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Texture recognition based 
on multi‑sensory integration 
of proprioceptive and tactile signals
Behnam Rostamian 1, MohammadReza Koolani 1, Pouya Abdollahzade 1, Milad Lankarany 2,3, 
Egidio Falotico 4, Mahmood Amiri 5* & Nitish V. Thakor 6,7

The sense of touch plays a fundamental role in enabling us to interact with our surrounding 
environment. Indeed, the presence of tactile feedback in prostheses greatly assists amputees in 
doing daily tasks. In this line, the present study proposes an integration of artificial tactile and 
proprioception receptors for texture discrimination under varying scanning speeds. Here, we 
fabricated a soft biomimetic fingertip including an 8 × 8 array tactile sensor and a piezoelectric sensor 
to mimic Merkel, Meissner, and Pacinian mechanoreceptors in glabrous skin, respectively. A hydro-
elastomer sensor was fabricated as an artificial proprioception sensor (muscle spindles) to assess 
the instantaneous speed of the biomimetic fingertip. In this study, we investigated the concept of 
the complex receptive field of RA-I and SA-I afferents for naturalistic textures. Next, to evaluate 
the synergy between the mechanoreceptors and muscle spindle afferents, ten naturalistic textures 
were manipulated by a soft biomimetic fingertip at six different speeds. The sensors’ outputs were 
converted into neuromorphic spike trains to mimic the firing pattern of biological mechanoreceptors. 
These spike responses are then analyzed using machine learning classifiers and neural coding 
paradigms to explore the multi-sensory integration in real experiments. This synergy between muscle 
spindle and mechanoreceptors in the proposed neuromorphic system represents a generalized texture 
discrimination scheme and interestingly irrespective of the scanning speed.

The human sense of touch plays a key role in the somatosensory system, enabling us to interact with the sur-
rounding world. In conjunction with tactile sensation, proprioception allows us to perform daily manipulation 
tasks that provide perception and interaction with objects. To respond to the external stimuli delivered to gla-
brous skin, the primary mechanoreceptors, namely, Merkel cells, Meissner, and Pacinian corpuscles transmit 
information to the other levels in tactile processing pathways1. To discriminate the texture of objects, we palpate 
fingers across the surface with variable scanning speed and contact force, leading to corresponding spatial and 
temporal skin responses. Moreover, tactile receptors’ temporal spiking patterns encode fine textural features 
depending on the scanning speed2. Therefore, variations in scanning speed are expected to lead to associated 
changes in the firing rate of afferents with a proportional relationship. Despite many changes in sensory recep-
tors’ activity patterns, the nervous system attains stable perceptual representations of textures2 and indeed our 
perception of the attributes remains stable at variable scanning speeds3. This texture perception, irrespective 
of palpation speed and mechanoreceptors’ dependency, implies that there should be some other mechanism 
contributing to this ability that exploits information about scanning speeds during active touches4.

Active touch involves activating the cutaneous, kinesthetic, and proprioceptive senses, which assist us in 
perceiving scanning parameters and discriminating object qualities, whereas passive touch activates only the 
operation of the cutaneous receptors of the glabrous skin5. In other words, active touch evokes more distributed 
brain activity in areas outside the somatosensory domain than passive touch, perhaps due to motor control 
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ability. The motor control ability is responsible for regulating or directing the essential mechanisms of movement, 
including the neurological, musculoskeletal, and sensory/perceptual systems5,6.

Inspired by the biological mechanisms in neuroscience, neuromorphic engineering is an interdisciplinary field 
that aims to emulate neuronal activities with the aid of electronic devices to encode external stimuli as a sequence 
of action potentials (spike trains)7,8. In particular, a neuromorphic system translates sensory information into 
a pattern of spikes for the communication of sensors with the brain model simulations9. The representation of 
the sensor’s data by spikes possesses an anti-noise capability and offers a reliable propagation10. Recently, dif-
ferent approaches have been taken by using advanced electronic skin (e-skin) and artificial fingertips through 
the spiking activity of artificial mechanoreceptors11. These bio-inspired systems attempt to provide the skin-like 
sensory capability to prosthetic/robotic hands to deliver valuable information about joints (proprioception) 
and estimate realistic force to grasp objects12. In other words, advances in neuromorphic research allow the 
development of artificial mechanoreceptors to produce spike trains9. Prior research studies have discriminated 
roughness using artificial tactile sensors or artificial fingertips10,13. Oddo et al.13 have reported that the frequency 
of the sensor vibrations is shifted systematically to higher frequencies with increasing scanning speed, and vice 
versa. This increment and decrement in scanning speed lead to the wrong recognition of the palpated textures. 
Rongala. et al.14 have implemented a two-layer spiking neuronal network that learns tactile features with vary-
ing conditions for discriminating textures without providing velocity feedback or sensor fusion capability. The 
same texture-palpation test was repeated with several velocities to discriminate various textures under different 
scanning speeds. Liu et al.15 have modeled cutaneous mechanoreceptors of human glabrous skin for discriminat-
ing stimulus, based on the response time interval between adjacent sensor units and the principal frequency of 
vibration. Oddo et al.16 have used a MEMS sensor to discriminate roughness in active touch, which was done by 
using the phase difference between two adjacent taxels. Bouganis and Shanahan17 have used encoders to provide 
feedback to iCub (a research-grade humanoid robot18) arm joints using the neuron’s firing rate for encoding the 
current angle of joints.

