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Through history to growth 
dynamics: deciphering 
the evolution of spatial networks
Stanisław Żukowski  1,2, Piotr Morawiecki  3, Hansjörg Seybold  4 & Piotr Szymczak  1*

Many ramified, network-like patterns in nature, such as river networks or blood vessels, form as a 
result of unstable growth of moving boundaries in an external diffusive field. Here, we pose the inverse 
problem for the network growth—can the growth dynamics be inferred from the analysis of the 
final pattern? We show that by evolving the network backward in time one can not only reconstruct 
the growth rules but also get an insight into the conditions under which branch splitting occurs. 
Determining the growth rules from a single snapshot in time is particularly important for growth 
processes so slow that they cannot be directly observed, such as growth of river networks and deltas 
or cave passages. We apply this approach to analyze the growth of a real river network in Vermont, 
USA. We determine its growth rule and argue that branch splitting events are triggered by an increase 
in the tip growth velocity.

Many of the natural patterns are in the form of branched networks: from river networks or cave conduits, mineral 
dendrites, and viscous fingering patterns to biological systems such as blood vessels or leaf  venation1,2 (Fig. 1). 
The physical forces driving their growth vary from system to system: erosion, diffusion, and thermal conduc-
tion, to name just a  few3. Despite these differences, there are many features which these networks share, which 
suggests a common underlying growth  mechanism4–6.

A prominent feature of network growth is the close coupling between geometry and dynamics. The field driv-
ing the growth and the network co-evolve in time, as the evolving network changes the boundary conditions for 
the field. Evolving the network in response to the surrounding field involves two major processes: (i) extension 
of the branches and (ii) bifurcation of a tip into two (or more) branches. To understand the co-evolution of the 
network and the field, it is important to understand how the extension and bifurcation processes are linked to the 
characteristics of the driving fields such as the gradient of the field in the vicinity of the tip. Once the growth rules 
are known, we can predict the evolution of the network geometry based on its configuration at an earlier time.

Such procedure has been applied to river  networks9–13, river  deltas14, viscous  fingers15, discharge  trees16 or 
coral  growth17, leading to network geometries qualitatively and quantitatively similar to those observed in nature. 
However, in many practical cases, the details of the growth rules are unknown. If, in addition, the temporal 
evolution of the pattern is exceedingly slow and can only be observed at a single instance of time, determining 
growth rules from a single snapshot in time becomes a necessity. This gives rise to the following question: can 
we deduce the growth rules from an instantaneous snapshot of the network geometry? In fact, even a single 
snapshot of a network configuration contains information about its growth history, which is inherently linked 
to growth dynamics.

For example, streets in cities are historically built in succession—the oldest being the longest and going 
through the whole city, and the younger extending from the first ones. To extract historical information from 
city maps, Lagesse et al.18 used a multiscale approach exploiting local geometry and alignment at road crossings.

Geological systems, such as river networks, evolve over even longer time scales. They extend through erosion 
at the channel heads at a rate of less than a few millimeters per  year19. One idea for deciphering the growth law 
in these systems is through a backward-forward approach. First, the network is grown backward in time using a 
parameterization of the growth rule with an initial set of parameters, and then it is grown forward in time again. 
Analyzing the correlation of the flux coming to the tips and the orientation of the branches after the backward-
forward step, one can determine the optimal set of parameters that best replicates the initial network  geometry11.
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In this paper, we present a comprehensive method to extract growth rules from a single snapshot of the 
network geometry—the Backward Evolution Algorithm (BEA) (Fig. 2). Within the BEA approach, we probe 
the space of possible growth rules linking the extension of the network with the gradient of the driving field. We 
then apply these growth rules backward in time, backtracking the evolution of the network completely down to 
its seeds. While backtracking, we collect multiple metrics to quantitatively estimate the fitness of a given growth 
rule and select the best. We validate this approach on synthetic data for networks grown in a diffusive field, 
demonstrating that we can not only successfully determine the growth rules of the branches but also assess the 
conditions under which branch splitting occurs. The method thus allows for a thorough analysis of the patterns 
and provides a glimpse into a previously inaccessible growth history.

