
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20167  | https://doi.org/10.1038/s41598-022-24611-w

www.nature.com/scientificreports

Whole genome DNA and RNA 
sequencing of whole blood 
elucidates the genetic architecture 
of gene expression underlying 
a wide range of diseases
Chunyu Liu 1,2,8*, Roby Joehanes 3,8*, Jiantao Ma 4, Yuxuan Wang 1, Xianbang Sun 1, 
Amena Keshawarz 3, Meera Sooda 3, Tianxiao Huan 3, Shih‑Jen Hwang 3, Helena Bui 3, 
Brandon Tejada 3, Peter J. Munson 3, Cumhur Y. Demirkale 5, Nancy L. Heard‑Costa 2,6, 
Achilleas N. Pitsillides 1, Gina M. Peloso 1, Michael Feolo 7, Nataliya Sharopova 7, 
Ramachandran S. Vasan 2,6 & Daniel Levy 2,3,8*

To create a scientific resource of expression quantitative trail loci (eQTL), we conducted a genome‑
wide association study (GWAS) using genotypes obtained from whole genome sequencing (WGS) of 
DNA and gene expression levels from RNA sequencing (RNA‑seq) of whole blood in 2622 participants 
in Framingham Heart Study. We identified 6,778,286 cis‑eQTL variant‑gene transcript (eGene) pairs 
at p < 5 ×  10–8 (2,855,111 unique cis‑eQTL variants and 15,982 unique eGenes) and 1,469,754 trans‑
eQTL variant‑eGene pairs at p < 1e−12 (526,056 unique trans‑eQTL variants and 7233 unique eGenes). 
In addition, 442,379 cis‑eQTL variants were associated with expression of 1518 long non‑protein 
coding RNAs (lncRNAs). Gene Ontology (GO) analyses revealed that the top GO terms for cis-
eGenes are enriched for immune functions (FDR < 0.05). The cis‑eQTL variants are enriched for SNPs 
reported to be associated with 815 traits in prior GWAS, including cardiovascular disease risk factors. 
As proof of concept, we used this eQTL resource in conjunction with genetic variants from public 
GWAS databases in causal inference testing (e.g., COVID‑19 severity). After Bonferroni correction, 
Mendelian randomization analyses identified putative causal associations of 60 eGenes with systolic 
blood pressure, 13 genes with coronary artery disease, and seven genes with COVID‑19 severity. This 
study created a comprehensive eQTL resource via BioData Catalyst that will be made available to the 
scientific community. This will advance understanding of the genetic architecture of gene expression 
underlying a wide range of diseases.

Over the past decade, genome-wide association studies (GWAS) have revolutionized understanding of the genetic 
architecture of complex  traits1. To date, GWAS have reported more than 59,000 associations (at p < 5 ×  10−8) 
between common genetic variants and numerous phenotypes (GWAS Catalog, v1.0.2)2. Yet, despite the clear 
success of GWAS, most single-nucleotide polymorphisms (SNPs) identified in GWAS reside in non-coding 
 regions3–5 and do not illuminate causal mechanisms underlying SNP-trait  associations5. We posit that many of 
these trait-associated non-coding SNPs are likely to be involved in the regulation of gene expression.
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Expression quantitative trait locus (eQTL) analysis seeks to identify genetic variants that affect the expres-
sion of local (cis) or distant (trans) genes (eGenes). Until recently, eQTL analysis has relied on high throughput 
microarray technologies and spawned a wave of genome-wide eQTL  studies6–11 including a recent study from 
our  group12. These studies aided the understanding of the functional relevance of many GWAS results. Impor-
tantly, a hypothesis-free genome-wide eQTL approach permits the identification of new putatively functional 
loci without requiring previous knowledge of specific regulatory regions.

Most previous eQTL analyses were limited by small sample sizes and by the imprecision of microarrays. 
Newer technologies of RNA sequencing (RNA-seq) and whole genome sequencing (WGS) of DNA add greater 
precision and relevance to eQTL analyses. In conjunction with the National Heart, Lung, and Blood Institute’s 
(NHLBI) Trans-Omics for Precision Medicine (TOPMed)  Program13, the Framingham Heart Study (FHS) has 
obtained whole genome sequencing (WGS) in ~ 6100 study participants to help understand the molecular basis of 
heart, lung, blood, and sleep disorders and to advance precision medicine. Among FHS participants with WGS, 
RNA-seq was obtained in 2622 participants. We conducted genome-wide eQTL analyses using high-precision 
genotypes obtained via WGS and gene expression levels from RNA-seq of whole blood. The primary objectives 
of this study were three-fold. Firstly, it sought to provide a scientific resource of cis and trans gene-level eQTL 
data to facilitate understanding of the genetic architecture of gene expression traits. Secondly, it was aimed to 
provide eQTL data for long noncoding RNAs (lncRNAs) that were not captured in prior array-based eQTL stud-
ies. Thirdly, it attempted to demonstrate the utility of the eQTL resource in causal inference analyses.

Results
Of the 2622 FHS participants in eQTL analyses, 720 participants were from the FHS Offspring cohort (mean age 
71 ± 8 years; 59% women) and 1902 were from the Third Generation cohort (mean age 47 ± 8 years; 52% women) 
(Supplemental Table 1). We used 19,624,299 SNPs with a minor allele count (MAC) ≥ 10 and 58,870 expression 
levels in association analyses to identify gene-level eQTLs. We evaluated the genomic inflation factor (λGC). The 
observed λGC = 1.03, indicating that inflation was unlikely for the eQTL analyses (Supplemental Fig. 1).