In humans, there is multi-dimensional sensory feedback, where the fusion of the tactile and propriocep-
tion sensory data assists us in sensing the scanning speed during tactile manipulation tasks14. However, such 
observation has not been artificially investigated nor recruited to explore the results of synergy between muscle 
spindles and tactile receptors in texture discrimination with variable scanning speeds. Indeed, many studies have 
disregarded scanning speed variations in this field by applying predetermined constant speeds10,19 which limits 
the generalizability of these findings under dynamic conditions. In this research, a hydro-elastomer sensor was 
fabricated to mimic the muscle spindle organ. In this case, we investigated the role of muscle spindles in texture 
discrimination during active touch. It should be pointed out that the proprioceptive system mostly depends on 
the length and velocity of the muscle, in which the muscle spindle plays an important role20. Moreover, three 
tactile mechanoreceptors were employed for distinguishing multiple fine naturalistic textures under varying 
speed condition in conjunction with artificial proprioceptive feedback. To the best of our knowledge, this is the 
first example of the integration of proprioceptive sensory feedback with three types of artificial mechanorecep-
tors using a soft biomimetic fingertip for recognition of naturalistic texture independent of the scanning speed.

Background
Human beings perceive textures with various mechanoreceptors to sense spatial details of texture under variable 
exploring parameters such as scanning speed during daily tasks2,21. To address this question of how the human’s 
sensory perception encodes the texture characteristics, recent studies showed that the tactile texture recogni-
tion for fine surfaces relies mainly on vibration-sensitive afferents22 such as fast adapting mechanoreceptors 
(Meissner (RA-I) and Pacinian (RA-II) corpuscles) and slowly adapting afferents (Merkel discs (SA-I)) for coarse 
textures. Figure 1 illustrates three types of skin mechanoreceptors, Merkel and Meissner mechanoreceptors are 
in the dermis layer of skin and close to the epidermis layer. Merkel cells (SA-I) respond to static cues like skin 
indentation (contact force) and spatial characteristics of coarse textures20. Furthermore, Meissner corpuscles 
(RA-I) sense low-frequency stimuli and elicitation of skin. Both SA-I and RA-I receptive fields are too big to 
respond to small elements of textures (fine textures)2. However, Pacinian corpuscles (RA-II) in the deeper layer 
of skin (subcutaneous layer) are sensitive to high-frequency stimuli and encode small elements by temporal 
characteristics of the spiking patterns23. Meissner (RA-I), and Pacinian (RA-II) corpuscles convey fine texture 
characteristics although their spiking patterns are sensitive to texture features and scanning speed20. Neverthe-
less, the question is how neural mechanisms tolerate speed dependency to achieve stable texture discrimination. 
Perhaps, human sensory fusion can construct multifaceted sensory perception during active touch; informa-
tion from muscle spindles9 and Ruffini endings contribute to estimating scanning speed as the proprioceptive 
feedback14,24. Skeletal muscles play a vital role in maintaining posture and balance25. They assist us in moving 
and performing daily tasks. Muscle afferents respond to unexpected loads or obstacles to trigger the appropriate 
adjustments26. Indeed, proprioception and kinesthesia sensing are crucial when performing voluntary movements 
to provide unconscious peripheral feedback (scanning speed and limb position) during posture and locomotion26. 
The primarily responsible receptors for proprioception sensing are muscle spindles, Golgi tendon organs, and 
free nerve endings in the joint capsule27. The proprioceptive system depends on the length and velocity of the 
muscle, and hence muscle spindle is the main foundation of proprioceptive feedback9. This specific type of fiber 
lies along extrafusal fibers and provides proprioceptive information about the muscle states within the belly of 
a skeletal muscle9. Their failure produces some impairments in humans9,28–30. Furthermore, some studies have 
reported that the muscle spindles directly play a key role in roughness discrimination as vibration-sensitive sen-
sors during low contractions21,31. There are two static and dynamic subtypes of muscle spindles, where dynamic 
and static fibers respond to changes in length and absolute length of the spindle, respectively. The muscle spindle 
contains three types of intrafusal fibers: bag1, bag2, and chain that receive several fusimotor inputs (gamma 
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static and dynamic) and muscle length32, as shown in Fig. 1. The muscle spindle organ generates two outputs: 
primary (MS-Prim) and secondary (MS-Sec) afferent activity, in which, MS-Sec is sensitive to muscle’s length 
and MS-Prim is sensitive to both length and velocity of muscle9,32. Several models of muscle spindles afferents 
have been represented. More complex spindle models have been developed to simulate the afferent fibers’ firing 
rate as a polynomial function of the muscle stretching and its speed27,29. In the present work, we employ a bio-
inspired mechanism for translating proprioceptive feedback that implements a computational model of muscle 
spindle activity. In particular, the employed muscle spindle model is based on model proposed by Mileusnic 
et al.32, including fusimotor activation, primary and secondary afferent activities32,34. The Mileusnic’s model was 
comprehensively explained in9,32.

