ir, :, :, k]
17: X[iter, :, :, 2] = φ[ir, :, :, k]
18: X[iter, :, :, 3] = Q[ir, jt, :, :]
19: X[iter, :, :, 4] = t[jt]
20: Y [iter, :, :, 1] = p[ir, jt, :, :, k]
21: iter + = 1
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