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Comparison of discriminant 
methods and deep learning 
analysis in plant taxonomy: a case 
study of Elatine
Andrzej Łysko 1, Agnieszka Popiela 2, Paweł Forczmański 1, Attila Molnár V. 3,4, 
Balázs András Lukács 4,5, Zoltán Barta 6, Witold Maćków 1 & Grzegorz J. Wolski 7*

Elatine is a genus in which, flower and seed characteristics are the most important diagnostic features; 
i.e. seed shape and the structure of its cover found to be the most reliable identification character. 
We used a combination of classic discriminant methods by combining with deep learning techniques 
to analyze seed morphometric data within 28 populations of six Elatine species from 11 countries 
throughout the Northern Hemisphere to compare the obtained results and then check their taxonomic 
classification. Our findings indicate that among the discriminant methods, Quadratic Discriminant 
Analysis (QDA) had the highest percentage of correct matching (mean fit—91.23%); only the deep 
machine learning method based on Convolutional Neural Network (CNN) was characterized by 
a higher match (mean fit—93.40%). The QDA method recognized the seeds of E. brochonii and E. 
orthosperma with 99% accuracy, and the CNN method with 100%. Other taxa, such as E. alsinastrum, 
E. trianda, E. californica and E. hungarica were matched with an accuracy of at least 95% (CNN). 
Our results indicate that the CNN obtains remarkably more accurate classifications than classic 
discriminant methods, and better recognizes the entire taxa pool analyzed. The least recognized 
species are E. macropoda and E. hexandra (88% and 78% match).

The Elatine L. genus consists of cc. 15–25 ephemeral, aquatic species1, many of them considered as rare and 
threatened within their range. In recent years, several studies have been carried out on many of the species of the 
genus to clarify their distribution, ecology, molecular taxonomy, biology, cardiology and phenotypic plasticity2–10. 
These studies attribute the observed environmental induced phenotypic plasticity of the European species, since 
all the species has distinctive aquatic and terrestrial forms. These morphological variations of the species have led 
to taxonomical errors, since aquatic and terrestrial forms often described as separate species, and also made spe-
cies identification difficult. Consequently, many authors have emphasized the importance of seed morphology in 
Elatine taxonomy, especially their shape, i.e. the degree of their curvature, and the structure of the seed coat2,11–15.

Recent studies on the taxonomy, phytogeography and morphology of the genus Elatine evaluated the mor-
phometric features of seeds of 10 species (including all native European taxa) and revealed that, apart from the 
generative traits, only the seed morphology is valuable for taxonomic purposes6,9,16. However, it is not obvious 
how to measure and characterize seed shape or seed coat, and whether the analyzed traits are sufficient to dis-
tinguish species. Measurements conducted included seed width and height morphometry, seed bend, size and 
number of pits. This work was conducted manually using morphometric measurement software, which requires 
a great deal of care and time commitment. These results also, depending on the identifying individual, may not 
be very reproducible (which can affect the result), unlike automatic determinations conducted by computer, 
which are always the same on the same images.

To avoid subjective approaches that often resulted in misinterpretations of a species character, scientist apply 
comparative methods requires measured data of species traits, that allow us to classify species in a statistical 
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basis. For such classification purposes, various types of discriminant analysis are often used including Linear 
Discriminant Analysis (LDA) and the related Fisher’s Linear Discriminant Analyses (FLD)17,18, Quadratic Discri-
minant Analysis (QDA, Partial Least Squares Discriminant Analysis, Regularized Discriminant Analysis19, and 
the K-nearest neighbor and tree classification method20. There are also methods, such as the neural networks, less 
used in taxonomy21, but which now becoming very popular techniques in industry22–24 and in pharmaceutical 
science25. Moreover, their application in classical botanical, zoological or ecological purposes also recognised as 
very useful cognitive tool26,27. Their primary advantage is their comparable precision to human determinations 
and the high reproducibility of the results obtained.