Approach.  We present a sensor-integration approach based on the human sensory systems, enabling tex-
ture recognition by a robotic finger. The proposed biomimetic fingertip consisted of an 8 × 8 array tactile sen-
sor and a piezoelectric sensor for mimicking three biological tactile mechanoreceptors. The 8 × 8 array tactile 
sensor is a pressure-sensitive sensor for mimicking SA-I/RA-I afferents to sense static/dynamic skin changes 
while scanning textures. Moreover, the piezoelectric sensor was embedded within the inner layer of the soft 
biomimetic fingertip, mimicking Pacinian corpuscles in the deeper layer of skin with broader receptive fields to 
detect elicited high-frequency vibrations of fine textures. Then a highly stretchable proprioception sensor was 
utilized to emulate the muscle spindle with its afferents, namely, Primary (MS-Prim) and Secondary (MS-Sec). 
The proposed multi-channel neuromorphic system that resembles human skin mechanoreceptors and muscle 
spindles is illustrated in Fig. 2. The proposed sensory system enabled multisensory integration with a simple 
structure and uniform sensing elements to discriminate objects’ texture, sense manipulation speed, and position. 
The biomimetic fingertip comprises two sensing components: a commercial LTD0-028 K piezoelectric sensor 
and an 8 × 8 array tactile sensor (Fig. 2). Moreover, the 8 × 8 array tactile sensor consists of a pressure-sensitive 
sheet sandwiched between two layers of the flexible printed circuit board (PCB), See more details in Material and 
Methods section (Fig. 2). It is located in the outer layer of the biomimetic fingertip to mimic both Merkel cell 
and Meissner corpuscle. The hydro-elastomer sensor is used as a proprioception sensor to mimic the biological 
muscle spindle organ (Fig. 2). The fabricated proprioception sensor is highly stretchable (100% strain), transpar-
ent, lightweight, inexpensive, and easy to fabricate with off-the-shelf materials. In this way, the raw data from 
different sensors are collected, preprocessed, and fed to the corresponding neurons and afferents (Materials and 
Methods). Then, using the rate coding algorithm, the spike information was extracted and used as the inputs 
of the machine learning classifiers to discriminate different textures. Following this section, two independent 
experiments have been accomplished for evaluating the employed sensory system in variable conditions.

Figure 1.   The schematic of the biological sensory system. Left, illustration of tactile mechanoreceptors with 
their receptive fields within human skin to sense surface details. Right, the muscle spindle organ with three types 
of intrafusal fibers that respond through primary (MS-Prim) and secondary (MS-Sec) afferents for encoding the 
position and velocity of the muscle.
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Results
Innervation technique for SA‑I and RA‑I afferents.  Fine textures are classified in terms of vibrations, 
whereas coarse textures are classified in the spatial pattern during indentation35. The SA-I/RA-I afferents inner-
vate the 64 taxels of the 8 × 8 tactile sensor similar to the innervation technique used in36. Indeed, spatially 
nearby taxels of the 8 × 8 tactile sensor are connected to one afferent with different weights, creating complex 
receptive fields (RF) that can encode contact force and stimuli details which means that the afferent obtains 
tactile signals from multiple taxels (Fig. 3a). Based on the experimental observation, the first-order neurons in 
the tactile sensory pathway branch in the skin and form many transduction sites37. Figure 3a illustrates 64 taxels 
(sensing elements) with different weights in which brighter taxels are innervated by more afferents and darker 
ones are innervated by one afferent with low weights (the lowest value is 0.001). In the other words, increasing 
the average number of innervated taxels by one afferent leads to the creation of taxels with higher weights (bright 
colors) and vice versa. Additionally, the innervation technique reduces the cost and processing time of 64 chan-
nels and needs fewer afferents to be implemented on hardware, leading to lower power consumption36. When a 
few taxels are activated, due to the overlaps, more afferents with different activity patterns provide information 
about manipulation. This random innervation produces diverse spiking responses due to overlaps in recep-
tive fields. Various innervation patterns were investigated to shed light on the receptive field’s contributions to 
encode an object’s spatial frequency. Some examples of receptive fields with different innervation arrays have 
been demonstrated in Fig. 3a, in which brighter colors show a higher weight and hence resulting in a higher 
instantaneous firing rate.

