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Analysis and estimation 
of cross‑flow heat exchanger 
fouling in phosphoric acid 
concentration plant using response 
surface methodology (RSM) 
and artificial neural network (ANN)
Rania Jradi 1*, Christophe Marvillet 2 & Mohamed Razak Jeday 1

The production of phosphoric acid by dehydrated process leads to the precipitation of unwanted 
insoluble salts promoting thus the crystallization fouling build‑up on heat transfer surfaces of the 
exchangers. During the acid concentration operation, the presence of fouling in heat exchangers 
results in reducing the performance of this equipment, in terms of heat transfer, while increasing 
energy losses and damaging the apparatus. To mitigate these adverse effects of fouling, it is necessary 
to forecast the thermal resistance of fouling to schedule and perform exchanger cleaning. In this 
context, artificial neural network and response surface methodology were used to estimate thermal 
resistance of fouling in a cross‑flow heat exchanger by using the operating data of the concentration 
loop. The absolute average relative deviations, mean squared errors, root mean squared errors 
and correlation coefficients were used as indicators error between the experimental and estimated 
values for both methods. The best fitted model derived from response surface methodology method 
was second order polynomial while the best architecture topology, for the artificial neural network 
method, consists of three layers: input layer with six input variables, hidden layer with six hidden 
neurons and an output layer with single output variable. The interactive influences of operating 
parameters which have significant effects on the fouling resistance were illustrated in detail. The value 
of correlation coefficient for the output parameter from the response surface methodology is 0.9976, 
indicating that the response surface methodology as an assessment methodology in estimating 
fouling resistance is more feasible compared with the artificial neural network approach.

The deposition of unwanted materials or substances on a heat transfer surfaces which is a more detrimental 
problem in the industry diminishes the heat transfer and increases the pressure drop of the heat exchangers. 
This deposit which promotes fouling in the heat exchanger surface, leads to a significant increasing of operation 
and maintenance  costs1. Furthermore, due to the expected fouling, the heat exchangers are often oversized for 
required duty. For these reasons, fouling presents a major challenge in design and operation of heat exchangers 
for industrialists, designers, technologists and scientists. By decreasing the fouling of heat exchangers, the harm-
ful environmental, economic and humanitarian impacts can be  reduced2.

The crystallization fouling is one of the detrimental fouling mechanisms in industrial applications. It occurs 
when dissolved salts precipitate out of the solution due to super saturation. Calcium sulfate is a common salt 
causing crystallization fouling especially in heat exchangers of the industrial production processes. The inverse 
solubility of calcium sulfate allows achieving the supersaturated conditions by heating the solution above the 
limit temperature in which the super saturation occurs or by increasing the concentration by evaporating the 
solution above the solubility  limit3. The crystallization fouling of calcium sulfate may cause the increase of the 
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pH, which decreases the solubility of calcium sulfate. The crystallization fouling is strongly attached to the heated 
surfaces and requires vigorous mechanical or chemical treatment to be  removed2.

Various parameters can affect crystallization fouling such as thermal conditions of the system, thermody-
namics and material properties due to its complexity. Therefore, fouling behavior for the same salt may vary 
in different systems and operation conditions. In order to reduce the fouling in the process, it is essential to 
understand the fouling behavior in  question3.

It was until the 1979s that attention was paid to predict and identify the fouling behavior in order to main-
tain their undesirable effects at controllable levels. An interesting model for  CaSO4 fouling of finned tubes 
during nucleate pool boiling which predict the micro layer super saturation under the bubbles as a function of 
geometry is presented. The model showed a good agreement with experimental data in the heat flux range of 
100–300 kW  m−24.

The model developed by Jamialahmadi and Müller-Steinhagen which is based on the effects of concentration, 
surface temperature and fluid velocity, is among the first and rare attempts that mark the history of research of 
ferocious crystallization fouling and cleaning of calcium phosphate  (CaSO4) dehydrate, in the view of its negative 
solubility in phosphoric acid solutions in fertilizer  industries5. A semi-empirical correlation of crystallization 
fouling of  CaSO4 in a rectangular flow channel has been proposed by Mwaba et al. to predict the evolution of 
the fouling scale layer in heat exchangers in order to assist heat exchanger operators to plan cleaning  schedules6. 
The authors have shown that the main parameters which affect the crystallization of calcium sulfate dehydrate 
on a flat plate were the surface temperature, flow velocity, and degree of super  saturation7.

Crystallization fouling of calcium sulfate was also investigated in a plate and frame heat exchanger  in8. The 
authors studied the effects of flow velocity, wall temperature, and  CaSO4 concentration on the fouling rates and 
they observed the distribution of scale along the heat transfer surface.

The studies of Mwaba et al.6,7 and of Bansal and Müller-Steinhagen8 have shown that crystallization fouling 
of  CaSO4 in heat exchanger was surface integration controlled.

In the case of composite fouling; the crystallization can be severely influenced. The most commonly mecha-
nism accompanying crystallization fouling was the particulate  fouling9. A model for crystallization and particu-
late fouling prediction at different flow velocities and surface temperatures in plate heat exchangers with and 
without enhanced heat transfer was developed by Arsenyeva et al.10. However, the proposed model was unable 
to account for salt concentration or solid particle content and sizes.  Sheikholeslami11 proposed a new model for 
 CaSO4 fouling which takes into account the effect of both crystallization and particulate fouling. The developed 
model was capable to predict the fouling resistance during the cleaning cycle as well as the fouling cycle. From 
this model, particulate fouling was estimated using the physical mechanism for particle transport and adherence, 
crystallization was estimated by ionic diffusion, and the removal term was approximated using hydrodynamics 
of flow and deposit properties. The validation step confirmed a good prediction of the model with literature 
experimental data. According to the experimental results, it was suggested that crystallization is not the main or 
only mechanism contributing to  CaSO4 fouling and particulate fouling seems to be a major contributor.

Estimation of fouling using classical methods has already limitations in terms of accuracy in front of the 
complexity and the non linearity of the  problem12. Due to the dramatic advances of information technologies 
recently, many software as Artificial Neural Network (ANN) could achieve the highly accurate prediction for 
complex  problems13. Thereby, this technique can provide useful tools for modeling and correlating practical 
heat transfer problems. This tool is employed to interpret heat generation/absorption and radiation phenom-
enon in unsteady electrically conducting Williamson liquid flow along porous stretching  surface14, to predict 
the boundary layer flow of a single-walled carbon nanotubes nanofluid toward three different nonlinear thin 
isothermal needles of paraboloid, cone, and cylinder shapes with convective boundary  conditions15, to optimize 
a Darcy–Forchheimer squeezing flow in nonlinear stratified fluid under convective  conditions16, to model and 
analyze a mixture of  distributions17,18 and to predict Soret and Dufour’s convective heat transfer in nanofluid 
flow through a moving  needle19.