To date, taxonomic research has rarely employed neural networks, and no attempts have been made to com-
pare the obtained identifications with more classical discriminant methods. On the other hand as the literature 
review shows, these modern methods of analysis provide a new, significantly different view of the issues under 
study. Thus, in taxonomic studies, we may obtain different results from those currently recognized in the lit-
erature. This has become the reason to take up this innovative and novel research topic. The aim of the present 
study was to evaluate the potential of these new methods in taxonomic research. To this end, the study has the 
following goals: the construction of an algorithm for identifying taxa of the genus Elatine on the basis of seed 
characteristics, an analysis of the obtained metric data using deep learning methods, a comparison of these 
findings with the results of classical morphometric methods, and final confirmation of the obtained results in 
terms taxonomic classification.

Materials and methods
Seed material.  In total, seeds from 12 taxa of the genus Elatine were collected. Some of the seeds was col-
lected in the field, others originated from cultivated plants or from herbarium specimens stored in Herbarium 
of Debrecen (DE) and Herbarium Stetinense (SZUB). Seeds were originated from two or three populations of a 
species; but, E. californica and E. brachysperma were only obtained from single populations. As such, 28 popu-
lations from 11 countries in Europe, Africa and North America were used for the study (Fig. 1). The distance 
between the populations of each species ranged from about 10 to 2000 km (Table 1).

Elatine hungarica, E. hydropiper and E. triandra are protected species and were sampled in Hungary with 
the permission of the Hortobágy National Park Directorate (Permission id.: 45-2/2000, 250-2/2001). In the case 
of other species only seeds were collected in the field, not specimens, namely permission is not required. Plant 
breeding was carried out in growing chambers. In Poland and Hungary, a Elatine sp. growing permit is not 
required. Attila V. Molnar and Agnieszka Popiela were responsible for the formal identification of the plant mate-
rial used in this study. All methods were carried out in accordance with relevant guidelines in the method section.

High-resolution scanning electron microscope (SEM) images of seeds were taken from several individuals 
from each population (24 to 50 seed photos perpopulation of the species) (Table 1). In total, 1299 SEM images 
of the seeds were obtained at × 200 magnification using a Zeiss Evo SEM.

Numerical analysis.  Deep convolutional networks (CNN): based seed classification.  Our approach is based 
on a so called deep learning, a subdomain of machine learning. The base algorithm uses convolutional neural 
network that is biologically-inspired algorithm for data processing28. CNNs are usually devoted to solving visual 
tasks, where large training datasets are available yet no clear and deterministic solutions can be employed. CNNs 
are a direct extension of well-known artificial neural networks (eg. Multi-layer Perceptron), proposed in the 
second half of twentieth century29.

Figure 1.   Location of the tested seed populations of Elatine; (A) Europe and Africa, (B) North America; 
explanation of abbreviations in Table 1.
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The input data were provided as raster images of 1024 × 768 pixels, represented by 8-bit gray-scale values. The 
data was taken directly from the electron microscope; each image includes not only the image data of the seed, 
but various metadata related to the imaging parameters, date and time of collecting etc. In many cases, the seed 
in the image is accompanied by fragments of other seeds, miscellaneous additional objects and various artifacts 
(Supporting Information Fig. 1).

Processing algorithm overview.  The processing algorithm consists of two main steps. Due to the small number 
of images, it is not possible to employ a simple, yet effective, end-to-end learning approach. Instead, a two-tier 
deep-learning approach was used. The first tier contains a CNN (Convolutional Neural Network) devoted to 
image pre-processing, and the second tier a CNN responsible for feature extraction and classification. The input 

Table 1.   Species included in the study, origins of the studied populations, information voucher specimens, 
and the number of seeds. *Cultivation in Poland. **Cultivation in Hungary.

No Acronym Name Origin Latitude Longitude Collector, voucher No. of pictures of seeds

1 alsHU Elatine alsinastrum L Hungary: Konyár** 47.31 21.67 Molnár V.A
DE-2226 50

2 alsPL1 E. alsinastrum Poland: Staw Noakowski* 50.80 23.03 Popiela A
SZUB 008,756 51

3 alsPL2 E. alsinastrum Poland: Strzelczyn 53.01 14.54 Popiela A
SZUB 015,968 45

4 bracUSA E. brachysperma A. Gray USA: Fallbrook 33.46  − 117.37 Löki V 50

5 broMO E. brochonii Clavaud Morocco: Ben Slimane** 33.62  − 7.07 Lukács B.A
DE-43230 50