The biomimetic fingertip scanned 6 textures (S1-S6, see Material and Methods section) by the fastest scan-
ning speed (90 mm/s) and weakest touch (indentation) while only the 8 × 8 tactile sensor data has been recorded 
and converted to spike trains for focusing on the average number of innervated taxels (the biomimetic fingertip 
signals were collected offline). In this section, we focus on the innervation technique under the worse condi-
tions to find the best average number of innervated taxels for texture discrimination. The details about objects, 
experimental setup, and neuromorphic models are explained in the Material and Methods. For examining the 
biomimetic SA-I/RA-I afferents responses, the firing rate algorithm38 of 36 digital afferents (24 RA-I and 12 SA-I) 
with different sizes of innervation are extracted as the input of the K-nearest neighbor (KNN) classifier. Figure 3b 
shows the classification accuracy of discriminating 6 fine naturalistic textures (S1-S6) when a different average 
number of taxels is innervated by one afferent, including 1.3, 4.3, 7.2, 10.5, and 12.5 in separate experiments. 
Decreasing the average number of innervated taxels leads to the creation of many taxels with low gains which are 
not highly sensitive to convey spatial information of the scanned texture just as higher gain taxels. Conversely, 
increasing the high gain taxels creates SA-I/RA-I afferents with similar innervated taxels, leading to lower per-
formance due to similar information. For each classification, all data were randomly split into the training set 

Figure 2.   The schematic of the proposed multi-channel neuromorphic system. The artificial sensors on the 
prosthetic finger transduces contact and motion events during texture scanning to spiking responses. The 
detailed structure of the biomimetic fingertip and hydro-elastomer sensor are also shown. The 8 × 8 tactile 
sensor for mimicking SA-I/RA-I afferents to sense static/dynamic skin indentation. The piezoelectric sensor was 
embedded in the inner layer of the soft fingertip, mimicking Pacinian corpuscles. The hydro-elastomer sensor 
was used to emulate the muscle spindles.
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and the test set with an 8:2 ratio. Then, all data were divided into 5 subsets to employ fivefold cross-validation. 
Every subset was used as the validation set and the remaining subsets formed the training set. Finally, the average 
performance across all 5 trials for each subset was computed. As it is obvious from the results shown in Fig. 3b, 
a receptive field with the 7.2 average number of innervated taxels is the efficient innervation method that gives 
the highest classification performance with the accuracy of 99.9% (k = 1) for RA-I and 88% (k = 3) for SA-I.

Texture discrimination under variable scanning speeds.  This research offers an innovative neuro-
morphic approach to mimicking human sensory fusion by emulating muscle spindles and skin mechanore-
ceptors except for Ruffini endings (SA-II) because they are not responsible for the texture perception, hence, 
irrelevant to the scope of the current study. This technical approach artificially replicates the firing responses of 
the SA/RA afferents and the muscle spindle’s primary (MS-Prim)/secondary (MS-Sec) afferents. Muscle spindles 
dominate proprioceptive and kinesthetic sensing of rapid and accurate hand movements more than other mus-
cle receptors in human muscles33. In this work, a proprioception sensor is used to mimic muscle spindle organs 
for converting the position and velocity of the fingertip into voltages. Then, the sensor output voltages are used 
as the inputs of the mathematical model of the muscle spindle for evaluating primary and secondary afferents’ 
responses during active touch. Moreover, the soft biomimetic fingertip sensors’ data are collected, preprocessed, 
and fed to the corresponding artificial neurons and afferents. Finally, the spiking responses of all artificial affer-
ents are used as the inputs of the machine learning classifiers to discriminate different textures across scan-
ning speeds. All following results were taken from the experiments that the biomimetic fingertip scanned 10 
naturalistic textures (S1 to S10), with 6 different scanning speeds ten times (40, 50, 60, 70, 80, 90 mm/s) which 
is well within the range commonly used in related neurophysiologic studies from 10 mm/s to 150 mm/s and 
human natural exploratory movements39. All the experimental data were collected without using any controller 
for monitoring normal contact force. Just indentation has been controlled for every 600 experiments (6*10*10, 
speed*texture*repetition). Moreover, the proprioception sensor was used to provide proprioceptive feedback 
during manipulations. The palpation speeds were categorized into three classes (low, medium, and high) to pro-
vide human-like speed detection and decrease class labels of employed classifiers. The system could accurately 
recognize many complex and similar textures with various dynamic conditions (scanning speeds). To mimic 
the biological mechanoreceptors’ firing patterns, the outputs of an 8 × 8 tactile sensor and a piezoelectric sensor 
were converted into spike trains. The voltage of each sensor is used as the input current to the Izhikevich model40 
(more details in the Neuromorphic Encoding section). From a neuromorphic point of view, changes in the sens-
ing conditions induce differences in the firing patterns, but spike trains mainly reflect the spatial structure of the 
texture14. Similarly, we observe that changing the sliding speed for the same texture resulted in a coherent spike 
train structure occurring over different time scales (hence the higher firing rate for faster sliding). In Fig. 4, the 
responses of muscle spindle receptors and tactile afferents are shown. As mentioned in the Material and Meth-
ods, the outputs of the muscle spindle mathematical model are already firing rates of the two muscle spindle’s 
afferents, and hence their responses are not converted to the spike trains again9,32. However, the tactile afferent 
responses are illustrated as the spike trains during the manipulation process. An increase in the scanning speed 
causes the tactile sensors to detect higher-frequency vibrations induced by the surfaces13, resulting in the higher 
firing rates of the three mentioned tactile mechanoreceptors2 (Fig. 4a). These results show that the spike rate of 
the emulated spindles is increased with the stretching of the proprioception sensor (See Material and Methods). 
Next, we evaluate how sensing conditions affect the neuromorphic sensor’s response and encoding of tactile 
information. The spike rate of tactile mechanoreceptors is increased with the increase in the sliding speed, across 