For fouling phenomenon, an intelligent model is developed for heat exchanger which links fouling resistance 
to six independent operating parameters of the system (time, fluid density, volume flow rate and inlet and outlet 
temperatures) by means of Multilayer Perceptron (MLP) network  tool20. In the same context, for prediction of 
the fouling factor in both shell-and tube and cross-flow heat exchangers, Jradi et al.21,22 used ANN methodology. 
Other approach has been presented for fouling resistance prediction model for shell and tube heat exchanger 
using Neural Network method Nonlinear Auto-Regressive with eXogenous as input structure for optimizing 
operating conditions and preventive  maintenance23. Furthermore, ANN approach was used to predict the outlet 
temperature from both shell and tube side of shell and tube heat exchangers in order to planning suitable clean-
ing  schedules12,24.

Statistical methods may be an efficient technique to estimate the input–output relationships and to analyze 
parameter interactions of complex  processes25. Lately, an increasing pattern of interest has been noticed among 
the researchers in checking out the suitability of response surface methodology (RSM) and artificial neural net-
work (ANN) modeling approaches to solve problems in a way that fits  reality26. The RSM and ANN approaches 
were successfully applied by several researchers in the field of processes  modeling26–29.

In this context, the present work aimed to analysis and estimates the thermal performance of cross-flow heat 
exchanger using the RSM and ANN models. Six operating parameters of phosphoric acid concentration loop, 
comprising acid inlet and outlet temperatures, steam temperature, acid density and acid volume flow and time, 
are selected as the input parameters, while the fouling resistance is selected as the output parameter. In addition, 
the functions between the input and output parameters are obtained using both the RSM and ANN models. 
A comparison of these two models is also presented based on the estimation functions of the heat exchanger. 
These models provide effective approaches for estimating and optimizing the thermal performances accurately 
and quickly.
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Methodology
The objective of this article is to apply two different methods to estimate the fouling which are the RSM and ANN 
and to compare between these two techniques. This analysis consists of three main parts: (1) Process descrip-
tion of the industrial phosphoric acid concentration unit. (2) Experimental procedure to calculate the fouling 
resistance. (3) Mathematical modeling of the fouling resistance.

Experimental process description. The process used for the production of phosphoric acid is a dehy-
drate process which comprises a stage of phosphoric acid concentration. This last stage consists in passing  P2O5 
from a range of 28–32% to a range of 40–54%, this is done by evaporation of the water.

Figure 1 presents the flow diagram of phosphoric acid concentration unit. The concentration of phosphoric 
acid is produced by “Rhone Poulenc” process flows in a closed loop forced-circulation evaporator, operating 
under vacuum ensured by a barometric condenser. As can be seen from Fig. 1, this evaporator consists of dif-
ferent equipment: a cross-flow heat exchanger (A), a centrifugal pump (B), a boiler or expansion chamber (C), 
a barometric condenser (D) and a basket filter (E)20.

The addition of dilute phosphoric acid (28%  P2O5) (1) takes place at the basket filter where it mixes with 
the circulating phosphoric acid (2) in order to retain crusts and gypsum debris which may be hang up on the 
circulation pump and risk blocking the heat exchanger tubes. Therefore, the basket filter protects the pump from 
abrasion and limits clogging in the heat exchanger tubes. This makes it possible to minimize the frequency of 
stopping for washing.

The circulation pump aspirates the blend (3) formed, freed of coarse impurities, and send it to the heat 
exchanger.

In the cross-flow heat exchanger, the circulating phosphoric acid (4) is introduced into the graphite tubes 
at a temperature of about 70 °C to raise it to about 80 °C and the steam (5), which undergoes a condensation at 
a temperature of 120 °C, circulates perpendicularly around them. Steam distribution and condensate recovery 
are done through the use of a steel shell with baffles. These baffles ensure the positioning of the blocks and 
force the steam to pass through the holes and ensure the recovery of condensate. The condensate (6) is sent 
to a storage tank before being sent back to the utility station. The superheated mixture of phosphoric acid (7) 
leaves the exchanger then passes into the boiler where a quantity of water evaporates at the boiling point and the 
concentrated acid (8) is produced by overflowing in a piping system inside the boiler. The remaining amount of 
phosphoric acid is recycled. The condenser also ensures incurring non-condensable gases coming out from the 
boiler (9) by the effect of a hydro-ejector valuing the relaxation of pressurized water flow (10). At the foot of the 
barometric guard, the sea water is recovered in a tank of guard before being released into the sea.

The cleaning operation of the phosphoric acid concentration loop is carried out using sea water for 8 h to 
guarantee that the heat exchanger is totally free of fouling at the beginning of a new run. Each operating cycle 
lasts an average of 5 days and interruptions are sometimes necessary for mechanical interventions.

The choice of heat exchanger construction materials depends on the corrosiveness and scaling characteristics 
of phosphoric acid. The graphite blocks heat exchanger offers a very high thermal conductivity and it is totally 
resistant to corrosion, but it is a relatively fragile material and thus can lead to operating problems due to tube 
breakage during frequent cleaning or bad-operation30.

Experimental procedure. Totally, seven heat exchangers distributed between three units for the concen-
tration of phosphoric acid are contained at the phosphoric acid production plant of the Tunisian Chemical 
Group. Three of them are of type graphite blocks. The specific choice of this heat exchanger, whose main charac-

Figure 1.  Schematic drawing of the phosphoric acid concentration process.
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teristics are listed in Table 1, is based on the large production capacity and the possibility to collect a sample of 
fouling for identification during data collection.

The experimental calculation of the overall heat transfer coefficient  (Ut) and the fouling resistance  (Rf) is 
based on the following simplifying assumptions:

– The flows of two fluids (phosphoric acid and steam) are at counter current.
– Thermal losses are neglected.
– Condensation of the superheat steam is total.
– Fouling is only formed in phosphoric acid side.

The inlet and outlet temperatures of the two fluids, the suction and discharge pressure of the pump are taken 
respectively at the extremities of the heat exchanger and of the circulation pump while the density of the flow 
phosphoric acid is measured at the inlet of the heat exchanger. The frequency of data acquisition was of two 
hours. The setup was equipped with a data acquisition system composed by a computer and a data acquisition 
card (high-speed analog-to-digital converter card). The temperatures of the phosphoric acid and the steam at 
the inlet and outlet of the heat exchanger were measured using three thermocouples type Pt100 class with the 
uncertainty of ± 0.3 °C.