Gene‑level eQTL results. cis‑eQTLs. Cis-eQTLs was defined as SNPs within 1 Mb of the transcription 
start sites (TSSs) of targeting genes. We identified 6,778,286 significant cis-eQTL variant-eGene pairs from 
2,855,111 unique cis-eQTL variants and 15,982 unique eGenes (at p < 5 ×  10–8) (Supplemental Table 2). The me-
dian number of cis-eQTL variants per gene was 183 (interquartile range = 47,463). The eGenes harboring the 
largest numbers of cis-eQTL variants are located in the human leukocyte antigen (HLA) or major histocompat-
ibility complex (MHC) on chromosome 6, reflecting a large number of SNPs in strong linkage disequilibrium 
(LD) at the MHC  locus14. Owing to the computational burden, we selected the strongest cis-eQTL variant (i.e., 
the lead variant) as that which had the lowest p-value per eGene. If several cis-eQTLs displayed the same p-value 
(i.e., they are in perfect LD,  r2 = 1), we randomly select one lead eQTL variant per eGene (Supplemental Table 3) 
and the top 25 pairs was displayed in Table 1. Of the 15,982 significant unique cis-eQTL variant-eGene pairs, 
82.8% (n = 13,236) of SNPs were within 100 kb of the transcription start sites (TSSs) of the respective eGenes, 
9.3% (n = 1486) within 101 kb–200 kb region, 5.7% (n = 909) within 201 kb–500 kb region, and 2.2% (n = 351) 
within 501 kb–1 Mb (Fig. 1A). Published GWAS and QTL analyses revealed that rare variants have larger ef-
fect sizes than common  variants6,15. Therefore, we compared the median, 25th percentile, and 75th percentile 
of the absolute values of effect sizes for lead cis‑eQTL variants across four variant groups based on minor allele 
frequencies (MAFs). We found that rare cis-eQTL variants displayed larger effect sizes (median effect size 0.44 
versus 1.77 for cis‑QTL variants with MAF in 0.1–0.5 versus cis‑QTL variants with MAF in 0.003–0.01) (trend 
test P < 0.001) (Table 2).

trans‑eQTLs. Trans-eQTLs referred to the SNPs that were beyond of 1 Mb of the TSSs of the eGenes on the 
same chromosome or those on the different chromosomes of the eGenes. We identified 1,469,754 significant 
trans-eQTL variant-eGene pairs (p < 1e−12) from 526,056 unique trans-eQTL variants and 7233 trans-eGenes 
(Table 3, Supplemental Table 4). The median number of significant-eQTL variants per eGene was 11 (inter-
quartile range = 2, 76)14. With the same method used to select the lead cis-eQTL variants, we selected the lead 
trans-eQTL variant based on p-values for each trans-eGene, yielding 7233 unique trans‑eQTL-eGene pairs (Sup-
plemental Table 4). We further compared the effect sizes of the lead trans‑eQTL variants based on their MAF. We 
found that rare trans-eQTL variants (MAF in 0.003–0.01) displayed larger effect sizes (median effect size 0.42 
versus 2.38 for common trans‑QTL variants (MAF in 0.1–0.5) (trend test P < 0.001) (Table 2).

Long noncoding RNA (lncRNA) eQTLs. lncRNAs are usually more than 200 bases in length, share no con-
served sequence homology, and have variable  functions16. Of the 58,870 transcripts captured by RNA-seq, 7696 
(13%) are lncRNAs. Of the significant cis-eQTL variant-eGene pairs (n = 6,778,286, p < 5e−8), 565, 769 cis-eQTL 
variants are associated with expression of 1516 unique cis-lncRNAs (Supplemental Table 5). Of the significant 
trans-eQTL variant-eGene pairs (p < 1e−12), 164,386 trans-eQTL variants were associated with expression of 
475 trans-lncRNAs (Supplemental Table  6). Three cis-eQTL-lncRNA pairs were observed among the top 25 
cis-eQTL results (Table 1). The top cis-lncRNA, the MAP3K2 divergent transcript (MAP3K2-DT), is the only 
lncRNA that is located adjacent to a protein coding gene, the 5’-end of mitogen-activated protein kinase kinase 
kinase 2 (MAP3K2) on chromosome 2 (q14.3) (Supplemental Fig. 2). The correlation of expression of MAP3K2 
and MAP3K2-DT was weak (Pearson correlation = 0.08; p = 0.12). Among the top 25 trans-eQTL pairs, we iden-
tified one trans-eQTL-lncRNA pair (Table 3). The top trans‑lncRNA, AP001005.3 on chromosome 18, is not 
adjacent to any known genes.
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Table 1.  Top 25 cis-eQTLs (p < 5e−8). EA effect allele, OA the other allele, EAF effect allele frequency; R2 
variance explained by the lead eQTL (SNP).

Gene Symbol SNP Chr SNP position Gene start position R2 Beta log10P OA EA EAF Type

PPIE rs7513045 1 39,738,494 39,692,182 0.84 11.40 − 1029.25 G T 0.36 protein_coding

CCDC163 rs4660860 1 45,480,561 45,493,866 0.90 − 3.10 − 1286.89 T A 0.30 protein_coding

CYP26B1 rs13430651 2 72,215,195 72,129,238 0.81 1.98 − 920.005 G A 0.15 protein_coding

MAP3K2-DT rs2276683 2 127,389,186 127,389,130 0.88 − 1.61 − 1176.37 G C 0.23 lincRNA

SLC12A7 rs35188965 5 1,104,823 1,050,384 0.81 − 29.87 − 915.459 C T 0.44 protein_coding

ENC1 rs112772452 5 74,631,048 74,627,406 0.83 14.53 − 986.798 CA C 0.11 protein_coding

ERAP2 rs2910686 5 96,916,885 96,875,939 0.85 36.98 − 1044.91 T C 0.43 protein_coding

BTNL3 rs72494581 5 181,003,797 180,988,845 0.82 13.52 − 950.405 T C 0.30 protein_coding

HLA-DRB5 rs68176300 6 32,558,713 32,517,353 0.83 − 178.13 − 1003.76 T G 0.15 protein_coding

AL512625.3 rs1845054 9 62,906,092 62,856,999 0.83 − 1.19 − 993.655 T C 0.13 lincRNA