Figure 3.   The effect of innervation on the robotic data classification. (a)-up, The three innervation samples 
of the receptive field for both SA-I and RA-I afferents with the different average number of innervated taxels 
by one afferent. The black dashed circles illustrate highly sensitive zones. The heatmap illustration was used to 
demonstrate the weight of each taxel. (a)-down, The receptive field of two classes of mechanoreceptors, Merkel 
and Meissner in which Meissner’s receptive fields are shown. (b) Classification performance of SA-I and RA-I 
afferents for texture recognition (S1 to S6) when the receptive field size is changed. The Firing rate algorithm was 
used right after the sensor started to scan the surface.
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three textures (S1, S2, and S3 in Material and Method sections) (Fig. 4). Crucially, changes in the sensing condi-
tions induced variations in the firing patterns of tactile mechanoreceptors resulting in decreasing the accuracy 
of the texture discrimination. As apparent from the responses of RA mechanoreceptors in Fig. 4a, the spike 
trains are quite sensitive to the scanning speed, which confuses the classifier; however, muscle spindle afferents’ 
responses (Fig. 4b) facilitate the clearance of this confusion and better distinguishing of these textures. In other 
words, the texture discrimination in conjunction with the proprioception sensor yields better accuracies.

To analyze the spiking activity of the afferents, we used the firing rate algorithm to extract reliable features as 
the inputs of the machine learning classifiers to discriminate naturalistic textures. The spike rate of each Izhik-
evich neuron was used as the input feature of the classifiers. Two classifiers (Random Forests and KNN) were 
used. For classification, fivefold cross-validation was utilized. The data samples were divided into 5 subgroups. 
Each time, one of these 5 subgroups was used as the test set and the remaining 4 subgroups formed the training 
set. Finally, the average performance across all 5 trials for each subset was computed and reported in Fig. 5. For 
the Random Forests classifier, the number of estimators was set to 1000. The results are illustrated in Fig. 5a 
for the spike rate algorithm10,36. The synergy between muscle spindle and skin mechanoreceptors shows better 
texture discrimination than the collaboration between SA-I and RA-I afferents across scanning speeds (Fig. 5a). 
It is worth noting that the MS-Prim has a significant contribution compared to the MS-Sec in encoding fascicle 
speeds in agreement with the biological evidence9 (Fig. 5a). Moreover, the synergy between PC fibers and SA-I/
RA-I leads to the higher accuracy (82%) by encoding more information about texture characteristics. Accept-
able classification accuracy was obtained with responses of SA-I/RA-I (72% accuracy), in Fig. 5b. However, the 
synergy between all receptors resulted in 92% accuracy (Fig. 5c) in recognizing 10 naturalist textures across 6 
different scanning speeds.

Next, we evaluate the proposed multi-channel neuromorphic system to determine how much the robotic 
finger should explore the surfaces to distinguish the textures. Figure 5d shows that the biomimetic fingertip in 
conjunction with the proprioception sensor encodes enough tactile and motion information only with 10 mm 
of surface exploration (displacement), and afterward, the results almost remain constant. This ability enables 
robots to recognize textures quickly and touches only a small part of the surface. The spike rate feature was again 
used as the input of the Random Forests and KNN classifiers. Figure 5d shows that the Random Forests has 
better performance again. Similar to the biological reports41, in Fig. 5e, the response of the Pacinian fiber (RA-
II) indicates speed sensitivity during exploring three fine textures across the highest (90 mm/s) and the lowest 
(40 mm/s) scanning speeds. In the other words, increasing scanning speed leads to an increase in the firing rate 

Figure 4.   The responses of 12 SA-I, 24 RA-I, and 1 RA-II afferent in conjunction with muscle spindles afferents 
(MS-Prim and MS-Sec) for two scanning speeds (40 and 90 mm/s) and 3 surfaces (S1, S2, and S3). (a) The 
raster plot of the skin’s mechanoreceptors (spike train) for SA-I (Black), RA-I (Blue), and RA-II (Orange) for 
different surfaces. (b) The mapped length of the proprioception sensor and spike rate of muscle spindle afferents 
(MS-Prim (Blue) and MS-Sec (Red)) are shown (firing rates during the manipulation process), respectively.
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Figure 5.   Contribution of the skin mechanoreceptors and muscle spindles in texture discrimination. (a) 
Classification accuracy for each SA-I/RA-I/RA-II/MS-Prim/MS-Sec population and their combination for all 
textures based on the spike rate algorithm for KNN and RF classifiers. (b) Confusion matrix for classifying 
10 textures with 6 scanning speeds only for SA-I and RA-I afferents using Random forests classifier. (c) 
Confusion matrix for classifying 10 textures with 6 scanning speeds for integration of all mechanoreceptors 
and muscle spindles using Random forests classifier. (d) Classification performance for different lengths 
of finger’s displacement on the surface for KNN and Random forests classifiers. (e) The mean spike rate of 
mechanoreceptors and muscle spindle afferents during the response to three naturalistic surfaces (S1, S6, and 
S9) under two scanning speeds (slowest, 40 mm/s, and fastest, 90 mm/s).
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of MS-Prim and rapidly adapting tactile afferents (RA-I/RA-II). However, MS-Sec and SA-I responses remain 
almost constant due to being low sensitive to the velocity and also manipulating fine textures.