Moreover, the density of the phosphoric acid was measured using a Densimeter DMA35 with the uncertainty 
of ± 0.05%. Besides, a Diaphragm pressure gauge with the uncertainty of ± 1.6% was used to measure the pressure.

The flow rate of phosphoric acid, passing through the exchanger can be calculated from the suction and 
discharge pressures and pump’s characteristic  curve31.

The parametric range of operating variables corresponding to the heat exchanger used in this unit is listed 
in Table 2.

Using the energy balance, the heat flow ( Qac ) transmitted from steam to phosphoric acid is given by follow-
ing Eq. (1)31:

where ṁac,cir ,  Tin, ac,  Tout,ac and  Cpac are the mass flow rate, inlet and outlet temperatures and the specific heat 
capacity of phosphoric acid, respectively.

The overall heat transfer coefficient under fouling condition  (Ut) is defined  as31:

The Logarithmic Mean Temperature Difference (ΔTlm) is defined  as31:

(1)Qac = ṁac,cir × Cpac × (Tout,ac − Tin,ac)

(2)Ut =

(

Q

A×�Tlm × F

)

t

Table 1.  Main characteristics of the studied heat exchanger.

Main characteristics Graphite blocks

Number of blocks 11

Blocs height (m) 0.513

Acid-side tube length (m) 5.564

Steam-side tube length (m) 1.025

Diameter of acid-side duct (mm) 16

Diameter of steam-side duct (mm) 15

Exchange surface  (m2) 249.5

Number of acid-side ducts 868

Number of steam-side ducts 483

Table 2.  Parametric ranges.

Variable Unit Designation Measurement ranges

Acid inlet temperature °C Tin,ac 68–78

Acid outlet temperature °C Tout,ac 77–86.8

Steam temperature °C Tst 116–125

Suction pressure bar Psuc 0.85–1.25

Discharge pressure bar Pdis 3.1–3.9

Acid density Kg/m3 ρac 1620–1656
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where A is the heat transfer area, F is the corrective factor for the average logarithmic temperature difference 
(= 1 pure Counter Flow Arrangement),  Tin, ac and  Tout, ac are inlet and outlet acid temperatures and  Tst is the steam 
inlet temperature.

The studied heat exchanger underwent mechanical cleaning operation between operating runs. In this case, 
it is totally free of fouling at the beginning of each new run. The overall heat transfer coefficient at the beginning 
of every cycle is considered as the value of the clean design  (Ut=0).

The fouling resistance according to time  (Rf) is then given by Eq. (4)1,20:

Mathematical models. Response surface methodology. Response surface methodology (RSM) is a tool of 
mathematical, theoretical and statistical techniques used to finding the relationship between several independ-
ent variables and one or more  responses32. Since 1951when Box and Wilson developed this method, it has been 
used widely as a technique for designing experiments. The base of this method is to fitting the mathematical 
models to the experimental results generated from the designed experiment and to verifying the model obtained 
by means of statistical  techniques29.

It is a fundamental tool in the field of engineering used for developing, improving, and optimizing issues 
where a response variable is influenced by multiple influencing  variables26. Design Expert Statistical Software 
package 10 is used in this studied to develop the RSM model. The Central Composite Design (CCD) in RSM 
which provides high quality predictions is a fractional factorial design method used to find the functional rela-
tionship between the expected response and the input variables as shown in Eq. (5)26.

where Y represents the response of the system, f represents the unknown of the response,  X1,  X2,…,  Xn represent 
the actual independent process variables and n is the number of independent variables.

A face-centered central composite design was constructed with a value of (α) equal to 1 for six factors and 
each factor has three levels (Table 3).

The number of experiments needed can be calculated by following Eq. (6)26.

where z is the number of factors, and n is the number of center points.
The general order polynomial regression equation that defines the relationship between the model response 

(Y) and the process parameters  (Xi) is given by Eq. (7)26.

where γ0 is the constant coefficient, γi, γii, and γij are the interaction coefficients of the linear, quadratic and second 
order term, respectively. The  Xi and  Xj are the process parameters.

The regression equation of the response, analysis of variance (ANOVA) and interactive effects analysis of the 
different variables are the three main analytical steps of RSM analysis.

Artificial neural network. The use of Artificial Neural Networks (ANN) started a century ago, conceptually 
and structurally inspired from the capabilities exhibited by biological neural  systems33,34. This learning capacity 
with training data makes ANN more powerful than the parametric approaches because of its ability to model a 
multivariable problem containing complex relationships between the variables and to extract implied non-linear 
relationships between these variables. This technology is becoming increasingly applicable as a promising tool. It 

(3)�Tlm =
Tin,ac − Tout,ac

ln
{

(Tst−Tin,ac)
(Tst−Tout,ac)

}

(4)Rf =
1

Ut
−

1

Ut=0

(5)Y = f (X1,X2....,Xn)

(6)N = 2z + 2z + n

(7)Y = γ0 +

n
∑

i=1

γiXi +

n
∑

i=1

γiiX
2
i +

n
∑

i=1

n
∑

j=2

γijXiXj; (i �= j)

Table 3.  Factors and factor levels for RSM.

Factor Code

Factors level of code

Low level − 1 Intermediate level 0 High level + 1

T (h) A 0 61 122

Tin,ac (°C) B 68 73 78

Tout,ac (°C) C 77 81.9 86.8

Tst (°C) D 116 120.5 125

ρac (Kg/m3) E 1620 1638 1656

v̇ac,cir(m3/h) F 2102 2754.5 3407
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offers an alternative way for solving nonlinear and complex problems in actual situations in various engineering 
fields, for instance, the control of dynamic and aging processes in heat transfer such as  fouling35.

ANN models are generally constituted of three main layers, namely the input, hidden, and output layers. Each 
layer has a specific numbers of neurons. The size of the input and output layers are always equal respectively to 
the number of independent and dependent variables.

Simultaneous choice of the optimal number of hidden layers and the number of neurons in hidden layer is 
a very important step to set overall neural network architecture. The whole of hidden layers interact indirectly 
with the external source but have enormous influence on the final  output36. Various approaches were proposed 
by several researchers to determine the number of hidden layer in neural network.

Choosing one hidden layer for estimating the fouling resistance for the studied heat exchanger comes from 
the work of Cybenko and Hornik in 1989 who proved that the use of three layers network (with one input layer, 
one output layer, and one hidden layer) can simulate any complex nonlinear  problems37,38.

The selection of hidden layer size is a specific problem and there is no general rule for determining this 
number. The number of neurons in hidden layer, to some extent, depends on the number and the quality of 
training patterns. This number must be sufficient for correct modeling of the problem as well as it should be low 
to ensure generalization.