The model
We begin by introducing a specific family of growth processes, namely, growth driven by a diffusive field. Here, 
the field is coupled to the network through the boundary conditions, as the branches absorb the field fluxes. Many 
natural growth processes can be described by such a system, for example, the formation of blood  vasculature20, 
dissolution patterns in porous  media21, river  networks10,22 or electric  breakdowns23.

If the internal dynamics of the field is fast compared to the evolution of the network, the field can be assumed 
to be quasi-static. This considerably simplifies modeling of the growth process as the diffusion equation reduces to 
the Poisson or Laplace equation for the driving field. Essentially, the equation governing the field can be derived 
from Fick’s law, linking the flux ( �J  ) to the gradient of the field ( ∇φ):

with a respective transport coefficient κ . Combining (1) with the conservation of flux ( ∇ · �J = P ) results in the 
Poisson equation:

(1)�J = −κ∇φ

Figure 1.  Examples of branched spatial networks in nature: (A) White River basin in Vermont,  USA7 (B) 
Adiantum leaf (photo: Jim Mattsson, Simon Fraser University, by permission) (C) Lichtenberg  figure8.

Figure 2.  The backward evolution of a network. Consider a network of unknown growth dynamics. We 
postulate a certain growth rule and use it to evolve the network backward in time. During backtracking, we 
collect metrics to estimate the fitness of different growth rules and select the best.
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where P is a source term. For the special case P = 0 we recover the celebrated problem of Laplacian  growth3,24, 
in which an interface between two immiscible phases moves with a velocity proportional to the gradient of the 
harmonic field:

If the interface is an isoline of the field and the growth rate is proportional to the field gradient, small pertur-
bations of the interface have a tendency to grow. At short wavelengths, the growth of the interface is stabilized 
by regularization mechanisms such as surface tension or kinetic  undercooling25. Otherwise, the flux of the field 
concentrating on the tips favors very thin fingers and leads to their infinitely fast growth—the so-called ultra-
violet  catastrophe26.

The longer wavelengths are generally unstable and have a tendency to grow and eventually transform into 
 fingers27–31. There are two main processes responsible for the pattern formation in these systems: (i) screening 
between the nearby branches mediated by the harmonic field, which results in an increased growth rate of the 
longer branches and suppression of growth of the shorter ones, and (ii) tip splitting, when the branch bifurcates, 
giving rise to a pair of daughter branches. The interplay of these two processes leads to the appearance of a highly 
ramified hierarchical network-like structure.

Growth dynamics of a similar type underlies a wide range of different processes, including formation of 
the  lungs32–34, bacterial colony  growth35, cave  formation21,36, metallic dendrite formation in electrochemical 
 deposition37,38, dielectric  breakdown23, discharge  trees16, combustion  fingers39, tributary and distributary channel 
formation in river  networks9,14, dendritic patterns in superconducting  films40, leaf  venation41, or blood vascu-
lature  formation20,42,43.

The thin finger model. Not every moving boundary problem leads to the emergence of a spatial network. 
Spatial transport networks have distinct branches, the widths of which are much smaller than the distances 
between them. They are also characterized by well-defined bifurcation points in which one branch splits into 
two. It is thus natural to describe the growth of the network in frames of the thin finger model (TFM), which 
approximates the growing fingers as lines that extend only in  length44–46. As noted in  Ref44, such an approach 
provides also another method of regularizing the Laplacian growth at short wavelengths, without the need 
of introducing the surface tension. This model has been used for the analysis of fingered growth in both the 
 Laplacian45–48 and Poissonian  fields49,50.

Removing the ultraviolet catastrophe through the thin finger approximation comes at a cost. First, the field 
gradient at the tip becomes singular, diverging like r−1/2 in the vicinity of the tip. In polar coordinates (where 
the direction of the tangent to the finger at the tip sets θ = 0—see Supplemental Information, Fig. S1A) the field 
near the tip can be  expanded51,52:

where the coefficients ai depend on the boundary conditions far from the finger tip. Equation (4) holds also for 
the case of Poisson fields, as in a small area around the tip the flux contribution from the source term is negligible 
compared to the flux from the regions away from the tip. Each of the leading coefficients ai in Eq. (4) has a clear 
physical  interpretation10 (Supplemental Information, Fig. S1).