Conclusion
Multi-finger robotic hands serving as prosthetic hands equipped with tactile sensory feedback can increase the 
safety of object manipulation and the accuracy of texture recognition in amputees. Indeed, integration of multiple 
sensory feedback incorporated into prosthetic hands should be helpful in dealing with the external environment, 
slip detection, and fine motor activities. The inspiration from human and animal sensory systems facilitates the 
proposing of efficient methods for dealing with sophisticated problems such as robotics/prosthetics applications. 
In such cases, our proposed hydro-elastomer sensor can be easily placed on the robot to provide proprioceptive 
feedback as replicating muscle spindles. Moreover, this biomimetic fingertip comprises two high-performance 
tactile sensors to mimic the three types of human skin mechanoreceptors. This sensor integration helps to 
have accurate tactile and motion perception in daily tasks and real-time object manipulation. Our results show 
that the integration of two types of tactile sensors with proprioception sensors can recognize different textures 
under variable scanning speeds without any high computational cost. A robotic/prosthetic hand with this kind 
of multiple sensory capabilities to encode different textures can operate under different scanning speeds. The 
proposed bio-inspired system discriminates all 10 fine naturalistic textures (S1-S6 in Materials and Methods 
section) with 6 different scanning speeds. In this research, the spike rate algorithm was used which simply con-
siders the number of produced spikes normalized to the time. Although other features such as Victor–Purpura 
distance and van Rossum distance can also be used which may improve the classification performance due to 
providing more information based on the time of spikes. Note that the contact force can be extracted from the 
8 × 8 pressure sensor data (the DC level), and the previous study showed that the SA-I afferents respond to the 
applied contact force for sharpness recognition36. This synergy in sensory feedback showed better performance 
and classification accuracy under different scanning speeds compared to the previous studies as illustrated in 
Table 1. This table demonstrates the sensors and methods utilized in related research, including this research. 
Our system proved better results in spite of being tested in more variable palpation speeds due to the integration 
of several sensory organs rather than commonly-used skin mechanoreceptors alone.

In Table.1, four methods are presented which are independent of scanning speed during roughness and tex-
ture discrimination. Oddo and his colleagues16 proposed a method based on the phase difference between two 
adjacent taxels. Liu, et al.15 presented a speed-independent roughness discrimination method by analyzing the 
principal frequency of vibration and response time interval between two adjacent taxels. These two studies have 
presented valuable methods for discriminating stereotyped textures with known and predetermined dimensions. 
Rongala and his collaborators14 have employed a two-layer spiking neural network for discriminating textures 
under different scanning speeds. However, their systems did not provide any velocity feedback and sensor 
integration. Nevertheless, our work presents a method that leads to stable texture discrimination under varying 
scanning speeds for naturalistic textures with unknown dimensions and spatial details. Indeed, tactile sensors 
in conjunction with proprioception sensors can increase the performance of texture recognition by providing 
information about the speed and position of the joints. In spite of having less density of sensing elements com-
pared to the reports of Rongala et al.14, our work included multisensory integration, complex mechanoreceptors’ 
receptive fields, and classification methods that resulted in accurate texture discrimination for variable palpation 
speeds. It should be pointed out that similar to previous studies19,36,42, cross-talk occurs because of reading data 
in row and column configuration which brings some undesired resistive paths during manipulations. Indeed, 
some reading can be registered in a corner of a square sensor when the force is applied in the opposite corner, and 

Table 1.   Tactile sensing using neuromorphic methods. (MR: Mechanoreceptor).

Author Yi, et al.10 Gupta, et al.43 Oddo. et al.16 Sankar, et al.19 Rongala, et al.14 Friedl, et al.44 Liu, et al.15 This work

Tactile sensor type 2 Piezoelectric 4 × 4 piezoresistive
A 2 × 2 array of 
four MEMS micro 
sensors

3 × 3 Piezoresistive 4 × 4 Piezoresistive 2 Piezoelectric, 1 
Piezoceramic 4 × 4 Piezoelectric

8 × 8 Piezoresis-
tive
and Piezoelectric

MRs’ density
(unit/cm2) – 10 72 8 72 - 25 25

Applications Roughness dis-
crimination

Texture discrimi-
nation

Roughness dis-
crimination

Texture discrimi-
nation

Texture discrimi-
nation

Texture discrimi-
nation

Roughness dis-
crimination

Texture discrimi-
nation

Mechanoreceptor Meissner Merkel Merkel Merkel Merkel Meissner, Merkel, 
Pacinian, Pacinian

Meissner, Merkel, 
Pacinian, Muscle 
spindles

Spike train clas-
sification KNN KNN KNN SVM KNN SVM - KNN,

Random forests

Innervation 
technique – – – – – – –  + 

Scanning speed 
independence 
Method

– –
The phase differ-
ence between two 
adjacent taxels

– Neural network –

Principal 
frequency of 
vibration,
The response time 
interval between 
taxels

Data fusion
of tactile mecha-
noreceptor and 
muscle spindles
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thus the contact is not local which may affect the receptive fields. Nevertheless, this effect can be compensated 
to some extent due to presence of learning. Finally, this sensory system can be implemented on the robotic and 
prosthetic hands with deep learning methods to have accurate texture recognition in real applications. These 
findings motivate employing the proposed architecture for sensor integration in neuromorphic tactile devices.