Several studies were done to determine the number of neurons in the hidden  layer39,40. In this work, to 
establish a suitable and stable network for the problem; many networks are built by changing their size in order 
to reach a suitable result.

The summation and activation functions are the two types of functions which can be used for each layer. The 
choice of the use of activation function in this studied is based on the ability of this function to determine the 
output of the cell which provides a suitable match between the input and output layers. By contrast, the summa-
tion function is used to obtain only the net input of a cell. The appropriate choice of the activation function can 
have a profound influence on network performance. For this reason, it is important to select the better activa-
tion function to have an easier and faster convergence of neural  networks41. Therefore, there are different types 
of transfer functions, the most frequent used are the linear or identity transfer function, the logistic or sigmoid 
transfer function and the hyperbolic tangent transfer function. Several studies in this field of heat exchanger 
fouling confirm that the hyperbolic transfer function is the best performed transfer  function20. In this study, 
three transfer functions mentioned previously are adopted for the hidden and output layers of the ANN model 
and a comparison among them is carried out.

Among different applications, the back-propagation (BP) training algorithm including BFGS 
(Broyden–Fletcher–Goldfarb–Shanno) and Scaled Conjugate Gradient methods are usually adopted to find 
the optimum parameter values of the neural networks. The performance of these methods is significantly better 
than traditional techniques such as Gradient Descent. But they have more intensive memory and computational 
demanding generally. However, these techniques may require a small number of iterations to train a neural 
network by considering their fast convergence  rate42,43. Therefore, the BP neural network with BFGS, Scaled 
Conjugate Gradient and Gradient Descent training functions are thus used in this work and a comparison 
among them is carried out.

Performance of RSM and ANN models. The performance of the RSM and ANN models was evaluated by using 
four statistical parameters which are: the absolute average relative deviation (AARD %), the mean squared error 
(MSE), the root mean squared error (RMSE) and the correlation coefficient  (r2). The mathematical equations 
Eqs. (8)–(11) of these parameters are given  below20,44,45:

where  Rf represents the fouling resistance.  Rf
exp and  Rf

pred represent the experimental and predicted fouling 
resistance.  Rf  is the average value of the experimental fouling resistance. N is the number of value pairs used 
for the comparison of methods.

(8)AARD% =
100

N

N
∑

i=1

∣
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∣
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fi

∣
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(9)MSE =
1

N

N
∑
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√
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Results and discussion
RSM analysis. Regression equation of response. By using the Design Expert Statistical Software package 10 
and according to the CCD, this investigation was executed to study the influence of the parameters [time (t), acid 
inlet  (Tin, ac) and outlet  (Tout, ac) temperatures, steam temperature  (Tst), acid density (ρac) and acid volume flow 
( ̇vac,cir )] and to predict the fouling resistance  (Rf). The quadratic equation was developed by utilizing experimen-
tal results to express the response with respect to (t,  Tin, ac,  Tout, ac,Tst, ρac and v̇ac,cir).

In terms of coded factors, the model equation Eq. (12) is depicted below:

The deviation between the experimental results and values estimated by the RSM for fouling resistance  (Rf) 
is indicated in Fig. 2. The color points in Fig. 2 refer to the high and low values of fouling resistance. It can be 
observed from the graph that the concentration of the experimental points is approximately along the 45° line, 
which reveals the significance of the regression model. This observation indicates that the CCD is well fitted into 
the model, thus it can be applied to perform the optimization operation of the process.

The  r2 for  (Rf) is 0.9976, while the values of the absolute average relative deviation, mean squared error and 
root mean squared error for the response are very low.

As mentioned in Table 2, the operating periods ranging should be up to 122 h, the inlet and outlet tempera-
tures of fluid and the steam temperature should not exceed 78 °C, 86.8 °C and 125 °C, respectively, the phosphoric 
acid density should not be above 1656 kg/m3, and the volume flow rate should not be below 2102  m3/h to obtain 
values of  (Rf) close to reality by the developed model.

Analysis of variance (ANOVA). The “analysis of variance test” widely known as ANOVA is the most efficient 
method that gives an idea about statistical significance of the quadratic regression model equation, the inde-
pendent parameters, their interactions, and the goodness of  fit46.

The model fitness quality was assessed at the 5% significance level by p-value (probability value), F-value 
(Fisher’s test),  R2 and  R2

adjusted
47. The results of ANOVA are displayed in Table 4.

In statistics, the p-value is employed to verify the significance of the model or model term. If the p value is 
less than 0.05, this implies that the factors show significance for the  response47. If the F-value is higher than 0.05 
for the independent process variable, the effect of that variable become  higher47. In these cases, the model can 
be applied to estimate results accurately.

From the ANOVA results, the derived model is statistically significant at 95% confidence level since the 
p-value is much lower than 0.05 (p-value = 0.0001) and the F-value is equal to 2671.84.

Based on the calculated p-values (< 0.0001) as shown in Table 5, the main effects of the time (A), acid inlet 
and outlet temperatures (B and C), steam temperature (D) and acid volume flow (F), as well as their interactions 
BC, BE, BF, CE, CF and EF, and quadratic terms  B2,  C2, and  F2 are statistically significant for the fouling resistance 

(12)

Y = 8.363× 10
−5 + 1.016× 10

−5
A+ 1.860× 10

−4
B− 2.266× 10

−4
C

+ 3.732× 10
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D − 1.982× 10
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E − 8.851× 10
−5

F + 2.011× 10
−6
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−6
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−6
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−5
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−5
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−5

CD + 5.322× 10
−5
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−5
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−7
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− 9.052× 10
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A
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−4
B
2

+ 1.470× 10
−4

C
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D
2 + 1.607× 10
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2 + 2.756× 10
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F
2

Figure 2.  RSM estimation versus experimental results.
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 (Rf), but the linear term (acid density (E)) is not significant with P and F-values of 0.3710 and 0.80. The other 
mix product and quadratic terms with larger p value have minor effects on  (Rf).

The determination coefficient  (R2) is a measure of how efficient the variability in the measured output can be 
explained by the experimental variables and their interactions; therefore, it is regarded as the degree of model 
 fitness47. In this case, the  R2 is 0.9954 which indicates that the adjustment of the quadratic model to the experi-
mental results is satisfactory since it is near to unity.

Table 4.  Analysis of variance of the RSM model for output parameter.