First, the coefficient a1 is linked to the total flux over a small circle of radius r0 around the tip (Supplemental 
Information, Fig. S1E–F):

where r0 is the typical width of the finger.
The coefficient a2 is related to the field asymmetry with respect to the finger growth direction (Supplemental 

Information, Fig. S1G). With the positive a2 flux of the field is larger on the right side of the tip and with the 
negative a2 on the left. However, the finger grows in the direction of the largest flux and, as a result, it turns in 
such a way that a2 always vanishes (principle of local  symmetry11).

Finally, a3 is related to the bimodality of the driving field in the neighborhood of the tip. If we consider a circle 
of radius rB around the tip and study the field as a function of the angle θ , we notice that with a fixed a1 > 0 and 
a2 = a3 = 0 the field has a single maximum at θ = 0 (Supplemental Information, Fig. S1E–F). Now, if we take 
a3 < 0 , then the smaller it is, the flatter the maximum becomes. Eventually, when the second derivative of φ 
becomes negative, which corresponds to the negative value of a3/a1:

the field becomes bimodal and there appear two maxima of the flux at ±θ0 (Supplemental Information, Fig. S1H). 
Note that the threshold value of a3/a1 depends on the distance rB from the tip at which the field is analyzed. For 
sufficiently small rB the field profile is always symmetric with one maximum at θ = 013.
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Growth rules. The growth velocity in classical Laplacian growth is proportional to the field gradient. A 
widely used extension of this rule assumes a power-law relation between the flux into the tip and the growth 
 velocity23,53:

where η is a specific growth exponent. Recalling Eq. (5), we have:

where σ is the proportionality constant linking flux with the growth rate of the tip. The value of the growth 
exponent, η , strongly affects the competition between the  fingers45,46,54 and hence, as shown later, results in 
qualitatively different network geometries (Fig. 4).

While the moving boundary problem in its continuous version has an inherent instability, which splits one 
finger into two daughter branches depending on the finger width and  speed55, in the TFM tip splitting is not 
an intrinsic part of the  dynamics56 and needs to be introduced by hand, based on certain criteria. Two differ-
ent splitting criteria can be found in the literature—the velocity  criterion15,28 and the bimodality  criterion10,17.

The first is based on the observation that the instability wavelength ( � ) decreases with increasing front 
propagation  velocity25,28. As the finger accelerates at some point � becomes smaller than its width, and the finger 
becomes destabilized. Such a criterion can be straightforwardly implemented in the TFM as a threshold on a1 : 
a1 > acrit1 .

The second criterion is linked to the appearance of two maxima of the flux in the neighborhood of the tip, 
which is related to the value of the a3 coefficient. When for a given radius rB the flux of the field has a single high 
maximum, the finger grows in the direction of this maximum. However, if the flux of the field from the sides 
of the tip becomes comparable to that from the front, or even higher (which corresponds to the bimodal field 
around the tip and the appearance of two maxima at ± θ0—Supplemental Information, Fig. S1H), the finger 
attempts to grow in two directions at once, which results in a bifurcation. More precisely, we require the finger 
to split whenever a3/a1 becomes smaller than some critical value (which is negative if we consider the bimodal 
field around the tip or might be positive if we consider a single flat  maximum17). This critical value depends on 
the value of rB (Eq. 6), which introduces a new length scale in the system. For an insightful discussion on this 
length scale in the case of river networks we refer to Ref.10.

Whenever a splitting criterion is fulfilled, two daughter branches are created at θ = ± 36◦ (measured in 
the coordinate system around the tip as before). As shown in  Refs45,46,57, the angle of 2π/5 = 72◦ between the 
two daughter branches is the stable opening angle in the TFM. This characteristic opening angle has also been 
found in natural stream networks formed by groundwater  seepage9 and has been used to characterize the climate 
dependence of river network patterns on Earth and  Mars58,59.

Results
Forward evolution. Given the growth rules described above, we can follow the growth of the network 
starting from the initial positions of the branches (seeds) to understand how the growth rules impact the final 
geometry of the structure. However, except for the simplest cases of one- and two-finger  solutions46, one needs 
to resort to numerical methods here.