Material and methods
The objectives were to show that (i) innervating an 8 × 8 tactile sensor with artificial afferents, (ii) proposing a 
biomimetic fingertip that is capable of identifying textures and contact forces simultaneously by the implementa-
tion of the skin’s mechanoreceptors, and (iii) recognition of the scanned textures with variable speeds through 
the integration of proprioception sensor and biomimetic fingertip.

Experimental setup.  A multi-channel neuromorphic tactile system (Fig.  6a) was implemented that 
includes a 3 DOF cartesian robot and 3 different sensors, namely, an 8 × 8 piezoresistive tactile, a piezoelectric, 
and a hydro-elastomer sensor (Fig. 6c). The proposed biomimetic fingertip is mounted on a 3 DOF Cartesian 
robot with position control. Ten fine naturalistic textures (S1-S10) were prepared with everyday materials (not 
regular textures with gratings and printed dot patterns) to investigate the effect of scanning speed on the rec-
ognized textures (Fig. 6b). The biomimetic finger scans 10 naturalistic textures with 6 different speeds ranging 
from 40 to 90 mm/s. Every single object was scanned ten times. The hydro-elastomer sensor is fixed to one side 
of the static wall, and the other side is connected to the cartesian robot. The robot was controlled by a Python 
code (Python 3.9.0, Data availability). The supplementary video shows the experimental setup and process of the 
data collection (Additional Information).

Hydro‑elastomer sensor fabrication.  The hydro-elastomer sensor was made by the following steps: (i) 
We cut a stretchable elastomer silicone rubber tube with good elasticity, transparency, and high durability to the 
desired dimensions. (ii) Then, the silicone tube was filled with a commercial conductive hydrogel. Hydrogel is a 
commercial electrode gel that is used for recoding of ECG (electrocardiogram) signals, which has been chosen 
because of being accessible and inexpensive. (iii) After the hydrogel injection, each side of the tube was fastened 
by copper electrodes. The manufactured proprioception sensor was made with available, off-the-shelf materials 
and was highly stretchable, lightweight, and inexpensive.

Fabrication of biomimetic fingertip.  The 8 × 8 tactile sensor array has 64 taxels (sensing elements) to 
convey contact force and spatial information about the textures. The sensor’s taxels can be easily scaled up 
based on the desired application. The tactile sensor was fabricated using a commercial pressure-sensitive sheet 
(Velostat/Linqstat), whose resistance is reduced as a result of applying force to the material. A piezoresistive sheet 
was sandwiched between two layers of flexible printed circuit boards (PCB) conductive traces as rows and col-
umns layers. The tactile sensor has 8 rows and 8 columns arranged with a 1.5 mm pitch (16 mm × 16 mm active 
area). The sensor was embedded within a silicone layer of the fingertip to disperse the indentation force and 
mimic Meissner and Merkel mechanoreceptors. The sensor array had 64 taxels with a total active sensing rectan-
gular area of 256 mm2. It should be pointed out that this configuration in rows and columns provides undesired 
resistive paths, which introduces crosstalk, and thus choosing suitable interface circuit is necessary to reduce this 
effect. The biomimetic fingertip was constructed as follows: (i) A cuboid hard bar with 8 mm × 8 mm × 50 mm 
dimensions is obtained by cutting a PVC sheet to mimic human finger bone. According to the higher hardness 
of the epidermis than the dermis10, a commercial sensor LTD0-028 K was used and arranged on the top of the 
bar to mimic the Pacinian corpuscle, which is close to the finger bone in the deeper layer of skin (dermis) and is 
sensitive to high-frequency vibrations. (ii) By altering the mixing ratio of base to agent PDMS, two PDMS layers 
with different hardness were obtained to emulate the epidermis and dermis layers of human skin (at 85 °C for 
30 min of curing). (iii) The 8 × 8 tactile sensor was inserted into a 3D printed mold with a size comparable to the 
human fingertip, to be placed in the outer layer of the biomimetic fingertip (closer to the epidermis) to mimic the 
Meissner and Merkel mechanoreceptors. Then the mold was filled with the harder PDMS. Next, the bar with a 
PVDF film sensor was inserted into the mold and filled with the softer PDMS. When the piezo is displaced from 
the mechanical neutral axis, it generates high voltages as a response to the vibrations.