6 broSP E. brochonii Spain: San Silvestre de Guzmán** 37.4  − 7.36 Molnár V.A
DE-37684 50

7 calUSA E. californica A. Gray USA: Los Angeles 33.82  − 118.34 Löki V 50

8 camIT E. campylosperma Seub Italy: Sardegna, Gesturi** 37.12  − 6.49 Molnár V.A
DE-37423 50

9 camSP E. campylosperma Spain: El Rocio, Donana** 39.73 9.03 Molnár V.A
DE-37681 55

10 gusIT(L) E. gussonei (Sommier) Brullo, Lanfr., 
Pavone & Ronsisv Italy: Lampedusa 35.51 12.56 Molnár V.A. & Lukács B.A 50

11 gusIT(S) E. gussonei Italy: Sicily, Modica** 36.76 14.77 Molnár V.A
DE-38750 50

12 gusMAL E. gussonei Malta: Gózó: Ta’ Sannat** 36.01 14.25
Molnár V.A
& Lukács B.A
DE-43229

50

13 gusSP E. gussonei Spain: Casar de Cáceres** 39.33  − 6.25 Molnár V.A
DE-43231 50

14 hexPL1 E. hexandra (Lapierre) DC Poland: Janików 51.57 14.96 Popiela A
SZUB 015,964 33

15 hexPL2 E. hexandra Poland: Milicz* 51.55 17.35 Popiela A
SZUB: 010,851 50

16 hunHU E. hungarica Moesz Hungary: Konyár** 47.31 21.67 Molnár V.A
DE-22266 50

17 hunRUS E. hungarica Russia: Volgograd** 49.76 45.7 Mesterházy A
DE-37484 50

18 hunSLO(O) E. hungarica Slovakia: Okánikowo 47.78 17.88 Eliáš P
SZUB 010,523 25

19 hunSLO(S) E. hungarica Slovakia: Somotor 48.40 21.80 Eliáš P
SZUB ? 24

20 hydHU E. hydropiper L Hungary: Tiszagyenda** 47.36 20.52 Molnár V.A
DE-22273 50

21 hydPL E. hydropiper Poland: Parowa 51.38 15.23 Popiela A 50

22 macIT E. macropoda Guss Italy: Sardegna: Olmedo** 40.63 8.41 Molnár V.A
DE-37424 50

23 macSP E. macropoda Spain: Casar de Cáceres** 39.19  − 6.29 Molnár V.A
DE-37692 50

24 ortCZ E. orthosperma Düben Czech Republic: Klášter* 49.02 15.15 Šumberova K 50

25 ortFI1 E. orthosperm Finland: Kokemäki 61.23 22.23 Suominen J
H 439,800 25

26 ortFI2 E. orthosperma Finland: Oulu* 65.06 25.47 Mesterházy A
DE-43232 50

27 triHU E. triandra Schkuhr Hungary: Kisköre* 47.50 20.50 Molnár V.A
DE-22282 41

28 triPL1 E. triandra Poland: Janików 51.57 14.96 Popiela A
SZUB 010,520 50
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to the first stage is the image collected from the electron microscope, while the output is a standardized image 
with a fixed size. The second tier takes this input and classifies it as belonging to one of 12 classes.

Initial preprocessing.  The preprocessing stage consisted of four steps: 1. seed segmentation; 2. image crop-
ping; 3. image padding; 4. image scaling to a final resolution. Seed segmentation was performed using a U2-Net 
approach30 as implemented in the rembg library31. The CNN was not trained with our set of seed images: it was 
used “as is”. In a significant majority of cases, it was found to segment the seeds with high accuracy (average 
93.4%; median 93.5%).

During this process (Supporting Information Fig. 2) small objects and text areas were removed successfully; 
however, in some cases, slightly larger objects were present in the image, which were considered important by 
the U2-Net. In such cases, additional post-processing was performed to remove any unnecessary objects (Sup-
porting Information Fig. 2B). In the case of background contamination present, it was important that the seeds 
did not come into contact with the analyzed image. In cases where the image could not be separated, it was not 
considered.

