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First‑principle calculations 
of sulfur dioxide adsorption 
on the Ca‑montmorillonite
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According to the serious problem of sulfur dioxide pollution, montmorillonite is one of the effective 
ways in gas pollution control because of its excellent absorption properties. One of the fundamental 
questions is to fully understand sulfur dioxide absorption mechanism of montmorillonite. In this study, 
using the first‑principle methods, we studied the adsorption characteristics of Ca‑montmorillonite in 
the presence of SO

2
 . The adsorption energy and elasticity constants as a function of the adsorption 

capacity were also studied. The calculated results show that bridge site is the most stable adsorption 
site for SO

2
 with the adsorption energy of − 140 meV. As adsorbent, Ca‑montmorillonite is a clay 

with layer‑structure, most of bond lengths(such as Al–O, Mg–O, Si–O, and H–O) does not obviously 
change. As adsorbed gas, the O–S–O bond angle of adsorbed SO

2
 change from 119.50◦ to 115.32◦ . 

The volume and adsorption energies of Ca‑montmorillonite almost increase linearly with increasing 
SO

2
 adsorption. By calculating the montmorillonite elasticity constants under different adsorption 

capacity, we found that the elasticity constant C33 which perpendicular to the crystal face, with 
the maximum changes from 450 to 326 GPa. In addition, Young’s modulus,bulk modulus and shear 
modulus significantly decrease with the increasing adsorption. The calculated results will not only help 
to understand the physical and chemical of montmorillonite but may also provide theoretical guidance 
for dealing with the problem of gas pollution.

Sulfur dioxide emissions have substantial impacts on atmosphere. Disasters caused by sulfur dioxide such as acid 
rain and haze seriously endanger people’s health and life. Therefore, sulfur dioxide is considered as the major 
pollution gas and one of the goals of controlling and achieving environmental  protection1. The technology of SO2 
adsorption and storage can provide a medium-term solution to mitigate environmental impacts. Particularly, 
adsorption and storage have, by far, been the two most studied parts of the environmental technology chain. As 
a result, many investigators have studied experimentally the adsorption and storage of SO2 using chemical and 
physical  treatments2. However, most of the treatment technologies have many disadvantages such as complicated 
process or incur high costs. Mineral processing methods have the advantages of low cost, good results and no 
secondary pollution, which are the most important research directions for pollution treatment.

As a possible low-cost adsorbent, clay minerals, in particular, have received much attention in the storage of 
SO2 taken from contaminated air. As one knows, montmorillonite is among the most abundant clay minerals. 
The experimental results show that clay minerals have strong adsorption capacity, which is due to the excellent 
adsorption  performance3. Wang studied on the adsorption of clay minerals, using montmorillonite as a raw 
material to prepare a porous heterostructured mineral adsorbent with surface functionalization, and found that 
its adsorption capacity for toluene could reach up to 257.2 mg/g4,5. Plenty of researches on montmorillonite are 
to analyze the properties of montmorillonite to adsorb different kind of  gas6–9. Through experimental research, it 
was found that the sequence of adsorption capacity of C2 H2 and CO2 gas by different cation exchange montmoril-
lonites, which indicates that the cation radius, interlayer distance and surface area of montmorillonite influences 
the gas adsorption. As we know, montmorillonite has the 2:1 interlayer structure, and the effect of absorbing gas 
molecules between layers is also remarkable. Therefore, the use of montmorillonite for the reduction of sulfur 
dioxide emissions become the new aspect of environmental  protection10.
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In contrast to the extensive experimental studies that have been carried out in the last decade, we found that 
understanding the interaction of the montmorillonite and the sulfur dioxide molecules was one main task for 
the researchers in environmental protection. To understand the complicated interaction of montmorillonite 
and sulfur dioxide, one need to know the detailed adsorption of montmorillonite. However, so far, there are 
very few theoretical reports on the sulfur dioxide absorption mechanism of  montmorillonite11–15. In particular, 
we notice that an ab initio investigation of absorption mechanism in montmorillonite is still lacking. In addi-
tion, Ca-montmorillonite is a kind of montmorillonite which abundant in Guangxi, China. In order to make 
full use of the Guangxi province montmorillonite resources, in this paper, we report a series of first-principles 
for simulate and calculate the SO2 adsorption of Ca-montmorillonite which most abundant montmorillonite 
in China. Furthermore, we analyze the changes in the structure of Ca-montmorillonite, adsorption energy, and 
elastic constant from a microscopic perspecitive. The aim of this paper also analyzes the changes in electronic 
structure and adsorption property of Ca-montmorillonite after SO2 adsorption. We expect that the adsorption 
of sulfur dioxide first-principles results may be used to guide treatment of sulfur dioxide emissions by montmo-
rillonite from a microscopic viewpoint. The remaining part of this paper is organized as follows. In “Methods”, 
we present our calculation methods. We give our results and discussion in “Results and discussion”. Finally, we 
briefly present our conclusion in “Conclusions”.