First, we rescale the coordinates and the field in both the Laplace and the Poisson case (Supplemental Informa-
tion, section 1), which results in the dimensionless equations:

respectively. In both cases, the dimensionless growth law becomes:

Next, we construct a growth algorithm based on the finite element calculation of the driving field for a given 
geometry of the network and extension of the branches in streamline direction (Supplemental Information, sec-
tion 2). The details of the growth algorithm are described in Supplemental Information, section 3.

We begin by considering a simple case of two fingers growing in a long channel with constant flux of the 
field coming from the top ( (∇φ)�n = 1 ), absorbing boundary conditions ( φ = 0 ) on the fingers and the bottom 
wall, and reflective boundary conditions ( (∇φ)�n = 0 ) on the side walls. The source term P = 0 implies that the 
Laplace equation ( �φ = 0 ) needs to be solved to calculate the field, hence the name of the networks obtained 
in such a setup—Laplacian. The aspect ratio of the channel was set at 1:25, with Figs. 3 and 4 showing only the 
lower portion of the domain.

For a single finger, the parameter η would affect only the growth velocity, but not the network structure. The 
same holds for two identical fingers symmetrically placed left and right of the vertical symmetry line. Thus, we 
break the symmetry by starting from a configuration where the left finger is 50% shorter, and hence collects 
slightly less flux than the right one. For η = 0 the growth velocity of the fingers does not depend on the flux; 
thus, both fingers grow with the same velocity (Fig. 3A). For η < 0 the growth process is stable and the velocity 
is inversely proportional to the flux. Thus, the shorter tip which collects less flux is growing faster, catching up 
with its longer sibling at some point. For η > 0 , however, we have a positive feedback between growth velocity 
and flux; thus, the right branch starts to outcompete the other. Eventually, it screens its sibling from the flux, just 
as the lightning rod screens the surrounding area. The larger the η , the stronger the effect, as shown in Fig. 3B,C.

Next, we present the evolution of branched networks, where we allow the splitting of the fingers according to 
the velocity criterion (Fig. 4). More specifically, a finger bifurcates if a1 > 0.8 . At low η , the competition between 

(7)v ∝ Jη ∝ |∇φ|η ,

(8)v = σa
η
1 .

(9)�φ = 0 or �φ = − 1

(10)v = (a1)
η .
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the fingers is relatively weak. It takes then a long time for one finger to outgrow the other sufficiently to intercept 
enough extra flux in order to split again. The bigger the η , the more dynamic the evolution with a larger number of 
tip splittings. Laplacian structures, similar to those presented in Fig. 4 can be observed in natural systems, such as 
 corals17, dielectric breakdown  patterns23, combustion  fingers39, or leaf venation of evolutionary ancient  plants60.

Figure 3.  The evolution of two fingers for different growth exponents. Initially, the fingers are positioned 
symmetrically in the channel ( xinitial = ± 0.3 ), but their heights differ (0.01 vs. 0.02). The units here are chosen 
in such a way that the channel extends from x = −1 to x = 1 . (A) For η = 0 the fingers grow with the same 
velocity. (B,C) At larger η the growth becomes unstable due to the competition between the fingers for an 
available flux. The colors in the figure correspond to the value of the field driving the growth.

Figure 4.  Comparison of the Laplacian and Poissonian networks for different η exponents. On the left, 
Laplacian networks in a channel with reflective side walls and flux of the field coming from the top. On the right, 
Poissonian networks in a square box with reflective side and top walls and non-zero source term. In the latter 
case, each of the networks has the same total sum of the lengths of the branches. The networks grow from a 
single seed initially placed at 3/4 of the channel width. Fingers can bifurcate with the velocity criterion a1 > 0.8 
in the Laplacian case and with the bimodality criterion a3/a1 < −0.1 in the Poissonian case.
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In a second series of simulations, we consider a non-vanishing source term P  = 0 . Now, the Poisson equation 
( �φ = −1 ) is solved in the domain, hence the name of the networks—Poissonian. We grow the networks in a 
square box with reflective boundary conditions on the top, left, and right walls. As before, the absorbing boundary 
conditions are imposed on the bottom wall and the network itself. Because the flux is now produced uniformly 
across the domain, the system does not have a preferred growth direction, contrary to the Laplacian case. As a tip 
splitting criterion, we have chosen the bimodality bifurcation rule ( a3/a1 < −0.1 ). The two elements: (i) weaker 
competition between the fingers connected to a uniform distribution of the field sources and (ii) the bifurcation 
criterion based on the field on the sides of the tip result in the creation of fractal-like structures, with progres-
sively shorter branches splitting in a self-similar way. Consequently, the geometry of Poissonian networks does 
not depend as strongly on the η exponent as for Laplacian structures (compare the differences of trees in Fig. 4). 
Ramified, self-similar structures of this kind are encountered in river  networks10,22 or blood  vasculature20,42.