Source Sum of squares Degrees of freedom F value p-value

Model 6.454 ×  10–07 27 2671.84  < 0.0001

A 6.508 ×  10–11 1 7.27 0.0074

B 2.728 ×  10–09 1 304.89  < 0.0001

C 2.875 ×  10–09 1 321.37  < 0.0001

D 1.533 ×  10–09 1 171.36  < 0.0001

E 7.178 ×  10–12 1 0.80 0.3710

F 3.088 ×  10–09 1 345.12  < 0.0001

AB 5.503 ×  10–14 1 6.151 ×  10–03 0.9375

AC 1.127 ×  10–13 1 0.013 0.9107

AD 3.525 ×  10–12 1 0.39 0.5306

AE 1.143 ×  10–11 1 1.28 0.2593

AF 3.459 ×  10–13 1 0.039 0.8442

BC 7.138 ×  10–11 1 7.98 0.0050

BD 1.839 ×  10–11 1 2.06 0.1526

BE 1.048 ×  10–10 1 11.72 0.0007

BF 3.756 ×  10–11 1 4.20 0.0412

CD 6.258 ×  10–12 1 0.70 0.4036

CE 7.222 ×  10–11 1 8.07 0.0048

CF 3.781 ×  10–11 1 4.23 0.0406

DE 6.559 ×  10–13 1 0.073 0.7867

DF 1.309 ×  10–13 1 0.015 0.9038

EF 5.476 ×  10–11 1 6.12 0.0139

A2 7.926 ×  10–12 1 0.89 0.3473

B2 7.562 ×  10–11 1 8.45 0.0039

C2 5.660 ×  10–11 1 6.33 0.0124

D2 4.206 ×  10–13 1 0.047 0.8285

E2 5.684 ×  10–14 1 6.353 ×  10–03 0.9365

F2 8.457 ×  10–11 1 9.45 0.0023

Residual 2.979 ×  10–09 333

Corrected Total 6.484 ×  10–07 360

R2 0.9954

R2
predicted 0.9932

R2
adjusted 0.9950

Adequate Precision 211.574

Table 5.  Input and output parameters used by ANN method.

Parameters Variable Unit Designation Measurement ranges

Input

Time h t 0–122

Acid inlet temperature °C Tin,ac 68–78

Acid outlet temperature °C Tout,ac 77–86.8

Steam temperature °C Tst 116–125

Acid density Kg/m3 ρac 1620–1656

Acid volume flow rate m3/h v̇ac,cir 2102–3407

Output Fouling resistance m2.°C/W Rf 0–0.00017
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The  R2 predicted and  R2 adjusted gives an idea about the quality or adequacy of the  model47. The difference between 
the  R2 predicted and  R2 adjusted should be less than 0.02 to consider that the model is  adequate47.

In this study, the model which describes the experimental design response is adequate, since the difference 
between  R2

predicted and  R2
adjusted is 0.0018. From Table 4, the value of  R2

adjusted is equal to 0.9950 which indicates 
that the model fits the experimental data satisfactorily.

The adequate precision is a measure of the signal-to-noise  ratio47. A greater value of this statistical parameter 
than 4 is desirable for a good model. As shown in Table 4, the adequate precision is 211.574 which indicates that 
the signal is adequate and the quadratic model can be used to navigate the designed  space47.

The RSM is an adequate method due to its flexibility in design space navigation. The 2-D and 3-D surface 
response plots explore the designed space and predict the optimal conditions of the fouling resistance. According 
to the p values in Table 4, the interactions of BC, BE, BF, CE, CF and EF have significant influences on the fouling 
resistance; thus, these six sets of interactions are studied in detail, as shown in Fig. 3a–f.

Interactive effects analysis. By using RSM, six sets of 2-D and 3-D surface plots are drawn to study the inter-
actions of the four independent parameters which are acid inlet  (Tin, ac) and outlet  (Tout, ac) temperatures, acid 
density (ρac) and acid volume flow ( ̇vac,cir).

These 3-D and 2-D contour plots show the interactive effects between: acid inlet and outlet temperatures 
(Fig. 3a), acid inlet temperature and acid density (Fig. 3b), acid inlet temperature and acid volume flow (Fig. 3c), 
acid outlet temperature and acid density (Fig. 3d), acid outlet temperature and acid volume flow (Fig. 3e) and 
acid density and volume flow (Fig. 3f), respectively on the fouling resistance.

From the global 3-D graphs, some degrees of curvature are seen which can be attributed to the reflection of 
the levels of uncertainties associated with every interaction of the process variables.

It can be seen from Fig. 3a that the fouling resistance increases linearly with the acid inlet temperature. As the 
acid outlet temperature decreases, the fouling resistance decreases up to a specific level then increases. Moreover, 
the maximal values of the fouling resistance can be obtained by decreasing their acid outlet temperature and 
increasing the acid inlet temperature.

The interactive influences of the acid inlet temperature and acid density on the fouling resistance are presented 
in Fig. 3b. It can be seen that the fouling resistance increases proportionally with the acid inlet temperature. 
Furthermore, the acid inlet temperature has a larger effect than the acid density. This is because the fouling resist-
ance is determined by the temperatures of the two fluids in the studied heat exchanger based on the logarithmic 
mean temperature difference. Although the acid density affects the fouling resistance, it is not the main factor.

As seen in Fig. 3c, the fouling resistance increases with the acid inlet temperature which is confirmed with 
the previous results. In addition, the fouling resistance increases by decreasing the volume flow rate. When the 
acid volume flow rate is fixed to 2103  m3/h; and for an acid inlet temperature of 78 °C, the maximal fouling 
resistance is 0.00058  m2 °C/W.

As seen from Fig. 3d, as the acid outlet temperature decreases, the fouling resistance increase and display 
nonlinear variations. Additionally, the acid outlet temperature has a significant effect on the fouling resistance, 
while the acid density has a minor effect which is confirmed with Fig. 3b.

For a small acid volume flow rate, the fouling resistance increases by decreasing the acid outlet temperature 
(shown in Fig. 3e). The acid volume flow rate is not the main factor that affects the fouling resistance.

As seen in Fig. 3f, a small variation of acid volume flow and acid density can increase fouling resistance. The 
fouling resistance reaches 0.0002  m2 °C/W when the acid volume flow and acid density are equal to 2103  m3/h 
and 1620 kg/m3, respectively. This is because the fouling resistance is inversely proportional to the acid volume 
flow rate, and can be increased by decreasing the volume flow. However, the decrease in the volume flow rate 
results in the perturbation and instability due to the fouling phenomena in the heat exchanger; thus, the appro-
priate volume flow should be selected for a reasonable range of design.

ANN analysis. ANN architecture. In this section, ANN model was developed utilizing feed-forward back 
propagation neural network as mentioned previously to estimate the fouling resistance in a cross-flow heat 
exchanger. In modeling and according to the default percentages of divider and function in STATISTICA soft-
ware, 70% of the data set was employed for the training set, whereas the remaining 30% of the data set was for 
the validation and testing set (15% each). The data set correspond to 7 operating cycles containing a total of 361 
observations. Time (t), acid inlet  (Tin, ac) and outlet  (Tout, ac) temperatures, steam temperature  (Tst), acid density 
(ρac) and acid volume flow ( ̇vac,cir ) were considered as input parameters and fouling resistance was as output 
parameter. The measurement ranges of input and output parameters are depicted in Table 5.