The segmented image is then subjected to classical computer vision processing, namely thresholding, contour 
detection and removal of all contours but the most prominent one. Thus the main object in the scene, i.e. the 
analysed seed, was isolated (Supporting Information Fig. 3). This method has been validated in several previous 
studies32,33.

Following this, a binary mask was used to extract the area contains occupies the seed and crop it to a square 
of a consistent size. The cropping was combined with padding, as many seeds are rectangular in shape and simple 
cropping would remove necessary image parts. In our case the output cropped/padded image measured 128 × 128 
pixels (Supporting Information Fig. 4).

Data augmentation.  Since the number of original samples is low, data augmentation was needed to train a 
robust classifier based on the CNN; therefore, resultant images were used in the classifier. In this case, the fol-
lowing classical image processing operations were used: 1. changing brightness and contrast of input images 
(five variants of the original image); 2. sharpening images using convolution filtering (six variants of the original 
image, combined with flipping); 3. blurring images using convolution filtering (12 variants of the original image, 
combined with flipping); 4. rotating images (61 variants of the original image, cyclic rotation by 15 degrees 
combined with flipping); 5. Simple image flipping along horizontal and vertical axes (2 variants) (exemplary 
augmentation results are presented in Supporting Information Fig. 5).

Training the model.  The input to the net is a 128 × 128 pixels, single channel, gray-scale image. The output 
consists of a one-hot-vector encoding 12 classes related to the seed species investigated. It was found that 
128 × 128 was the minimal size that could capture all the important visual characteristics of the seed: smaller 
images (32 × 32 and 64 × 64) did not manage to describe the seed with sufficient precision, while larger images 
(256 × 256) entailed greater memory use and computational effort without significantly increasing accuracy.

At the feature extraction stage, the net consists of four convolutional layers (16, 32, 64 and 128 filters with 
kernels equal to 3 × 3, respectively), followed by batch normalization and max pooling layers (with kernel equal 
to 2 × 2). The activation function in all these cases is ReLU. The classification is performed using further two fully-
connected dense layers followed by dropout layers. The output consists of a dense layer of 12 neurons activated 
with the SoftMax function (The net structure is presented in Supporting Information Fig. 6).

In total, the net needed to be trained for 168,076 parameters, which makes it rather lightweight and quite easy 
to train. The training was performed using Adam optimizer with a learning rate equal to 1e−4 and decay equal 
to 1e−4. The system used binary crossentropy as a loss function to control the training progress. The training 
was set to a maximal number of 4500 epochs with an early stopping rule to break the process, when the training 
reaches the plateau. Training/validation sets were created by randomly splitting the original in 75%/25% propor-
tions. At the training stage, 974 original images yielded 83764 augmented images (86 variants per one image). 
The testing employed 325 original images (without augmentation).

Morphometric analyses.  The tested material was subjected to morphometric measurements to allow sta-
tistical analysis. A total of six parameters were measured: object area; profile-specific perimeter (object perim-
eter); object rectangle a (length); object rectangle b (width); angle, curvature, number of pits on the seed coat 
(Supporting Information Fig. 7).

Seed classification was performed on the basis of the above six variables using three different statistical 
methods: Linear Discriminant Analysis (LDA); Quadratic Discriminant Analysis (QDA) and Random Decision 
Forest (RDF)17,34,35. The first two methods (LDA and QDA) are classic classifiers that use LDA; these can be used 
for supervised dimensionality reduction by projecting input data onto a linear subspace consisting of directions 
that maximize the separation between classes. This method is only appropriate for multiclass data sets.

Quadratic Discriminant Analysis (QDA) can be employed when the covariances differ, while, Random Deci-
sion Forest (RDF) is a machine learning method based on decision trees used for inter alia classification and 
regression. The trees are built in such a way that each one depends on the value of an independently-sampled 
random vector.