The backward evolution algorithm. Having analyzed the deterministic forward growth, we now focus 
on the question of whether it is possible to recover the value of the growth exponent and the bifurcation criteria 
given only the final geometries of the networks, such as those shown in Fig. 4. To this end, we construct the 
Backward Evolution Algorithm. The idea of the method is to start with a set of possible growth exponents η , 
and then evolve the system back in time while collecting geometric information on shrinking structures. These 
data then allow us to assess which growth rule reproduces the evolution of the system in the most accurate way.

To be more specific, we first assume some value of η = η∗ , and then calculate the velocities at the current posi-
tions of the tips ( vγi—Fig. 5A, panels I–II), as well as the distance over which each tip will move over a timestep 
dt : dsi(t) = vγidt = (ai1)

η∗dt . Using the reversed version of the growth algorithm (Supplemental Information, 
section 3) we then obtain the projected previous position of the tip ( ζi ) and trim each branch accordingly. This 
procedure can be repeated iteratively, trimming progressively more and more segments of the branches, and 
thus shrinking the whole network.

In each step of the BEA we collect the local symmetry measure—the a2/a21 value. As mentioned earlier, the a2 
coefficient should vanish along the real trajectory of a growing tip. Thus the value of a2 (rescaled by a21 to make it 
dimensionless) is a convenient measure of how far we are from the real trajectory of the finger. Additionally, we 
make a virtual forward step obtaining an extrapolated position of the tips ( ξi in Fig. 5A, panel III∗ ). Based on these 
data, the overshoot ( �d—distance between the points γi and ξi ) and the angular deflection ( α—angle between 
γi and ξi ) are calculated. In this way, a backward-forward method is incorporated into the BEA, collecting the 
metrics throughout the whole backward evolution of the network, and not only in a single backward-forward 
step (as opposed to  Ref11).

We evolve the network backward in time until it vanishes entirely. In this manner, in each step of the BEA 
we collect N values for each metric, where N is the number of tips. Next, we calculate the quartiles ( Q1 , M, Q3

—quantiles of order 25%, 50% (median) and 75%, respectively) of the data collected over all time steps. This 
procedure is repeated for a range of η∗ values. We expect that all metrics (local symmetry, overshoot and angular 
deflection) will be minimized at a particular value of η∗ , which should correspond to the growth exponent of 
the original network ( η0).

To examine the effectiveness of the BEA, we first grow a test network with some specific value of η = η0 . 
Then we evolve it backward in time for a range of different η∗ values and plot the resulting metrics as a function 
of η∗ . Figure 6 shows the plots for a Laplacian network originally grown with η0 = 1.5 . Figure 6B–D presents 
the quartiles of the collected data. We observe that each median approaches zero exactly at the η0 value that was 
initially imposed to produce the network (marked with the black dashed line).

Figure 5.  The Backward Evolution Algorithm. (A) I–II: The velocities of the tips ( γi ) are calculated, and each 
branch is trimmed by vγidt . This gives the previous tip positions ζi , where we measure the local symmetry 
parameter ( a2/a21 ). III∗ : Additionally, we can use the forward algorithm to obtain an extrapolated position ξi , 
and two additional metrics: the overshoot ( �d—distance between γi and ξi ) and the angular deflection ( α ). (B) 
Definition of the length mismatch ( l0 ) at a bifurcation during the backward evolution.
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Note that at the correct value of the exponent ( η⋆ = η0 ) the interquartile range (IQR—distance between Q1 
and Q3 in 6B–D) of metrics collected during the backward evolution approaches zero. Conversely, for an incor-
rect η∗ , the distribution of the collected data set has some spread due to the fact that we land in different places 
around the initial position after the backward-forward step. Consequently, the IQR dependence also exhibits a 
minimum at the correct η∗ = η0 value. In Fig. 6E-G we show the median of the absolute value of the collected 
data in a logarithmic scale. Pronounced minima observed at η∗ = η0 reflect both the fact that the value of a given 
metric is minimal for the correct η∗ and the fact that the variance of the metric is minimal at η∗ = η0.