CUTALP rs13299616 9 120,832,525 120,824,828 0.86 − 23.25 − 1092.88 T C 0.40 transcribed_unitary_pseudogene

LDHC rs201993031 11 18,412,985 18,412,318 0.82 0.16 − 946.833 CCC TTC CTT C 0.12 protein_coding

ACCS rs2074038 11 44,066,439 44,065,925 0.83 16.69 − 997.26 G T 0.11 protein_coding

FADS2 rs968567 11 61,828,092 61,792,980 0.88 31.41 − 1186.37 C T 0.17 protein_coding

XRRA1 rs10899051 11 74,931,506 74,807,739 0.91 5.38 − 1327.88 G A 0.26 protein_coding

B4GALNT3 rs1056008 12 553,672 460,364 0.85 6.71 − 1043.34 T C 0.25 protein_coding

DDX11 rs3891006 12 31,073,506 31,073,860 0.86 − 13.25 − 1102.08 A G 0.44 protein_coding

RPS26 rs1131017 12 56,042,145 56,041,351 0.81 − 134.34 − 929.902 C G 0.39 protein_coding

C17orf97 rs7503725 17 410,351 410,325 0.85 1.89 − 1055.68 G T 0.25 protein_coding

AC126544.2 rs2696531 17 46,278,268 45,586,452 0.86 1.04 − 1097.79 C A 0.21 lincRNA

SPATA20 rs9890200 17 50,547,162 50,543,058 0.81 − 1.01 − 34.173 A C 0.37 protein_coding

CEACAMP3 rs3745936 19 41,586,462 41,599,735 0.84 1.11 − 040.05 A T 0.22 transcribed_unprocessed_pseu-
dogene

PWP2 rs2277806 21 44,089,769 44,107,373 0.87 3.16 − 139.85 A C 0.19 protein_coding

GATD3A rs3788104 21 44,092,213 44,133,610 0.86 4.25 − 104.35 G A 0.18 protein_coding

FAM118A rs576259663 22 45,363,712 45,308,968 0.86 43.45 − 1108.47 T TA 0.12 protein_coding

Figure 1.  Variance in eGenes explained by lead e-QLT variants. (A) Variance in eGenes explained by lead cis-
eQTLs in relation to the distance in mega base pairs of the lead cis-eQTLs to the transcription start site (TSS) 
of the cis-gene. (B) Comparison of median variance in the expression levels of eGenes explained by the lead 
eQTL variants. The median value of variance explained in cis-eGenes was significantly higher than that of trans-
eGenes (4.8% versus 2.8%, p < 2e−16). For cis-eGenes, the protein-coding-eGenes had slightly higher median 
variance explained in the expression level than cis‑lncRNA genes (5.1% versus 4.3%, p = 0.0004). No significant 
difference in variance explained in trans‑eGenes of protein-coding genes versus trans‑lncRNA genes (2.8% 
versus 2.7%, p = 0.41).
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Variance in expression explained by lead eQTL variants. The narrow-sense heritability is the proportion of 
phenotypic variance explained by additive genetic  effects17. We estimated the proportion of variance (R2) in 
the expression of a gene that was explained by the lead cis-eQTL or trans-eQTL variant. We found that the 
median R2 value of lead cis-eQTLs was significantly higher than that of lead trans-eQTLs (R2 4.8% versus 2.8%, 
p < 2.2e−16) (Fig. 1B). For the majority of cis-eGenes (85%) and trans-eGenes (96%), the lead eQTL variants only 
explained a small proportion of variance in expression (R2 < 0.2). The lead e-QTLs explained a large proportion 
of variance in expression (R2 > 0.8) of an extremely small proportion of eGenes (0.17% of cis-eGenes and five 
trans-eGenes). We further compared the median values of cis-eQTL R2 versus trans-eQTL R2 between protein-
coding genes and lncRNA genes. For cis‑eGenes, protein-coding-eGenes had slightly higher median variance 

Table 2.  Comparison of effect sizes of eQTLs with different minor allele frequency ranges. MAF minor allele 
frequency, n the number of eQTLs, effect size the effect size of association between eQTL and eGene.

MAF range n Median effect size 1st Quartile effect size 3rd Quartile effect size

Cis-eQTL variants

[0.1, 0.5) 1,960,534 0.44 0.12 1.41

[0.05, 0.1) 390,362 0.64 0.17 2.02

[0.01, 0.05) 424,024 0.98 0.29 2.84

(0.003–0.01) 80,191 1.77 0.50 5.03

Trans-eQTL variants

[0.1, 0.5) 321,275 0.42 0.12 1.01

[0.05, 0.1) 81,083 0.69 0.17 1.36

[0.01, 0.05) 94,234 0.89 0.38 1.71

(0.003–0.01) 29,464 2.38 0.80 8.13

Table 3.  Top 25 top trans-eQTLs (p < 1e−12). EA effect allele, OA the other allele, EAF effect allele frequency, 
R2 variance explained by the lead eQTL (SNP).

Gene symbol SNP Gene Chr SNP Chr SNP Pos Gene Start Pos R2 Beta t value log10P OA EA EAF Gene type

EMBP1 rs4549528 1 5 50,372,700 121,519,112 0.70 1.63 78.04 − 677.53 T C 0.48 transcribed_unpro-
cessed_pseudogene

AL365357.1 rs4841 1 5 150,446,963 178,411,616 0.64 2.79 67.64 − 570.81 C T 0.25 processed_pseudogene

AL591846.1 rs13161099 1 5 150,442,799 206,695,837 0.62 1.87 65.67 − 549.988 G A 0.25 processed_pseudogene

AC004057.1 rs1131017 4 12 56,042,145 113,214,046 0.61 − 0.42 − 63.03 − 521.823 C G 0.39 transcribed_processed_
pseudogene

RPL10P9 rs6655287 5 X 154,396,528 168,616,352 0.64 4.11 68.52 − 580.03 A G 0.10 processed_pseudogene