In a single hidden layer, the number of neurons was varied from one to twelve to determine the adequate 
ANN configuration for fouling resistance prediction.

Due to the randomness of NN training caused by data set splitting or learning iteration, cross validation 
should be  required48. For this reason, thirty various trained network, was tested and validated and the best 
performance among trained network for each topology is listed in Table 6. So, theoretically the optimal ANN 
configuration selected is based on the least prediction of validation  errors24,49.

As can be seen from Table 6, when the number of hidden neurons increase to 6 in the training and validation 
processes, the values of AARD, MSE and RMSE of validation data set become smaller than other configurations 
while the value of  r2 become higher. The adding of more neurons in the hidden layer may not improve the pre-
dicted results this is confirmed in the same table where the values of AARD, MSE and RMSE increase and the 
value of  r2 decreases continuously. Therefore, for the studied heat exchanger, the optimal ANN configuration 
consists of six neurons in single hidden layer. Thus, in this case, ANN with configuration 6–6–1 is selected for 
estimation of the fouling resistance. The optimized network configuration is shown in Fig. 4.
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 (a) Interactive effects between acid inlet and outlet temperatures (°C) on fouling 

resistance for RSM response surface (3D) and contour (2- D) plots. 
 (b) Interactive effects between acid inlet temperature (°C) and acid density (Kg/m3) on 

fouling resistance for RSM response surface (3D) and contour (2- D) plots. 

 (c) Interactive effects between acid inlet temperature (°C) and acid volume flow rate 

(m3/h) on fouling resistance for RSM response surface (3D) and contour (2- D) plots. 

 (d) Interactive effects between acid outlet temperature (°C) and acid density (Kg/m3) 

on fouling resistance for RSM response surface (3D) and contour (2- D) plots. 

Figure 3.  (a) Interactive effects between acid inlet and outlet temperatures (°C) on fouling resistance for RSM 
response surface (3D) and contour (2-D) plots. (b) Interactive effects between acid inlet temperature (°C) 
and acid density (Kg/m3) on fouling resistance for RSM response surface (3D) and contour (2-D) plots. (c) 
Interactive effects between acid inlet temperature (°C) and acid volume flow rate  (m3/h) on fouling resistance 
for RSM response surface (3D) and contour (2-D) plots. (d) Interactive effects between acid outlet temperature 
(°C) and acid density (Kg/m3) on fouling resistance for RSM response surface (3D) and contour (2-D) plots. (e) 
Interactive effects between acid outlet temperature (°C) and acid volume flow  (m3/h) on fouling resistance for 
RSM response surface (3D) and contour (2-D) plots. (f) Interactive effects between acid density (Kg/  m3) and 
acid volume flow  (m3/h) on fouling resistance for RSM response surface (3D) and contour (2-D) plots.
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For the validation data set, as can be seen from Table  6, the selected networks supplies a total of 
AARD = 0.0793%, MSE = 2.5853  10–11, RMSE = 5.0846  10–06 and  r2 = 0.9938.

Appropriate ANN activation function and training algorithm. As mentioned in the previous section, based on 
the activation function, a comparison among the hyperbolic tangent transfer function, linear transfer function 

(e) Interactive effects between acid outlet temperature (°C) and acid volume flow 

(m3/h) on fouling resistance for RSM response surface (3D) and contour (2- D) plots. 

 (f) Interactive effects between acid density (Kg/ m3) and acid volume flow (m3/h) on 

fouling resistance for RSM response surface (3D) and contour (2- D) plots. 

Figure 3.  (continued)

Table 6.  Comparison of errors of several ANN configurations for estimation of fouling resistance. Significant 
values are given in bold.