The Python scikit-learn libraries and modules in Python version 3.8 allow LDA, QDA and RDF analysis. Each 
analysis was repeated in a loop a hundred times, with all statistical results removed after each loop and recalcu-
lated in the next loop. On this basis, the average correctness of all analyses was calculated. The number of deci-
sion trees in the RDF (n estimators) method was set to 100. In each repetition, the data was randomized a new.
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A module sklearn.metrics.confusion_matrix was used to assess the correctness of prediction in all methods. 
The importance of the individual variables in the data sets and individual classification methods was assessed 
using the module sklearn.inspection.permutation.importance (which calculates the importance of each vari-
able in the analysis). The selection for the training and test groups was carried out using the module sklearn.
model_selection.train_test_split. The data set was divided for each of the 12 taxa, with a size of 75% (training 
set) and 25% (test set), respectively, in such a way that the training and test set cases did not coincide in any of 
them. In each repetition, the data was randomized a new.

The map (Fig. 1) was made by the first author of the article (A.Ł.), based on open data: Space Shuttle Radar 
Topography Mission (SRTM) made available by https://​earth​explo​rer.​usgs.​gov/. The map is the result of the 
transformation of the source data. The map was made in QuantumGis software (QGIS 3.16) (https://​www.​qgis.​
org). A list of the software used here is available in the first author of this manuscript.

Results
General results.  Among the selected discriminant methods, the Quadratic Discriminant Analysis (QDA) 
showed the highest percentage (91.23% on average) of correct fit for the test set following 100 repetitions; this 
was followed by RDF (89.96%) and LDA (86.78%). However, deep machine learning based on CNN (Convolu-
tional Neural Network) was more accurate, with an average fit of 93.4% after 100 repetitions (Table 2; Supporting 
Information Fig. 8).

The results of the discriminant analyses.  The Linear Discriminant Analysis (LDA) classified the seeds 
of E. brachysperma and E. alsinastrum with 98% and 96% accuracy, respectively. The first taxa (E. brachysperma) 
was confused with E. triandra in 2% of cases, while the seeds of the second (E. alsinastrum) were mistaken (at 
4%) with E. hexandra (2%), E. brochonii (1%). and E. macropoda (1%) (Fig. 2A).

The least accuracy by LDA was observed for seeds of E. californica (55% correct classifications) and E. campy-
losperma (65%). The former was most commonly mistaken for E. gussonei (28%) and E. hungarica (17%), and 
the latter for E. hungarica (18%) and E. hydropiper (16%) (Fig. 2A). The LDA analysis most often incorrectly 
classified specimens of E. alsinastrum, E. gussonei, E. hexandra, E. hungarica, E. macropoda, E. triandra with 
other taxa (confused with three other taxa); however, in all cases, the rate of incorrect classification did not 
exceed 9% (Fig. 2A).

The Random Decision Forest (RDF) analysis recognised the seeds of E. brachysperma, E. brochonii, E. 
orthosperma and E. triandra with 97% accuracy. The first taxon (E. brachysperma) was confused with E. triandra 
in 3% of cases. The second taxon, E. brochonii, was mistaken for E. alsinastrum in 1% of cases, E. brachysperma 
in 1% and E. triandra in 1%. Finally, E. orthosperma was confusd with E. alsinastrum; while E. triandra was 
mistaken for E. hexandra in 2% of cases and E. brachysperma in 1% (Fig. 2B).

However, the least accuracy by RDF was noted for E. californica (69%). This taxon was most commonly mis-
taken for E. hungarica (in 16% of cases) and E. gussonei (14%) (Fig. 2B). It can also be seen that the RDF most 
often misclassified E. gussonei and E. macropoda (confused with four other taxa). The remaining seeds were on 
average confused with two or three species (Fig. 2B).

The Quadratic Discriminant Analysis (QDA) recognised the seeds of E. brochonii and E. orthosperma 
with 99% accuracy. The former (E. brochonii) was confused with E. hexandra in 1% of cases, and the latter (E. 
orthosperma) with E. alsinastrum in 1% (Fig. 2C). The least accuracy for the QDA was noted for E. hexandra 
(81% of correct classifications) and E. californica (71%). In the case of the former, it was mainly confused with 
E. hungarica (incorrect in 22% of cases) and E. gussonei (7%), while E. hexandra was incorrectly classified as E. 
macropoda (14%), E. brochonii (4%) and E. alsinastrum (1%) (Fig. 2C). The Quadratic Discriminant Analysis 
most frequently misclassified E. gussonei and E. macropoda (confused with four other taxa). The remaining seeds 
were on average confused with more than two species (Fig. 2C).