PSPHP1 rs34945686 7 7 65,809,663 55,764,797 0.61 0.05 64.11 − 533.329 C G 0.18 unprocessed_pseu-
dogene

AC104692.2 rs6593279 7 7 55,736,277 152,366,763 0.60 0.05 62.97 − 521.195 G A 0.20 processed_pseudogene

RNF5P1 rs8365 8 6 32,180,626 38,600,661 0.78 0.97 96.24 − 850.788 G C 0.19 processed_pseudogene

TUBB8 rs28652789 10 16 33,807 46,892 0.61 0.32 63.35 − 525.289 G C 0.25 protein_coding

COX20P1 rs10927332 10 1 244,837,362 68,632,371 0.62 0.10 64.57 − 538.221 C T 0.19 processed_pseudogene

EIF2S3B rs16997659 12 X 24,057,745 10,505,602 0.81 0.99 106.39 − 939.701 A G 0.17 protein_coding

RPS2P5 rs2286466 12 16 1,964,282 118,246,084 0.80 71.71 101.17 − 894.683 A G 0.21 processed_pseudogene

LINC00431 rs41288614 13 13 112,486,035 110,965,704 0.70 0.20 76.92 − 666.36 A G 0.15 transcribed_unpro-
cessed_pseudogene

NPIPB15 rs3927943 16 16 69,977,282 74,377,878 0.80 3.79 103.12 − 911.688 T A 0.40 protein_coding

TUBB8P7 rs28652789 16 16 33,807 90,093,154 0.75 0.51 88.54 − 779.687 G C 0.25 transcribed_unpro-
cessed_pseudogene

RPL13P12 rs2280370 17 16 89,561,052 17,383,377 0.69 36.16 75.78 − 654.808 T G 0.19 processed_pseudogene

LRRC37A2 rs56328224 17 17 45,495,053 46,511,511 0.80 5.91 101.76 − 899.821 C T 0.24 protein_coding

POLRMTP1 rs14155 17 19 619,021 62,136,972 0.69 0.62 75.32 − 650.176 G C 0.50 processed_pseudogene

TUBB8P12 rs2562131 18 16 33,887 47,390 0.65 0.47 68.64 − 581.244 C A 0.25 protein_coding

AP001005.3 rs28652789 18 16 33,807 49,815 0.61 0.15 64.25 − 534.859 G C 0.25 lincRNA

RPSAP58 rs74987185 19 3 39,414,963 23,827,162 0.84 10.17 117.60 − 1031.88 G GCT 0.31 processed_pseudogene

GATD3B rs2277806 21 21 44,089,769 5,079,294 0.74 − 3.83 − 84.78 − 743.85 A C 0.19 protein_coding

FP565260.1 rs2277806 21 21 44,089,769 5,130,871 0.76 − 2.96 − 90.65 − 799.469 A C 0.19 protein_coding

SIRPAP1 rs115287948 22 20 1,915,413 30,542,536 0.75 1.12 89.28 − 786.711 G A 0.36 processed_pseudogene

GPX1P1 rs7643586 X 3 49,394,214 13,378,735 0.61 16.44 64.25 − 534.823 C G 0.43 processed_pseudogene
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explained in their expression level than for lncRNA genes (5.1% versus 4.3%, p = 0.0004). However, we did not 
see this trend for trans-eGenes of protein-coding versus lncRNA genes (2.8% versus 2.7%, p = 0.41) (Fig. 1B).

Gene Ontology analyses. We identified 100 significant GO terms for the top 1000 cis-eGenes at 
FDR < 0.05. Of these Go terms, there were 58 for Biological Process, 31 for Cellular Component, and 11 for 
Molecular Function (Supplemental Table 7). Of note, the top GO terms appeared to be related to immune func-
tions. For example, the top two Biological Processes are “leukocyte degranulation” (FDR = 1e−6) and “myeloid 
leukocyte mediated immunity” (FDR = 2e−6) and the top two Cellular Components are cytoplasm (FDR = 3e−6) 
and MHC protein complex (FDR = 6e−6). The top 1000 top trans-eGenes gave rise to 75 significant (FDR < 0.05) 
GO terms including 37 for Biological Process, 32 for Cellular Component, and 6 for Molecular Function. The top 
GO terms for the top 1000 trans-eGenes were enriched in pathways and molecular functions related to immune 
functions (Supplemental Table 7).

GWAS enrichment analyses. We linked 1,855,111 cis-eQTL variants (P < 5e−8) to GWAS Catalog vari-
ants. At FDR < 0.05, the cis-eQTL variants were enriched with GWAS SNPs associated with 815 traits, repre-
senting 28% of the traits in the GWAS Catalog. The top traits identified in enrichment analyses include sev-
eral cardiovascular disease risk factors. For example, cis-eQTL variants are enriched with BMI-associated SNPs 
(fold enrichment = 84, FDR = 3.3e−267), total cholesterol (fold enrichment = 98, FDR = 7.3e−162) (Supplemental 
Table 8). We identified 193 GWAS traits enriched for the trans-eQTL variants (Supplemental Table 9). The top 
traits in the trans enrichment analysis included neuroticism measurement (fold enrichment = 3, FDR = 1.9e−89) 
and BMI-adjusted waist circumference (fold enrichment = 2, 6.4e−87).