Methods
Montmorillonite is a kind of clay mineral made up of a layer of octahedral aluminium oxide between two layers 
of tetrahedral sillicium oxides. We construct the montmorillonite calculation model with original formula Al2 Si4 
O12 H2 . In this study, in order to simulate and calculate the adsorption properties of montmorillonite, we studied 
the mechanism of sulfur dioxide adsorption on montmorillonite based on the calculations for the structure of 
the montmorillonite supercell. The suppercell composed of four united cells ( 2× 2× 1 ) was used to calculate 
the electronic structure and this includes 81 atoms. The calculation model of montmorillonite layer is shown in 
Fig. 1. Our calculations for the structure of montmorillonite are based on density-functional theory (DFT) within 
the local-density approximation (LDA)16 as implemented in the Vienna ab-initio simulation package (VASP)17 
code through the use of the projector augmented wave (PAW)  pseudopotentials18. All atomic positions are relaxed 
according to the calculated Helmann-Feynman force. Energy cut-off for the wave plan was set to 500 eV, and 
all atoms can be freely relaxed. The optimization of atomic geometries was performed via a conjugate-gradient 
algorithm until the residual force acting on atoms was less than 0.01 eV. The Monkhorst- Pack k-point which 
was set 2× 2× 2 (Monkhorst et al.19,20 was used to sample the Brillouin zone. 3s and 3p of Al, 3s and 3p of Si, 
1s of H, 2s and 2p electrons of O are considered to be valence electrons in our calculations. In order to study the 
adsorption of sulfur dioxide molecules on montmorillonite, we will discuss two different aspects of adsorption: 
surface and interlayer adsorption. The adsorption energies of sulfur dioxide molecules on the montmorillonite 
are as  follows21:

where E(montmorillonite
0
+ nA) is the total energy of montmorillonite supercell after adsorption, 

E(montmorillonite
0) is the total energy of the montmorillonite without adsorption, E(A) is the energy of sulfur 

dioxide referenced to elemental gas, n is the number of sulfur dioxide molecules adsorption of the montmoril-
lonite supercell structure, and Ead is the montmorillonite adsorption energy.

Results and discussion

Adsorption property. In order to study the adsorption of sulfur dioxide on a montmorillonite (001) sur-
face, a vacuum layer of 15 Å has to be formed above (001) surface of montmorillonite. Three kinds of high-sym-
metry adsorption sites for sulfur dioxide were considered,including top site, bridge site,and hollow site, as shown 
in Fig. 2. During the surface calculations, we put the sulfur dioxide molecule above the topmost at the three 
chosen sites above, all the atoms in the calculated bulk positions are allowed to relax. When the sulfur dioxide is 

(1)Ead = E(montmorillonite
0
+ nA)− E(montmorillonite

0)− nE(A)

Figure 1.  The structure of the Ca-montmorillonite.
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adsorbed on a clean surface of montmorillonite, the adsorption energies of the different adsorption sites are basi-
cally the same, which indicates that the difference of the adsorption surface is the factor determining whether the 
adsorption of sulfur dioxide is stable or otherwise. Overall, the adsorption energy of sulfur dioxide on a clean 
surface of montmorillonite is negative, indicating that the type of montmorillonite adsorption system belongs 
to heat stable adsorption. After relaxation, the calculated results show that, 2.82 Å was the most stable distance 
where adsorption energy was the minimum value at adsorption site. In addition, sulfur dioxide molecule prefers 
locating at 2.82 Å above the montmorillonite with the adsorption energy of − 0.13, 0.07, and − 0.14 eV calculated 
by Eq. (1) for top, hollow, and bridge sites, respectively. Thus, based on the result of adsorption energy, bridge 
and top site are the stable adsorption site for SO2 on the surface of Ca-montmorillonite.