In the QDA method, five taxa had an average match of at least 95%, while in RDF and LDA, four. All meth-
ods demonstrated the least accuracy for E. californica (LDA 55%, RDF 69% and QDA 71%), being most often 
confused with E. gussonei and E. hungarica: the respective misclassification rates were 28% and 17% in LDA, 
14% and 16% in RDF, and 7% and 22% for QDA. For RDF and QDA, an average level of fit (about 80% to 90%) 
was noted for E. hexandra, E. hungarica, E. macropoda and E. campylosperma, with the highest matches (i.e. 
over 90%) recorded for E. alsinastrum, E. brachysperma, E. brochonii, E. gussonei, E. hungarica, E. hydropiper, E. 
orthosperma and E. triandra.

In the LDA and RDF models, among all the features studied, the characteristics that had the greatest impact 
on the prediction process were: angle (44% and 31% respectively), pits (31%, 33%) and rectangle a (41% and 
19% respectively) (Supporting Information Fig. 9A,B). In contrast, the least impact was observed for profile 
(8%) and surface (20%) for LDA, and surface (5%) and profile (6%) for RDA analysis. In the case of QDA, the 
greatest impact was noted for rectangle b, rectangle a and surface (48%, 45% and 45% respectively), and the least 
for profile (27%) and pits (36%) (Supporting Information Fig. 9C).

CNN networks analysis.  The CNN analysis classified E. brochonii and E. orthosperma with the highest 
accuracy (100%), followed by E. alsinastrum and E. trianda (96% accuracy), and E. californica and E. hunga-
rica (95% accuracy). Finally, E. brachysperma and E. hydropiper were recognized with 94% precision (Fig. 2D). 
On the other hand, E. macropoda and E. hexandra were classified similarly or slightly worse than the classical 
method, with respective accuracy of 88% and 78%. In the case of the former, it was incorrectly classified as E. 
macropoda (9%), E. brachysperma (5%), E. alsinastrum (4%), E. hungarica (2%) and E. triandra (2% error), while 
the latter was conused with E. hexandra (8%), E. alsinastrum (2%) and E. orthosperma (2% error) (Fig. 2D).

https://earthexplorer.usgs.gov/
https://www.qgis.org
https://www.qgis.org
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In addition, the CNN network analysis most often incorrectly classified E. hexandra and E. hungarica (with 
five species) as well as E. gussonei and E. macropoda (with three taxa). The remaining seeds were typically mis-
taken for two or one species (Fig. 2D).

The results obtained are confirmed by the ROC curve and the AUC value. The CNN method is better than the 
other used classical statistical methods based on morphometry. All methods obtained a high AUC value, close 
to 1. Thus, it should be considered that, according to the result obtained, the differences between the various 
machine learning results are good. However, this does not change the fact that the best results and AUC values 
are obtained using deep machine learning CNN (Fig. 3).

Discussion
Our findings indicated that CNN-based deep machine learning offerered similar or better quality predictions 
than the LDA, RDF and QDA methods in 10 cases.

In the CNN analysis, the seeds of E. brochonii and E. orthosperma were recognized with an accuracy of 100%, 
and the remaining taxa, apart from E. hexandra and E. macropoda, were recognized with over 90% precision. 

Figure 2.   Confusion matrix in 100 repetitions in methods: (A) LDA; (B) RDF; (C) QDA; (D) CNN analysis.
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Our findings are consistent with the those of morphological studies: the mentioned species are clearly distinct 
from the others by the length and width of their seeds2,36.

The CNN analysis demonstrated the least accuracy for the E. hexandra and E. macropoda seeds (78% and 88%, 
respectively). This is in line with Popiela et al.16, who note that the seeds of these species can be easily confused, 
especially if only a few are assessed. They also found these taxa to demonstrate much greater seed variability 
than other taxa of the described genus; this has also been confirmed elsewhere15,16,37.