Mendelian randomization analysis. We performed two-sample MR to test for potential causal asso-
ciation of the cis-eGenes with SBP, CAD, and COVID-19 severity. We found 1558 genes containing at least 
one eQTL variant (median 29; interquartile range [IQR] 6, 88) that coincided with variants from GWAS of 
SBP (p < 5e−8)18. After Bonferroni correction for multiple testing, MR identified putative causal associations 
for 60 genes with SBP (i.e., p < 0.05/1558) (Table 4, Supplemental Table 10). Of these 60 genes, six lncRNAs 
(AC066612.1, AC069200.1, AC092747.4, AC100810.3, AL590226.2, and LY6E-DT) showed putative causal 
associations with SBP. For CAD, 173 genes contained at least one eQTL variant [median 5; IQR (2, 18) that 
also were associated with CAD in  GWAS19. Thirteen genes showed putative causal associations with CAD (i.e., 
p < 0.05/173) (Table 4, Supplemental Table 10); none of the 13 putative causal genes was a lncRNA. Using results 
of a recent GWAS of COVID-19  severity20 and a study that investigated circulating proteins influencing COVID-
19 susceptibility and  severity21, we identified 24 genes with cis-eQTL variants [median 3, IQR; (2, 126)] that 
coincide with COVID severity variants. MR analyses identified seven putatively causal genes for COVID-19 
severity (Table 4, Supplemental Tables 10 and 11). Two of the genes included the 2’-5’-oligoadenylate synthetase 
1 gene (OAS1) (MR IVW p = 1.6E−04) and the interferon-alpha/beta receptor beta chain gene (IFNAR2) (MR 
IVW p = 1.8E−06). A recent study identified an alternative splicing variant (sQTL), rs10774671, at exon 7 of 
OAS1 for which the “G” allele leads to a “prenylated” protein that is protective against severe  COVID22. Addi-

Table 4.  Top results in Mendelian randomization analyses. 1 Beta/SE and p-value were obtained by inverse 
variance weighted MR method. # Heterogeneity was observed in MR analyses. Sensitivity analyses were 
performed with median-based and mode-based MR methods in Supplemental Table 9. $ MR analysis was 
performed at gene level. At splice variation level (rs10774671), the MR p = 4E−06.

Exposure Chr Gene type Outcome

INV  MR1

N SNPsBeta SE p

PSRC1 1 Protein coding CHD − 0.084 0.0075 4.8E−29 7

LTA 6 Protein coding CHD − 0.069 0.011 1.3E−09 5

MIR6891 6 miRNA CHD 1.72 0.28 2.0E−09 25

LIPA 10 Protein coding CHD 0.0033 0.00039 2.9E−17 18

PHETA1 12 Protein coding CHD − 0.078 0.013 4.7E−09 3

ACSL6 5 Protein coding COVID-19 0.19 0.064 0.0025# 4

DPP9 19 Protein coding COVID-19 − 0.044 0.017 0.0078# 3

HLA‑DRB1 6 Protein coding COVID-19 0.00099 0.00018 1.9E−08# 35

IFNAR2 21 Protein coding COVID-19 − 0.023 0.0037 1.8E−06# 11

OAS1 12 Protein coding COVID-19 − 0.0086 0.0022 1.6E−04$ 1

SLC22A31 12 Protein coding COVID-19 0.32 0.11 0.0029 13

TYK2 21 Protein coding COVID-19 0.011 0.0021 2.8E−08 3

AC006460.2 2 Bidirectional promoter lncRNA SBP − 5.60 0.55 2.3E−24 3

MAP4 3 Protein coding SBP 0.092 0.0086 4.6E−27 4

PHETA1 12 Protein coding SBP − 0.92 0.058 1.9E−58 3

SLC5A11 16 Protein coding SBP − 0.82 0.066 5.3E−35 21

ACADVL 17 Protein coding SBP − 0.035 0.0030 1.5E−31 3
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tional MR analysis using rs10774671 as the instrumental variable demonstrated that splice variation of OAS1 is 
also causal for COVID-19 severity (p = 4e−6).

Replication analyses. The Battle study only provided p values for eQTL analyses. Of the reported 10,914 
cis-eQTL-eGene pairs from the study by Battle et al.23 (FDR < 0.05)23, 6782 (62%) pairs displayed p < 5e−8 in the 
present study. The average proportion of variance explained by these 6782 cis-eQTL variants in respective genes 
was 0.11 (Supplemental Table 12). Of the 269 trans-eQTL-eGene pairs (FDR < 0.05) reported by Battle et al.23 
47 (18%) pairs displayed p < 1e−12 in the current study. The average proportion of variance explained by these 
47 trans-eQTL variants in respective genes was 0.076. Of note, all 47 trans-eQTL variants and respective trans-
eGenes are located on the same chromosomes (Supplemental Table 13). The average distance between these 
trans-eQTL variants and respective trans-eGenes is within 22 Mb.

We conducted additional replication analysis for the cis-eQTL variant-eGene pairs generated from 8,372,247 
SNPs and 20,188 gene transcripts that were common to our study (n = 2622 participants) and to GTEx(6) (n = 755 
participants). At p < 5e−8, we identified 1,080,485 cis-eQTL variant-eGene pairs in GTEx and 3,852,182 pairs 
in our study; of these, 951,085 pairs (88% of pairs in GTEx) displayed the same effect direction as in our larger 
study. (Supplemental Fig. 3). At p < 1e−4, we identified 1,815,208 cis-eQTL variant-eGene pairs in GTEx and 
6,364,173 pairs in this study; of these, 1,797,977 (99% of pairs in GTEx) displayed the same effect directionality 
with our study. As can be seen in the figure, there is considerable concordance between the Framingham Heart 
Study (FHS) and GTEx eQTL effect sizes, although the FHS has a larger sample size than GTEx whole blood 
samples (2622 vs 755), which results in a smaller standard error and larger t-statistics (Supplemental Fig. 4).

Discussion
We leveraged WGS and RNA-seq data from 2622 FHS participants to create a powerful scientific resource of 
eQTLs. We identified significant unique cis-eQTL variants-eGene pairs (n = 2,855,111 unique variants with cis-
15,982 eGenes) and 526,056 unique trans-eQTL variants-eGene pairs (526,056 unique variants and unique 7233 
trans-eGenes. A large proportion of reported cis-eQTL variant-eGene pairs were replicated with directionally 
concordant in our study including 88% of cis-variant-eGene pairs from GTEx.