Let us consider the possibility of using the position of the bifurcation points in the solution of the inverse 
problem. Since the fingers split at a specific point, then—with the use of the correct growth rule—they should 
also converge to the same bifurcation point as the network is grown backward. If they do not converge simulta-
neously, then measuring the excess length of the longer branch (length mismatch l0 in Fig. 5B) and minimizing 
it with respect to η∗ should allow one to recover the correct growth exponent. Indeed, if we start with η∗ = 0 , 
the branches will be trimmed at the same rate and it will take less time for the shorter branch to reach the bifur-
cation point. In such a case, the length mismatch will be exactly equal to the initial length difference between 
the branches. With η∗ approaching η0 , the length mismatch decreases monotonically to zero, since the longer 
branch—which was growing faster—will also be trimmed faster in the backward evolution. At the correct η∗ = η0 
the branches converge to the bifurcation point simultaneously, which should result in the minimum of the length 

Figure 6.  The Backward Evolution Algorithm applied to a synthetic Laplacian network. (A) Original network 
created with η0 = 1.5 to which the algorithm was applied. (B–D) Quartiles of the collected values of the local 
symmetry, overshoot, and angular deflection. (E–G) Median of the absolute value of the corresponding metric 
plotted in a logarithmic scale. The pronounced minima allow us to estimate the correct η0 (marked with the 
black dashed line on each plot). The results show that the BEA can precisely reconstruct the growth exponent of 
a given network.

Figure 7.  Analysis of the bifurcation points in the BEA: length mismatch ( l0 ) and a1 coefficient at the splitting 
point as a function of the growth exponent ( η∗ ). (A–B) Quartiles of the values of a corresponding metric. 
(C–D) Interquartile range of the distributions (distance between Q1 and Q3 ). The results confirm that the BEA 
is capable of reconstructing not only the growth exponent of a given network based on its bifurcation points but 
also the mechanism behind the tip splitting.
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mismatch, as well as its interquartile range. Throughout the backward evolution, we collect the mismatch value 
from all bifurcation points. The corresponding median and interquartile range exhibit minima at the correct 
η∗ = η0 , as shown in Fig. 7A,C.

Interestingly, we observe a dramatic decrease of the length mismatch above η∗ ≈ 1 (Fig. 7A). This behavior is 
related to the stability of a single bifurcation in an unbounded domain, as studied analytically by Carleson and 
 Makarov45. They have shown that for η < ηc ≈ 1.09382 the growth of the daughter branches after splitting is 
stable and that the fingers move away from each other with equal velocities. For η > ηc , the competition between 
the branches makes their growth unstable, with one speeding up and the other slowing down. With a flipped 
time arrow, the stability of the system is also reversed. Thus, for η > ηc both daughter branches should reach the 
bifurcation point at the same time, hence almost zero length mismatch for larger growth exponents. After zoom-
ing in we nevertheless observe a minimum at the correct η∗ , which is related to the higher order effects such as 
the presence of other branches and the influence of the boundaries of the system. The above reasoning does not 
hold for bifurcations triggered by the bimodality criterion in the Poissonian case. Here, due to the presence of 
local sources, the competition between branches is weaker and, hence, a bifurcation can grow in a stable manner 
even for relatively high η . On the contrary, in the backward evolution there is no stabilizing effect, and we observe 
a pronounced minimum of the length mismatch (Supplemental Information Fig. S2E).