The QDA, LDA and RDF analyses, based on the human- measured parameters demonstrated a lower per-
centage of correct classifications (mean of correct classifications in the range of 86–91%) than the CNN analysis 
(mean 93%). The QDA method demonstrated a mean match at least 95% for six taxa, RDF for five taxa and 
LDA for four.

The highest matches (over 90%) were demonstrated for E. brochonii, E. triandra, E. orthosperma, E. hydropiper, 
E. brachysperma, E. alsinastrum and E. gussonei. In all methods, the worst classified species was E. californica 
(55% LDA; 71% RDF and QDA), which was most often confused with E. hungarica; this was confused in 16% 
of cases by LDA, 17% of cases by RDF, and as much as 22% by QDA. The variability of the tested Elatine seeds is 
mainly determined by characteristics related to their size, especially their area and circumference2,9,11–14.

Figure 3.   ROC curve and AUC value, for 100 random samples of statistical analysis: Random Forest (RDF), 
Linear Discriminant Analysis (LDA), Quadratic Discriminat Analysis (QDA) and Deep Learning CNN. 
(als)—Elatine alsinastrum L.; (bra)—E. brachysperma A. Gray; (bro)—E. brochonii Clavaud; (cal)—E. californica 
A. Gray; (cam)—E. campylosperma Seub; (gus)—E. gussonei (Sommier) Brullo, Lanfr., Pavone & Ronsisv.; 
(hex)—E. hexandra (Lapierre) DC.; (hun)—E. hungarica Moesz; (hyd)—E. hydropiper L.; (mac)—E. macropoda 
Guss.; (ort)—E. orthosperma Düben; (tri)—E. triandra Schkuhr.

Table 2.   The results of the individual analysis types.

Model Min (%) Max (%) Mean (%) Median (%) SD

CNN 89.5 96.9 93.4 93.5 1.53

QDA 88.0 94.5 91.2 91.4 1.42

RDF 86.2 93.5 90.0 89.8 1.63

LDA 80.9 90.2 86.8 87.1 1.68
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The results of the QDA, LDA, RDF analyzes indicated that the most taxonomically useful features are the 
angle of the seed curvature and the number of pits in the seed coat, with rectangle “a” having a lesser influence; 
they also demonstrate that extensive variation exists both between species and populations within a species. 
These findings are in line with those of Molnár et al.2, Sramkó et al.9, Uotila12,36, Misfud15 and Popiela et al.16.

However, Misfud15 highlights the taxonomic importance of the number and shape of pits in the seed coat in 
populations of E. gussonei and E. macropoda from Malta and Mallorca. Similarly, Molnár et al.2, Molnár, Pop-
iela and Lukács3, and Popiela et al.16 propose that the shape and number of pits can also be used to distinguish 
between the seeds of individual species. Our results indicate that this feature can be omitted because we do not 
need to report it separately when using CNN analysis. The differences observed in the constancy of features, and 
hence their variation within a taxon, may be due to the unclear taxonomic status and phylogenetic relationships 
between some of the analyzed species8,9,38. Elatine gussonei was first described as a variety of E. hydropiper (E. 
hydropiper var. gussonei Sommier); however, this taxon was later classified as a separate species38 and remains 
so today2,3,15,39. Elatine campylosperma was described by Seubert40 from Sardinia; although it was later synony-
mous with E. macropoda11,35,41, it is now recognized as a separate species, and the only known diploid (2n = 18) 
species in the Elatine genus7,9. Finally, Elatine hungarica was last collected from a site in Hungary in 1960 but 
later rediscovered in this area in 199842; its taxonomic status has been discussed over the years before being 
recognized as a species2.

Elatine hexandra is likely of hybrid origin (2n = 108), and its geographical range coincides with that of E. 
brochonii and other species from the subsection Macropodae Sramkó A. Molnár & Popiela, in the Mediterranean 
Basin9. In addition, Razifard10 emphasize the recent origin of E. brachysperma.

Interestingly, the results of phylogenetic studies indicate that the main seed shapes (straight/almost straight, 
curved, U-shaped) are not associated with monophyletic clades. The simple seed shape appears in both older and 
younger lines, suggesting that it may have arisen many times during the evolution of the genus9.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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