In view of particular structure of Ca-montmorillonite, layer adsorption become main adsorption of SO2 
within montmorillonite’s layer structure from the perspective of sulfur dioxide adsorption. In order to understand 
the adsorption properties of montmorillonite more accurately, we obtained the curve of volume change by struc-
turing the montmorillonite (Fig. 3). It was found that the corresponding volume almost increase linearly with 
increasing SO2 adsorption. In addition, it also can be clearly seen that the Ca-montmorillonite expanded along 
the (001) direction with the increase of adsorption capacity (Fig. 3b). This change is mainly because the volume of 
montmorillonite is caused by the increase in space between layers. It is consistent with the experimental result by 
X-ray diffraction (XRD).  Volzone22 analyzed the structural and textural changes of montmorillonite after stepwise 
SO2 adsorption. The X-ray diffraction diagram show that broadening of the (001) reflection indicated interla-
mellar disorder after repetitive SO2 adsorption steps, while the structure of the layers was almost unchanged.

Table 1 lists the change of adsorption energies by different adsorption capacity. Furthermore, Fig. 4 shows the 
adsorption energies of sulfur dioxide change according to adsorption capacity. According to adsorption energy 
definition, a negative value of Ead indicates that the adsorption is exothermic (stable), while a positive value 
indicate endothermic (unstable) reaction. As shown in Fig. 4, with the early adsorbed period the value of Ead is 
positive and the later adsorbed period becomes negative. This change is mainly because when the adsorption 
behavior begins, the small quantities sulfur dioxide molecule may cause the structure of layers to become unsta-
ble. In contrast to the above volume results, our calculated result also show that the lower adsorption energies, 
and the better the adsorption property of Ca-montmorillonite.

Sulfur dioxide and montmorillonite. According to sulfur dioxide molecule, from the Fig. 5, it can be 
seen that the S–O bond length has no changed after adsorption, while the O–S–O bond angle of adsorbed SO2 
slight change from 119.5◦ to 115.32◦ . With the help of density of states (DOS), one also can be better under-

Figure 2.  The adsorption site on the (001) surface of montmorillonite.

Figure 3.  (a,b) Respectively represent the unit cell volume and (001) of montmorillonite after adsorption.
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Table 1.  The adsorption energies of different adsorption capacity within montmorillonite layer.

Adsorption capacity (mmol g −1) Adsorption energy (eV) Adsorption capacity (mmol g −1) Adsorption energy (eV)

0.68 1.27 7.53 − 5.00

1.37 1.50 8.22 − 5.44

2.05 0.67 8.90 − 5.75

2.74 − 0.93 9.59 − 6.35

3.42 − 2.06 10.27 − 6.85

4.11 − 2.45 10.96 − 7.39

4.79 − 2.85 11.64 − 7.90

5.48 − 3.11 12.33 − 8.61

6.16 − 3.60 13.01 − 8.99

6.85 − 4.40 13.70 − 9.37

Figure 4.  The adsorption energies of sulfur dioxide change according to adsorption capacity.

Figure 5.  The structure of SO2 free and after adsorption.
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stood the sulfur dioxide and Ca-montmorillonite(seen in Figs. 6, 7). As can be seen from Fig. 6, the density of 
states peak mainly contribution to the 3p states of the S atom and the 2p states of the O atom before adsorption. 
Compared with the DOS of SO2 before adsorption, the overall peak of partial density of states decreases and p 
states of S and O atoms spread from − 9.1 to − 0.2 eV, which means the DOS peak range spreads to lower energy 
region after adsorption. As shown from Fig. 7, one interesting result is that, the DOS peak appear at the 2.5 eV 
has increase after SO2 adsorption. In contrast to Fig. 6, SO2 adsorption is the main reason which p states of S and 
O atoms can be observed at 2.5 eV in bandgap region. While, the overall DOS profiles for Ca-montmorillonite 
are quite similar to that of perfect Ca-montmorillonite. In addition, we also discovered that the most of bond 
lengths and bond angle do not change substantially in Ca-montmorillonite after adsorption.