One can also analyze the expansion coefficients of the field indicating a splitting event at the bifurcation 
point ( a1 for the velocity bifurcation criterion or a3/a1 for the bimodality criterion). As can be seen in Fig. 7B, 
the values of a1 at the bifurcation points are converging to one value for the correct η∗ = η0 . Hence, minimiz-
ing the interquartile range of the bifurcation indicators is another way to estimate η0 (Fig. 7D). Importantly, the 
values of a1 or a3/a1 converge exactly to the values used as bifurcation criterion thresholds when the network 
was originally grown. Thus, the BEA analysis of bifurcations gives us not only the correct growth exponent but 
also allows us to recover the bifurcation criterion for a particular network.

The BEA can be applied as well to a Poissonian tree, giving similarly precise estimates of the growth exponent 
(Supplemental Information, Fig. S2). The precision of the predictions decreases somewhat with an increasing 
growth exponent, as shown in Supplemental Information, Fig. S3. This is connected to the increasing growth 
instability at high η—with increasing growth exponent the minima of the metrics become less pronounced, 
finally flattening totally, which makes the reconstruction of the growth rules and estimation of η0 increasingly 
harder. This effect becomes pronounced around η0 = 4 for the Laplace case and η0 = 6 in the Poisson case. The 
wider range of precision in the Poissonian case might be the result of weaker screening and smaller differences 
of velocities between the fingers than in the corresponding Laplacian case.

Backward evolution of the river network. As a final application of our model, we use it to assess the 
growth laws of a real river network, namely the White River basin (HUC-01080105) in central Vermont, USA. 
This river network grows in a humid environment, where diffusive fluxes and groundwater flows may play a cru-
cial role in its  formation58,61–63. For our analysis, we used medium resolution channels in the White River basin, 
as mapped by the NHDPlus  dataset7 and preprocessed as described in Supplemental Information, section 4. We 
assume that the field driving the growth can then be described by the Poisson equation (Eq. 2), with precipitation 
being responsible for the source term. Using Eq. (7) for the rate of erosion, we can apply the BEA to extract the 
parameters of the underlying growth law.

The results of our analysis are presented in Fig. 8. As one could anticipate, the metrics are much more noisy 
than the ones based on the artificial network, with less pronounced minima of overshoot and angular deflection 
and only a local minimum of the local symmetry in the region where the rest of the metrics indicate η0 . The 
bifurcation length mismatch plot (Fig. 8B) is less revealing, with several shallow minima for η > 1.

To determine the growth exponent, we make use of the multiple metrics included in the BEA (local sym-
metry, overshoot, angular deflection Fig. 8A–C; their IQR Supplemental Information, Fig. S5; length mismatch 
and its IQR Fig. 8D–E; and IQR of the splitting indicator Fig. 8G). We normalize each metric so that its values, 
as a function of η⋆ , range from 0 to 1 and average the resulting functions to produce a final measure of the fit of 
a particular η value (Fig. 8H). The resulting function has a single minimum at η∗ = 1.65± 0.25.

The appearance of the minimum in the splitting indicator plot (Fig. 8G) around η∗ = 1.65 suggests that in this 
case the branch splitting events are triggered by an increase of the tip growth velocity. This is further confirmed 
by the analysis of the histogram of branch lengths in the White River, which shows an exponential distribution 
(Supplemental Information, section 5) similar to the analogous distributions for synthetic networks grown with 
the velocity bifurcation criterion. Additionally, we observe an abrupt decrease of the length mismatch for η∗ > ηc 
(8d), which is another indicator of the velocity bifurcation criterion, as already discussed (compare Fig. 7A and 
Supplemental Information, Fig. 2E).

Summary
We have shown that it is possible to use the final geometry of the spontaneously grown network to decipher 
its growth dynamics using the Backward Evolution Algorithm. We tested it on several synthetic networks and 
then analyzed the natural system—the White River basin. The BEA metrics consistently suggest that the growth 
exponent of this network is around η = 1.65± 0.25 . This indicates a nonlinear relation between the erosion rate 
and diffusive flux coming to springs, implying strong competition between different tributaries for groundwater 
flow. Additionally, we determined that the splitting events in this network were triggered by an increase of the 
growth velocity of the channel heads. The BEA method should be equally applicable to other systems, such as 
leaf venation, blood vessel networks, or dielectric breakdown patterns.
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Data availability
The datasets used and/or analyzed during the current study together with the source code are available on the 
GitHub repository (https:// github. com/ stzuk owski/ retic uler).
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