ANN 
configuration r2 ALL

Training error Validation error Test error

AARD MSE RMSE r2 AARD MSE RMSE r2 AARD MSE RMSE r2

6–1–1 0.9848 0.0864 5.5236 × 
 10–11

7.4321 × 
 10–06 0.9849 0.1040 6.8054 × 

 10–11
8.2495 × 
 10–06 0.9847 0.1069 6.2149 × 

 10–11
7.8834 × 
 10–06 0.9873

6–2–1 0.9872 0.0812 4.4658 × 
 10–11

6.6826 × 
 10–06 0.9876 0.0968 5.9795 × 

 10–11
7.7327 × 
 10–06 0.9862 0.1005 5.0716 × 

 10–11
7.1215 × 
 10–06 0.9894

6–3–1 0.9914 0.0514 3.1604 × 
 10–11

5.6217 × 
 10–06 0.9914 0.0651 3.9511 × 

 10–11
6.2858 × 
 10–06 0.9910 0.0396 2.8074 × 

 10–11
5.2985 × 
 10–06 0.9927

6–4–1 0.9916 0.0594 2.8458 × 
 10–11

5.3346 × 
 10–06 0.9919 0.0835 3.5984 × 

 10–11
5.9987 × 
 10–06 0.9913 0.0750 3.3369 × 

 10–11
5.7766 × 
 10–06 0.9922

6–5–1 0.9931 0.0453 2.1807 × 
 10–11

4.6698 × 
 10–06 0.9937 0.0875 3.4220 × 

 10–11
5.8498 × 
 10–06 0.9919 0.0772 2.9697 × 

 10–11
5.4495 × 
 10–06 0.9927

6–6–1 0.9950 0.0390 1.6685 × 
10–11

4.0848 × 
10–06 0.9952 0.0793 2.5853 × 

10–11
5.0846 × 
10–06 0.9938 0.0591 1.7071 × 

10–11
4.1318 × 
10–06 0.9958

6–7–1 0.9855 0.0839 5.2792 × 
 10–11

7.2658 × 
 10–06 0.9853 0.0940 6.2538 × 

 10–11
7.9081 × 
 10–06 0.9851 0.0897 5.0535 × 

 10–11
7.1088 × 
 10–06 0.9889

6–8–1 0.9931 0.0441 2.2292 × 
 10–11

4.7214 × 
 10–06 0.9936 0.0827 3.3818 × 

 10–11
5.8154 × 
 10–06 0.9919 0.0733 2.8552 × 

 10–11
5.3434 × 
 10–06 0.9929

6–9–1 0.9886 0.0648 4.0142 × 
 10–11

6.3358 × 
 10–06 0.9887 0.0909 5.2919 × 

 10–11
7.2745 × 
 10–06 0.9874 0.0801 4.0283 × 

 10–11
6.3469 × 
 10–06 0.9916

6–10–1 0.9889 0.0630 3.9534 × 
 10–11

6.2876 × 
 10–06 0.9893 0.0893 5.3437 × 

 10–11
7.3101 × 
 10–06 0.9876 0.0777 4.6184 × 

 10–11
6.7959 × 
 10–06 0.9906

6–11–1 0.9899 0.0477 3.4877 × 
 10–11

5.9056 × 
 10–06 0.9900 0.0920 4.5248 × 

 10–11
6.7267 × 
 10–06 0.9891 0.0837 3.7076 × 

 10–11
6.0890 × 
 10–06 0.9915

6–12–1 0.9875 0.0771 4.4745 × 
 10–11

6.6892 × 
 10–06 0.9875 0.0903 5.8320 × 

 10–11
7.6368 × 
 10–06 0.9858 0.0790 4.1049 × 

 10–11
6.4070 × 
 10–06 0.9907
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and sigmoid transfer function is carried out. Moreover, a comparison between the BP neural network with 
BFGS, Scaled Conjugate Gradient and Gradient Descent training functions is carried out.

The best transfer function and training algorithm are found by examining and comparing simultaneously 
these different algorithms. The selection is based on the values of the accuracy measurements. Consequently, 
various transfer functions and learning algorithms are training for each network having an optimal configura-
tion. Table 7 presents the values of AARD %, MSE, RMSE and  r2 in the training, validation and test datasets for 
the studied heat exchanger for three different transfer functions and algorithms. The choice of the best transfer 
function and training algorithm is based on the values of validation errors.

According to the accurate calculation, it is clear that the BFGS back-propagation with hyperbolic transfer 
function offers the best performance (the bold lines). For validation data, this algorithm presents the smallest val-
ues of AARD %, MSE and RMSE and the highest value of  r2. Consequently, the BFGS back-propagation learning 
algorithm and the hyperbolic transfer function are simultaneously the most appropriate learning algorithm and 
activation function for the considered task. It provides the value  r2 ALL = 0.9950 for the cross-flow heat exchanger.

Expression of the output parameter using ANN model. After selecting the optimal topology and finding the 
most appropriate activation function and training algorithm (Tables 6 and 7), the weight and biases values to 
construct our particular ANN model with configuration 6–6–1 are listed below:

Figure 4.  The optimal ANN configuration.

Table 7.  Comparison of errors of various training algorithms for estimation of fouling resistance. Significant 
values are given in bold.

Transfer 
function Algorithm r2 ALL

Training error Validation error Test error

AARD MSE RMSE r2 AARD MSE RMSE r2 AARD MSE RMSE r2

Hyperbolic 
tangent

BFGS 0.9950 0.0390 1.6685 × 
10–11

4.0848 × 
10–06 0.9952 0.0793 2.5853 × 

10–11
5.0846 × 
10–06 0.9938 0.0591 1.7071 × 

10–11
4.1318 × 
10–06 0.9958

Gradient 
descent 0.9833 0.0861 6.8332 × 

 10–11
8.2663 × 
 10–06 0.9820 0.0790 5.9663 × 

 10–11
7.7242 × 
 10–06 0.9865 0.0751 5.2096 × 

 10–11
7.2178 × 
 10–06 0.9865

Conjugate 
gradient 0.9881 0.0601 4.0520 × 

 10–11
6.3655 × 
 10–06 0.9885 0.0956 5.6282 × 

 10–11
7.5021 × 
 10–06 0.9861 0.0877 4.4227 × 

 10–11
6.6503 × 
 10–06 0.9906

Linear

BFGS 0.8724 0.2892 4.2216 × 
 10–10

2.1028 × 
 10–05 0.8648 0.1315 3.3747 × 

 10–10
1.8370 × 
 10–05 0.9110 0.0967 4.5957 × 

 10–10
2.1437 × 
 10–05 0.8651

Gradient 
descent 0.8034 0.3155 1.0365 × 

 10–09
3.2196 × 
 10–05 0.7861 0.2425 7.1870 × 

 10–10
2.6808 × 
 10–05 0.9118 0.3034 1.1865 × 

 10–09
3.4446 × 
 10–05 0.7351

Conjugate 
gradient 0.8714 0.1087 4.4787 × 

 10–10
2.1163 × 
 10–05 0.8592 0.0936 3.2711 × 

 10–10
1.8086 × 
 10–05 0.9147 0.0936 4.6811 × 

 10–10
2.1635 × 
 10–05 0.8629

Sigmoid

BFGS 0.8707 0.0916 4.2463 × 
 10–10

2.0606 × 
 10–05 0.8668 0.0999 4.6469 × 

 10–10
2.1556 × 
 10–05 0.8747 0.0862 4.5130 × 

 10–10
2.1244 × 
 10–05 0.8669

Gradient 
descent 0.8685 0.1068 4.4001 × 

 10–10
2.0976 × 
 10–05 0.8638 0.1170 4.5632 × 

 10–10
2.1361 × 
 10–05 0.8797 0.1062 4.7980 × 

 10–10
2.1904 × 
 10–05 0.8621

Conjugate 
gradient 0.8684 0.0981 4.3499 × 

 10–10
2.0856 × 
 10–05 0.8640 0.1059 4.6255 × 

 10–10
2.1507 × 
 10–05 0.8760 0.0828 4.5455 × 

 10–10
2.1320 × 
 10–05 0.8654
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Thus, our built model serves to predict the value of the fouling resistance of the cross-flow heat exchanger in 
the phosphoric acid concentration process. Therefore, the developed model is made up of a single hidden layer 
containing six neurons having hyperbolic tangent transfer function.

The predicted value of fouling resistance  (Rf) in real coordinates is calculated according to the following 
procedure:

1. All the independent variables should be normalized into an interval of [− 1 1] using Eq. (13)  below20:

where d refers to the normalized data values, d represents the numeric data value of each independent vari-
able,  dmin and  dmax are the minimum and maximum data values, respectively, of each variable.  nmin and  nmax 
are the minimum and maximum values, respectively, of the new range. In our case  nmin = − 1 and  nmax =  + 1. 
Eq. (13)  becomes20:

  The matrix should be arranged in 6 rows and 1 column for the cross-flow heat exchanger.
2. Multiply the obtained normalized variables in the previous stage by the matrix of weights  (w2,1) constituted 

by 6 rows and 6 columns.
3. Add the bias  (b2) of the independent variables to the obtained results in stage 2.
4. Using hyperbolic tangent transfer function [Eqs. (15) and (16)] for calculating  (yj) for the all six elements 

on the matrix of step  320.

where  tj is the threshold. The input which is multiplied by the corresponding weights  (wj,rxr), summed 
together, added extra bias  (bj) and applied to an activation or transfer function (f) to form a single output  (yj).