Interface circuit.  Two analog multiplexers and an Arduino Due microcontroller with a 12-bit ADC were 
used as the readout circuits with 12 analog inputs. To reduce the cost of the interface circuit, a bidirectional 
analog multiplexer with 8 independent inputs and 1 output (8:1) was used to read each common line of the 8 × 8 
sensor. Each taxel was at the intersection of the rows and columns of PCBs’ electrodes, and multiplexers were 
connected to each row and column. The output of one of the multiplexers was connected to the ground and the 
other was connected to 5 V with a variable resistor (for changing the sensor’s sensitivity). One specific taxel was 
selected by selecting each column and row with a microcontroller and a voltage-divider circuit. The piezoelec-
tric and hydro-elastomer sensors were connected to the microcontroller through an AD620 amplifier module 
and voltage divider circuit (Fig. 6d). Then the voltage response of each taxel, piezoelectric and hydro-elastomer 
sensors were sampled by the ARM microcontroller at 1 kHz and processed in Python code. The innervation 
technique was implemented in the ARM microcontroller to create the complex receptive fields36. The interface 
circuit for data collection was shown in Fig. 6d.

Data preprocessing.  The interface circuit converts the output of the sensors to digital signals and transmits 
them through serial communication with a baud rate of 115,200 bps to a PC for further processing in Python. 
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The piezoelectric data were normalized and band-pass-filtered between 5 and 250 Hz using an eighth-order But-
terworth filter to remove unwanted robot motor noise and the DC voltage before injecting it as the input of the 
Izhikevich neuron model (described below). Also, the recorded data of the hydro-elastomer sensor was filtered 
through a high-pass filter with a 1 Hz cutoff frequency and first order Butterworth filter to remove the noise. The 
hydro-elastomer data was mapped between 0.95 and 1.08 to be suitable as the input of the muscle spindle model.

Neuromorphic encoding.  Encoding spatial and temporal information is essential when processing 
dynamic stimuli such as textures. The Izhikevich neuron model was used to mimic the SA-I, RA-I, and RA-II 
tactile afferents’ activities. According to the previous research, the SA-I and RA-I afferents ratio is 1:236,45,46 and 
can be scaled up for the desired purpose. The Izhikevich model is described as follows;

Figure 6.   The illustration of the experimental setup comprises a robotic system with three degrees of freedom, 
three tactile sensors, and naturalistic textures. (a) Schematic of all preprocessing stages and converting recorded 
data to the appropriate input current to be applied to the Izhikevich neural model to produce spike trains. (b) 
Ten different naturalistic fine textures. (c) The experimental setup with the custom-built robot and sensors. A 
hydro-elastomer sensor to mimic muscle spindle (a proprioception sensor) for encoding the speed and position 
of the biomimetic finger. An 8 × 8 pressure tactile and piezoelectric sensors were embedded within a soft 
biomimetic fingertip to encode texture details during manipulation. (d) Scheme of the interface circuit for data 
collection.
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v and u are the membrane potential of the neuron and the membrane recovery variable, respectively. I is the input 
current. a, b, c, and d, are the constant neuron parameters. G is the gain factor that has a specific value for each 
type of mechanoreceptor, as listed in Table 2. Cm is the capacitance value for dimensionality consistency and is 
equal to 1 F. In Table 2, the Izhikevich model parameters are shown which have been taken from40.

Muscle spindle model.  Different mathematical models of muscle spindles have been developed 
previously9,32. The muscle spindle model proposed by Mileusnic et al.32, includes fusimotor activation, primary 
and secondary afferent activities, and is suitable for implementation in closed-loop control systems. This model 
consists of three intrafusal fibers (Bag1, Bag2, Chain) with the same function and different parameters. The func-
tion has two types of inputs: the fascicle length L (and its derivatives L̇ ) and the relevant fusimotor activation 
level (fdynamic, fstatic). Vannuci et al.9,47 modified this model to reduce the unnecessary complexities and adapted 
it for real-time neuromorphic applications. In this paper, we used Vannuci’s model. The firing rate of MS-Prim 
afferent is a combination of all intrafusal fibers’ activities which consists of Bag1 fiber and the sum of Bag2 and 
Chain responses (Fig. 6a). Moreover, the smaller response between Bag1 and the sum of Bag2 and Chain, is 
multiplied by S = 0.156. Next, the sum of all fibers is used as the response of MS-Prim afferent as illustrated in 
Fig. 6a. MS-Prim carries information to the central nervous system that depends on both the length and stretch 
speed of the muscle, while MS-Sec consists of only the sum of Bag2 and Chain fibers’ responses which provide 
information mostly about the position (more details in9,32,47). The fascicle length and the rate of its changes (L 
and L̇ ) are given by the hydro-elastomer sensor during every surface exploration with mapping the maximum 
and minimum sensor values to 0.95 and 1.08, respectively. In addition, the fusimotor activation levels of efferent 
are given to the model as the constant inputs during each experiment. Every stretch was repeated under specific 
fusimotor drives ( f  dynamic = 70 spikes/s and f  static = 70 spikes/s)9.

Data availability
All data are available from the corresponding author upon reasonable request.

Code availability
All analyses reported in this work were made with custom code written in Python 3.9, and will be available from 
the corresponding author upon reasonable request. Moreover, the last version will be uploaded at: https://​github.​
com/​Resea​rch-​lab-​KUMS/​Textu​re-​recog​nition.
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