Consistent with our previous study and  others7–12,24,25, 90% of eQTL variants identified in the present study 
are located within 1 Mb of the corresponding cis-eGene and 83% are within 100 kb of the TSSs of the cor-
responding eGene. While the majority of (85% of cis‑ and 96% of trans‑) lead eQTL variants explained only a 
small proportion  (R2 < 0.2) of interindividual variation in expression of the corresponding eGenes, 15% of lead 
cis-eQTL variants and 4% of lead trans variant explained 20% or more of interindividual variation in expression 
of the corresponding  eGenes26. Additionally, eQTL variants were enriched (p < 0.0001) in disease-associated SNPs 
identified by GWAS. We further demonstrated the utility of our eQTL resource for conducting causal inference 
testing. Our MR analyses revealed putatively causal relations of gene expression to several disease phenotypes 
including SBP, CAD, and COVID-19 severity. Taken together, the comprehensive eQTL resource we provide 
can advance understanding of the genetic architecture of gene expression underlying a wide variety of diseases. 
The interactive and browsable eQTL resource will be posted to the National Heart, Lung, and Blood Institute’s 
BioData Catalyst site and will be freely accessible to the scientific community.

Our study expands current knowledge by creating an accessible and browsable resource of eQTLs based on 
WGS and RNA-seq technologies. It also includes eQTLs for lncRNAs that were not reported in prior eQTL stud-
ies that used array-based expression profiling. Over the past decade, accumulating evidence shows that lncRNAs 
are widely expressed and have key roles in gene  regulation27,28. It is estimated that the human genome contains 
16,000 to 100,000  lncRNAs27. We identified 447,598 cis-eQTL variants for 1518 cis-lncRNAs and 121,241 trans-
eQTLs for 475 trans-lncRNAs (Supplemental Tables 5 and 6). In addition, we identified six lncRNAs that showed 
putative causal associations with SBP. However, the functions of these six lncRNAs remain to be determined. 
Thus, our novel eQTL database may also help in the study of non-protein-coding RNAs in relation to health 
and disease.

As a proof of concept of the application of the eQTL resource, we performed MR analyses on a small number 
of cardiovascular traits and COVID-19 severity and demonstrated that the eQTL database can identify promising 
candidate genes with evidence of putatively causal relations to disease that may merit functional studies. Severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread across the globe and caused millions of 
deaths since it emerged in 2019. Recent GWAS of COVID-19 susceptibility and  severity29–31 have identified SNPs 
in several loci on chromosomes 3, 9 and  2132. Using our eQTL resource in conjunction with COVID-19 GWAS, 
we conducted MR analyses that identified seven genes, including OAS1 and IFNAR2, as putatively causal for 
COVID-19 severity. The OAS1/2/3 cluster has been identified as a risk locus for COVID-19  severity29. This area 
harbors a protective haplotype of approximately 75 kilo-bases (kb) at 12q24.13 among individuals of European 
 ancestry21. A recent study identified an alternative splicing variant, rs10774671, at exon 7 of OAS1 for which the 
protective allele “G” leads to a more active OAS1  enzyme22. Our MR results suggest that both the OAS1 gene 
expression level and its splice variation are causal for COVID-19 severity.

The IFNAR2 gene encodes a protein in the type II cytokine receptor family. Mutations in IFNAR2 are associ-
ated with Immunodeficiency and measles virus susceptibility and play an essential and a narrow role in human 
antiviral  immunity33. A recent study further showed that loss-of-function mutations in IFNAR2 are associated 
with severe COVID-1934. These studies, considered alongside our MR results provide evidence of a causal role 
of IFNAR2 expression in severe COVID-19 infection.

This study identified cis‑eQTL in whole blood and used them as IVs in MR analyses. Therefore, caution is 
needed in interpreting the causal relations of several genes to several disease traits. Blood tissue is more easily 
accessible than other tissues, e.g., kidney or heart, for large association studies. Several previous studies of omics 
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data have shown that findings in whole blood were compariable to other  tissues35,36. Several eQTL studies have 
also demonstrated cis‑ and trans‑eQTLs gene regulation across tissues. The GTEx Consortium found that per-
vasive cis‑eQTLs affect the majority of human genes across  tissues6,37. Another study also showed that the identi-
fied cardiometabolic genetic loci share downstream cis- and trans-gene regulation across tissues and  diseases38.

This study has several noteworthy limitations. This study included White participants of European ancestry 
who were middle-aged and older; therefore, the eQTLs identified may not be generalizable to other races or age 
ranges. The current RNA-seq platform included ~ 7700 lncRNAs, which is a modest subset of all lncRNAs in the 
human  genome27. We used MR analyses to infer causal relation of genes to disease traits. MR analysis is predi-
cated on a set of critical assumptions that may not be testable in the setting of eQTL  analysis39,40. Replication of 
our eQTL findings is warranted in studies with larger sample sizes and more diverse populations. In addition, 
our study found that the cis-eQTL variants were enriched for GWAS-associated SNPs. It is possible that we may 
have underestimated signal regions when local LD in the GWAS region was not considered. An exhaustive inves-
tigation of  colocalization41,42 is not feasible in this study due to computational burden and storage limitations.

Our study also has several strengths. The advent of high-throughput RNA sequencing technology provides 
an unparalleled opportunity to accelerate understanding of the genetic architecture of gene expression. Our 
study extends and expands the existing literature by identifying novel eQTLs based on WGS and RNA-seq. We 
demonstrate the potential applications of a vast eQTL resource by analyzing the concordance of eQTL variants 
with SNPs from GWAS of several disease phenotypes followed by causal inference analyses that identified prom-
ising disease-related genes that may merit functional studies. We created an open and freely accessible eQTL 
repository that can serve as a promising scientific resource to better understand of the genetic architecture of 
gene expression and its relations to a wide variety of diseases.