Furthermore, we plot the differential charge density around Ca atoms after sulfur dioxide adsorption. As 
shown in Fig. 8, some sulfur dioxide molecule around Ca atoms leads to the redistribution of valence electrons. 
As a result, an obvious electron accumulation can be observed, and the negative charge is formed around the 
Ca atoms. With this understanding, we emphasize that the formation mechanism of the electron accumulation 
is the DOS change of polar molecule SO2.

Elasticity constants. In order to further investigation about the elastic mechanical behavior of montmo-
rillonite after sulfur dioxide adsorption, the effects on the elasticity constant of montmorillonite according to 
adsorption capacity were further analyzed. Figure 9 show the elastic constants of Ca-montmorillonite under 
different adsorption capacity. It can be seen that the montmorillonite elasticity constants C11, C22 and C33 are 
significantly larger than other elastic constant, while C33 is larger than the elastic constants (C11, C22) parallel 
to the crystal plane. C11, C22 and C33 decreases with the increasing adsorption of sulfur dioxide molecules, 
especially the elasticity constant C33 which perpendicular to the crystal face (along z-axis direction), with the 
maximum changes from 450 to 326 GPa. C44, C55 and C66 correspond to the elastic constant of shear deforma-
tion, wherein the elastic constant C66 of the vertical plane in shear deformation is also smaller than the elastic 
constant C44 which parallel to the plane. The changing processes of montmorillonite elasticity constants C44, 
C55 and C66 for the shearing deformation decline slightly during the entire adsorbed process. In addition, the 
deformation elastic constants (C12, C13 and C23) are almost unchanged.

In order to understand the elasticity properties of montmorillonite more accurately, Table 2 lists the data of 
bulk modulus, shear modulus, Young’s modulus, B/G and Poisson’s ratio changed by adsorption capacity. The 
bulk modulus is greater than the shear modulus, indicating that montmorillonite has strong resistance to volume 
deformation and weak resistance to deformation. Young’s modulus can be used to characterize the stiffness of 

Figure 6.  The change about orbital-resolved partial DOS for S and O atoms in SO2 molecular after adsorption. 
(a–c) respectively represent orbital-resolved partial DOS for S, O(1), and O(2) atoms in SO2 before adsorption; 
(d–f) respectively represent orbital-resolved partial DOS for S, O(1), and O(2) atoms in SO2 after adsorption.
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materials. It can be seen from the Table 2 that, with the increase of adsorption capacity, the smaller the young’s 
modulus, the weaker resist elastic deformation in montmorillonite. The changing trends of bulk modulus and 
shear modulus are similar with higher adsorption level. One interesting result shows that, Poisson’s ratio and B/G 
almost no change during the adsorption, which means Ca-montmorillonite keep plastic and brittle properties.

Conclusions
In summary, we have studied the adsorption characteristics of sulfur dioxide in montmorillonite. The calculated 
results show that the O–S–O bond angle of adsorbed SO2 change from 119.50◦ to 115.32◦ after adsorption, 
moreover, sulfur dioxide prefers locating at 2.82 Å above bridge site on the surface of Ca-montmorillonite. Ca-
montmorillonite become expanded by along the (001) direction with the increase of SO2 adsorption capacity. 
It also found that the corresponding volume, adsorption energies almost increase linearly with increasing SO2 
adsorption. By calculating the Ca-montmorillonite elasticity constants under different adsorption capacity, the 
calculated results show that, C11, C22, and C33 are greatly affected with the increasing adsorption of sulfur 
dioxide molecules. In addition, young’s modulus,bulk modulus and shear modulus significantly decrease with 
higher level of adsorption capacity. This results will not only provide theoretical support for the enhancement of 

Figure 7.  The change of total DOS in Ca-montmorillonite according to adsorption capacity. (a–f) Represent 
total DOS for Ca-montmorillonite according to the value of adsorption capacity are 0 mmol g −1 , 0.68 mmol g −1 , 
3.42 mmol g −1 , 6.85 mmol g −1 , 10.27 mmol g −1 , and 13.70 mmol g −1 , respectively.

Figure 8.  Differential charge density around Ca atoms after adsorption. Yellow color indicates electron 
accumulation and cyan color indicates electron depletion.
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development and application of Ca-montmorillonite in Guangxi, but will also provide a new path to resolve the 
problem of sulfur dioxide pollution in Guangxi, which has both fundamental academic and practical significance.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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