5. Multiply the results obtained in step 4 (Matrix size = (6 × 1)) by the transpose of the weight of the dependent 
variable  (w3, 2).

6. Add the value of the bias  (b3) to the result of step 5 (i.e. 0.40541).
7. Calculate  (yj) for the limited predicted value of fouling resistance  (Rf) obtained in the previous step using 

(Eq. 15).
8. The predicted value of the fouling resistance  (Rf) obtained is calculated according to the following relation-

ships:

Noted that the parameters of our intelligent model are adjusted by experimental data of the considered sys-
tem. The construction of an intelligent system with good estimation of fouling resistance is for a specific type of 
fluid which is the phosphoric acid. It is applicable to a whole of variables within the allowable ranges as shown 
in Table 5. For operating periods ranging up to 122 h, the inlet and outlet temperatures of fluid and the steam 
temperature should not exceed 78 °C, 86.8 °C and 125 °C, respectively, the phosphoric acid density should not 
be above 1656 kg/m3, and the volume flow rate should not be below 2102  m3/h to obtain values of  (Rf) close to 
reality by the developed model.

ANN model evaluation. To check the adequacy of the ANN model, a comparison between the experimental 
data and the estimated data is depicted in Fig. 5. In this case, estimated results were found close to the experi-
mental results. The concentration of the experimental points around the 45° line affirms that the data are well-
fitted.

w2,1 =















1.60223 0.17246 −0.39399 0.02347 0.35963 −0.05585
−1.38055 −0.34202 −0.18133 −0.73088 −0.44725 0.02337
−1.13902 −1.36280 1.87377 −0.42610 0.11855 0.25272
−0.35060 0.68046 −0.64473 0.08211 0.08260 −0.47503
−2.10447 0.46459 0.56041 −0.52793 −0.11390 −0.58764
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Table 6 display the simulation values obtained from the optimized ANN model. The value of the corre-
lation coefficient  (r2

ALL) of the simulated data versus the experimental data of fouling resistance was 0.9950 
 (r2

validation = 0.9938,  r2
training = 0.9952 and  r2

test = 0.9958). If  (r2) values are higher than 0.9, this indicate a good 
relationship amid the experimental and predicted  values20. In this case, the constructed ANN model, which was 
trained using experimental values, estimated the fouling resistance efficiently in cross-flow heat exchanger. For 
this reason, the use of the ANN to estimate the performance of thermal systems in engineering applications is 
recommended.

Comparison of the estimated values using RSM and ANN models. In this research, the thermal 
performance of cross-flow heat exchanger was estimated by the RSM and ANN methods, as detailed in the previ-
ous sections (“Response surface methodology” and “Artificial Neural Network”). Furthermore, the expressions 
of the fouling resistance were derived. To evaluate the accuracies of the developed ANN and RSM models, the 
estimated parameter was compared with the experimental data, which is displayed in Fig. 6.

From this regression diagram of the ANN and RSM estimated models, data of RSM model was found nearly 
distributed on 45° line than ANN model.

In addition, five statistical parameters were selected for comparison to further verify the estimation models, 
as shown in Table 8. This statistical investigation showed that the  r2 estimated by RSM is more accuracy, and the 
value is comparatively closer to 1 than ANN approach. This involves that model developed by RSM was more 
effective and estimated the fouling resistance more precisely. The lowest values of RMSE, MSE and RMSE for 
RSM than of ANN confirm that the RSM has also clear perfection comparing to ANN.

Figure 5.  ANN estimation versus experimental results.
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Figure 6.  Comparison of experimental values with RSM and ANN estimation of fouling resistance.

Table 8.  Comparison between RSM and ANN.

Parameter RSM ANN

AARD 0.0397 0.0480

MSE 8.2525 ×  10–12 1.8114 ×  10–11

RMSE 2.8727 ×  10–6 4.2561 ×  10–6

r2 0.9976 0.9950
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According to the above-discussed viewpoints, RSM yields a more reasonable performance than ANN in 
estimating the fouling resistance.

A similar scenario with the result found in this study has also been observed by Awolusi et al.50 which proved 
that the RSM model is more accurate than the ANN model. In contrast, several authors discovered a better preci-
sion of ANN model versus to RSM model.

For this reason, the result offers the prospect of RSM may also precede in estimation over ANN with better 
accuracy. This also ceases the former beliefs of ANN being invariably better.

Conclusions
In this paper, two efficient and highly accurate estimation tools which are response surface methodology and arti-
ficial neural network were applied to analyze and estimate the thermal performance of cross-flow heat exchanger 
with the aim of evaluating their suitability for application in the cleaning schedule of the heat exchanger and for 
controlling operation of the phosphoric acid concentration plant. The influences and significances of the process 
parameters on the fouling resistance were analyzed by adopting the analysis of variance as the statistical proce-
dure. By using these two models, the relationship between the process parameters and response was determined.

The main results derived from this work are the following:

– The regression model of fouling resistance was developed and evaluated for accuracy during the analysis of 
RSM model. Six sets of interactions of the operating variables of the concentration loop that had significant 
effects on the fouling resistance were studied in detail. The value of  r2 was closely to 1  (r2 = 0.9976). The AARD 
of the fouling resistance was 0.0397% and the MSE and the RMSE were less than 0.00028%. The values of sta-
tistical parameters indicate that the model had good accuracy and the regression diagram show that good fit 
was achieved. The selected input parameters had statistically significant impacts on the thermal performance 
of heat exchanger increased with the acid inlet temperature and decreased with acid outlet temperature and 
volume flow rate.

– An ANN model based on back-propagation algorithm was developed after using 70% of the experimental 
data for training. After the process of training, validation and testing, it was found that model of BFGS 6–6–1 
was the best architecture for fouling resistance. The value of  r2 was closely to 1  (r2

ALL = 0.9950). The AARD of 
the fouling resistance was 0.0591% during testing process and the MSE and the RMSE were less than 0.0004% 
for the training process indicating that the predictive results of the network were in good agreement.

– The statistical parameters were also used to compare the experimental and estimated values for both methods 
while the visual inspection of the regression diagram was used to further verify and compare the estimation 
models. The results of the statistical parameters indicated that the  r2 value estimated by RSM is more accu-
racy, and the value is comparatively closer to 1 than ANN approach. The values of AARD, MSE and RMSE 
for RSM are less than of ANN. In addition, the visual inspection showed that the estimated values obtaining 
by RSM and experimental values were nearly distributed on 45° line. All these results confirm that the RSM 
model is more accurate than the ANN model.
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