Methods
Study participants. This study included participants from the FHS  Offspring10 and Third Generation 
 cohorts11. Blood samples for RNA seq were collected from Offspring participants who attended the ninth exami-
nation cycle (2011–2014) and the Third Generation participants who attended the second examination cycle 
(2008–2011). Protocols for participant examinations and collection of genetic materials were approved by the 
Institutional Review Board at Boston Medical Center. All participants provided written, informed consent for 
genetic studies. All research was performed in accordance with relevant guidelines/regulations.

Isolation of RNA from whole blood and RNA‑seq. Peripheral whole blood samples (2.5 mL) were col-
lected from FHS participants (Offspring participants at the ninth examination cycle and the Third Generation 
participants at the second examination cycle) using PAXgene™ tubes (PreAnalytiX, Hombrechtikon, Switzer-
land), incubated at room temperature for 4 h for RNA stabilization, and then stored at − 80 °C until use. Total 
RNA was isolated using a standard protocol using a PAXgene Blood RNA Kit at the FHS Genetics Laboratory 
(FHS Third Generation cohort) and the TOPMed contract laboratory at Northwest Genomics Center (Offspring 
cohort). Tubes were allowed to thaw for 16 h at room temperature. White blood cell pellets were collected after 
centrifugation and washing. Cell pellets were lysed in guanidinium-containing buffer. The extracted RNA was 
tested for its quality by determining absorbance readings at 260 and 280 nm using a NanoDrop ND-1000 UV 
spectrophotometer. The Agilent Bioanalyzer 2100 microfluidic electrophoresis (Nano Assay and the Caliper 
LabChip system) was used to determine the integrity of total RNA.

All RNA samples were sequenced by an NHLBI TOPMed  program13 reference laboratory (Northwest Genom-
ics Center) following the TOPMed RNA-seq protocol. All RNS-seq data were processed by University of Wash-
ington. The raw reads (in FASTQ files) were aligned using the GRCh38 reference build to generate BAM files. 
RNA-SeQC43 was used for processing of RNA-seq data by the TOPMed RNA-seq pipeline to derive standard 
quality control metrics from aligned reads. Gene-level expression quantification was provided as read counts 
and transcripts per million (TPM). GENCODE 30 annotation was used for annotating gene-level expression.

Whole blood cell counts. Whole blood cell counts include white blood cell (WBC) count, red blood cell 
count, platelet count, and WBC differential percentages (neutrophil percent, lymphocyte percent, monocyte 
percent, eosinophil percent, and basophil percent). Contemporaneously measured blood cell counts were avail-
able in 2094 (80%) of the 2622 FHS participants used in eQTL analyses. We performed partial least squares 
(PLS) prediction  method44 with three-fold cross-validation (2/3 samples for training and 1/3 for validation) to 
impute these blood cell components using gene expression from RNA-seq. Prediction accuracy (R-squared) 
varied across blood component: WBC: 0.58, platelet: 27%, neutrophil percentage: 82%, lymphocyte percentage: 
85%, monocyte percentage: 77%, eosinophil percentage: 87%, basophil percentage: 32%. Because 80% of the 
participants in this study had directly measured cell count variables and only 20% received imputed variables, we 
used the measured (in 2094 participants) and predicted (in 528 participants) blood cell components as covari-
ates in regression models for eQTL analyses.

RNA‑seq quality control, and data adjustment. To minimize confounding, expression residuals were 
generated by regressing transcript expression level on age, sex, measured or predicted blood cell count and dif-
ferential cell proportions, and genetic principal components. Principal component (PC) analysis is a technique 
for reducing the dimensionality in large data  sets45. It has been widely used in regression analyses to minimize 
unknown confounding. We included five PCs computed from FHS genotype profiles to account for popula-
tion stratification. We also included 15 PCs computed from the transcriptome profile to account for unknown 
confounders that may affect gene expression. In addition, we adjusted for a relatedness matrix, and technical 
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covariates including year of blood collection, batch (sequencing machine and time, plate and well), and RNA 
concentration.

Whole genome sequencing. Whole genome sequencing of genomic DNA from whole blood was con-
ducted in ~ 6000 FHS participants as part of NHLBI’s TOPMed  program13. Standard procedures were used 
to obtain DNA fragmentation and library construction. Sequencing was performed by a TOPMed reference 
laboratory (the Broad Institute of MIT and Harvard) using Hi Seq X with sequencing software HiSeq Control 
Software (HCS) version 3.3.76, then analyzed using RTA2 (Real Time Analysis). The DNA sequence reads were 
aligned to a human genome build GRCH38 using a common pipeline across all TOPMed WGS centers. A sam-
ple’s sequence was considered complete when the mean coverage of nDNA was ≥ 30x. This analysis used genetic 
variants generated from TOPMed Freeze  10a13.

Association analyses of expression levels with SNPs. We performed association analyses of expres-
sion levels with genome-wide SNPs with minor allele count (MAC) ≥ 10. In a simple regression model, a SNP 
was used as an independent variable and the residuals of a transcript expression level was used as the depend-
ent variable. All analyses were performed on the NIH-supported STRIDES cloud infrastructure. A graphical 
Processing Unit (GPU)-based  program12 was used to facilitate computation. Effect sizes, standard error, partial 
R-squared, and p-values for all SNP-gene expression pairs with p < 1e−4 were stored to enable lookups and 
to facilitate later meta-analysis. We evaluated the genomic inflation factor for eQTL analyses. Due to storage 
burden, we evaluated the genomic inflation factor based on full eQTL analysis (i.e., no p value restriction) on 
chromosome 12 because the length of this chromosome is close to the median length of chromosome 1–22.

In this study, we defined cis-eQTLs as targeting genes within 1 Mb of their transcription start site (TSS). 
Trans-eQTLs referred to those that were beyond of 1 Mb of the TSSs of the eGenes on the same chromosome or 
those on the different chromosomes of the eGenes. A significant cis-eQTL of an eGene was identified if a SNP 
within 1 Mb of that gene was associated with expression of a transcript of that gene at P < 5 ×  10–8. A significant 
trans‑eQTL was defined as a SNP beyond 1 Mb that gave rise to P < 1 ×  10–12 in association a gene.

Estimation of variance in expression level explained by eQTLs. An accurate estimation of herit-
ability may help understand the degree to which genetic factors influence a  trait49. Narrow-sense heritability 
measures the proportion of phenotypic variance explained by additive genetic  effects17. We estimated the pro-
portion of variance (R2) in the expression level of a gene that was explained by the lead cis-eQTL (cis-R2) or 
trans-eQTL (trans-R2) variant. We conducted Mood’s median test (median_test in the “coin” R package) to com-
pare the median value of variance in cis‑eGenes and trans‑eGenes explained by cis‑eQTLs versus trans-eQTLs. 
For cis‑ or trans‑eGenes, we compared the median value of genetic variance in protein-coding eGenes versus 
lncRNA eGenes.

Comparison of effect sizes of eQTLs with different minor allele frequencies. Previous studies 
showed that rare variants showed a large effect size in QTL analysis. For significant cis-eQTLs (P < 5 ×  10–8) and 
trans-eQTLs (P < 1 ×  10–12), we compared the median (25% quartile, 75% quartile) of the absolute values of effect 
sizes for eQTL variants in four intervals based on their minor allele frequencies (MAFs): [0.1, 0.5), [0.05, 0.1), 
[0.01, 0.05), and (0.003–0.01).

Gene Ontology analyses. We selected the single, most significant eQTL variant (i.e. lead variant) for each 
eGene (for the gene level analysis) from cis- and trans-eQTL results separately. The eGenes annotated to the 
selected lead cis and trans eQTL variants were matched into Entrez IDs. We used the “goana” function from the 
“limma”  package46 to test for over-representation of gene ontology (GO) terms or KEGG pathways applied to 
the top 1000 eGenes. We used FDR < 0.05 to report GO terms including Biological Process, Cellular Component, 
and Molecular Function.

Enrichment analyses using GWAS Catalog. We linked the eQTL variants with SNPs from the GWAS 
 Catalog2 (data downloaded on October 22, 2021), which included 243,618 entries for 2960 mapped traits at 
p < 5e−8. Cis- and trans-eQTL variants were analyzed separately. Unique SNP RS IDs were used for enrichment 
analysis with Fisher’s test. FDR < 0.05 was used for significance.

Correlation analysis of selected lncRNA and protein coding genes. For lncRNAs that were in the 
top 25 cis-eQTL variant-eGene pairs, we performed partial Pearson correlation analyses between the expres-
sion level of the lncRNA and its nearby protein coding gene, adjusting for the same set of covariates that were 
included in eQTL analysis. We performed random sampling of 1000 genes 500 times to derive null distributions 
of partial Pearson correlation of these gene pairs. We calculated an empirical p-value to evaluate whether the 
partial Pearson correlation coefficient between the expression level of an lncRNA and its nearby protein coding 
gene was significantly higher than the average partial Pearson correlation coefficient from randomly selected 
gene pairs. The empirical p-value was calculated as the proportion of partial Pearson correlation coefficients that 
were more extreme than the correlation coefficient of an lncRNA and its nearby protein coding gene.

Mendelian randomization analysis. We conducted Mendelian randomization (MR) to demonstrate the 
application of the eQTL resource in causal inference analysis. We tested for potential causal association of the cis-
eGenes with SBP, coronary artery disease (CAD), and COVID-19 severity. SBP-associated SNPs were obtained 
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from GWAS of over 1 million  people18. CAD-associated SNPs were obtained from the study of 34,541 CAD cases 
and 261,984 controls of UK Biobank resource followed by replication in 88,192 cases and 162,544 controls from 
 CARDIoGRAMplusC4D19. COVID-19 associated SNPs were obtained from a recent GWAS including 14,134 
COVID-19 cases and 1,284,876 controls of European ancestry by the COVID-19 Host Genetics  Initiative29. We 
performed two-sample MR  analyses40 using the TwoSampleMR R  package47. The instrumental variables (IVs) 
were independent cis-eQTL variants (LD  r2 < 0.1) from this study. The primary analysis used the inverse variance 
weighted (IVW) method. We also assessed heterogeneity of the IVs in each gene and conducted sensitivity anal-
ysis using the MR-Egger method to test for potential horizontal pleiotropy. We also performed the median-based 
 method48 and mode-based  method49 when heterogeneity was present in MR analyses due to outliers among the 
 IVs50. We reported putative causal genes if Bonferroni correction p < 0.05/n (n is the number of genes tested).

Replication analyses. A previous study reported 10,914 cis‑eQTL variant-eGene pairs and 269 trans 
pairs (FDR < 0.05) through RNA-sequencing of 922  individuals23. We performed replication analyses using the 
reported cis‑ and trans‑eQTL variant-eGene pairs in conjunction with the pairs in the present  study23. We also 
used the cis-eQTL database generated from GTEx whole blood (version 8) (https:// www. gtexp ortal. org/ home/ 
datas ets) for replication of our cis-QTL findings. Whole genome sequencing and RNA-seq were conducted in 
whole blood of 755 samples in GTEx. The replication was only performed using the cis-eQTL-variant-eGene 
pairs generated by 8,372,247 SNPs and 20,188 gene transcripts that were found in common between our study 
and GTEx. Because this study was aimed to provide eQTL resource for the broad scientific community, we pre-
sent replication results using both p < 5e−8 and p < 1e−4 for replicating cis-eQTL variant-eGene pairs.

Data availability
The datasets analyzed in the present study are available at the dbGAP repository phs000007.v32.p13. The datasets 
analyzed in the present study are available at the dbGAP repository phs000007.v32.p13 (https:// www. ncbi. nlm. 
nih. gov/ proje cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 0007. v30. p11).
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