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Drivers and potential distribution 
of anthrax occurrence 
and incidence at national 
and sub‑county levels across Kenya 
from 2006 to 2020 using INLA
Valentina A. Ndolo 1*, David William Redding 5, Isaac Lekolool 2, David Mumo Mwangangi 3, 
David Onyango Odhiambo 4, Mark A. Deka 6, Andrew J. K. Conlan 1 & James L. N. Wood 1

Anthrax is caused by, Bacillus anthracis, a soil‑borne bacterium that infects grazing animals. Kenya 
reported a sharp increase in livestock anthrax cases from 2005, with only 12% of the sub‑counties 
(decentralised administrative units used by Kenyan county governments to facilitate service 
provision) accounting for almost a third of the livestock cases. Recent studies of the spatial extent 
of B. anthracis suitability across Kenya have used approaches that cannot capture the underlying 
spatial and temporal dependencies in the surveillance data. To address these limitations, we apply the 
first Bayesian approach using R‑INLA to analyse a long‑term dataset of livestock anthrax case data, 
collected from 2006 to 2020 in Kenya. We develop a spatial and a spatiotemporal model to investigate 
the distribution and socio‑economic drivers of anthrax occurrence and incidence at the national and 
sub‑county level. The spatial model was robust to geographically based cross validation and had a 
sensitivity of 75% (95% CI 65–75) against withheld data. Alarmingly, the spatial model predicted 
high intensity of anthrax across the Northern counties (Turkana, Samburu, and Marsabit) comprising 
pastoralists who are often economically and politically marginalized, and highly predisposed to a 
greater risk of anthrax. The spatiotemporal model showed a positive link between livestock anthrax 
risk and the total human population and the number of exotic dairy cattle, and a negative association 
with the human population density, livestock producing households, and agricultural land area. Public 
health programs aimed at reducing human‑animal contact, improving access to healthcare, and 
increasing anthrax awareness, should prioritize these endemic regions.

Anthrax is a bacterial disease caused by Bacillus anthracis, a soil-borne bacterium that infects predominantly 
grazing  animals1. B. anthracis is classified by the National Institute of Allergy and Infectious Diseases (NIAID) as 
a ‘category A’ pathogen, known to pose the greatest threat to national security, together with the causative agents 
of plague, botulism, smallpox, and viral hemorrhagic  fevers2. The bacteria usually exist in the soil as dormant, 
persistent spores that can infect susceptible animals during  grazing1,3,4. Although certain species of animals are 
more susceptible than others, e.g., cattle compared to sheep and  goats5, even within these susceptible groups 
vaccinated animals are less likely to become sick post consumption of the bacteria, and therefore consumption 
does not guarantee  infection1. Following infection, the spore changes into a vegetative form that releases toxins 
and multiplies rapidly, often leading to death in susceptible  animals4. There are three forms of human anthrax 
disease depending on the transmission route, these include cutaneous anthrax (most common and least lethal 
form; about 95% of all human cases), gastrointestinal anthrax, and inhalational anthrax (most rare and most 
lethal; 45% of case fatality rate even with treatment)1. Injection anthrax cases observed among heroin drug users, 
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was also recently added to the  list6. Livestock, wildlife, and human anthrax cases have been documented glob-
ally across Africa, Europe, the United States, Australia, and  Asia7. However, Africa has been reported to have 
the highest prevalence of anthrax disease in livestock, with a pooled prevalence of 29% based on studies of the 
prevalence of anthrax in cows, sheep, goats, and buffalo species  worldwide8.

Incidences of anthrax outbreaks are associated with ecological and socio-economic factors that drive the 
emergence of the  disease4,7. Some well-studied ecological associations include precipitation, temperature, soil 
properties (calcium, pH, moisture, mineral composition), vegetation, host density, and  elevation4,7,9,10. Socio-
economic drivers, on the other hand, have not been well studied despite the evidence of an association between 
certain human activities (cultivation, land clearance, and irrigation) and livestock anthrax  outbreaks1. Kenya 
reported a sharp increase in livestock anthrax cases from the year 2005, with 12% of the sub-counties (decen-
tralised administrative units used by Kenyan county governments to facilitate service provision) accounting 
for almost a third of the livestock  cases11. There was a significantly higher risk of livestock anthrax outbreaks in 
medium and high potential agro-ecological zones compared to the arid and semi-arid low potential  zones11. A 
majority of livestock anthrax outbreaks in Kenya tended to occur between January to March (hot and dry season) 
and April to June (wet and cool season), with fewer outbreaks observed between July to September (dry and cool 
season) and October to December (the hot and wet season)11.

Ecological niche modelling (ENM) applies machine learning algorithms to study the association between 
species occurrence and the environmental conditions of a given location to estimate the areas that are suitable 
for the species across a wider geographical  location12. ENM has been used to model the spatial distribution of B. 
anthracis suitability across the  world7,9,10,13–15. Although recent studies of B. anthracis suitability in Kenya have 
applied conventional algorithms that provide useful  insights16,17, these methods are limited due to their inability 
to cope with random effects such as spatial and temporal pseudo-replication which are common features of most 
ecological  datasets18. Without a complete understanding of the true incidence and drivers of anthrax, it is difficult 
to conduct proper surveillance, diagnosis, prevention, treatment, and control.

Models that can deal with spatial and temporal dependency structures are usually more computationally 
demanding and mathematically  complex18,19. However, the recently developed Bayesian hierarchical modelling 
technique, Integrated nested Laplace approximation (INLA), offers a fast and accurate approach for estimating 
posterior distributions for such complex  models20. This methodological development enables us to develop the 
first Bayesian models that can address the limitations of past ENM studies in Kenya discussed above (princi-
pally spatial and temporal pseudo-replication). We use R-INLA to analyse a long-term spatiotemporal dataset 
of livestock anthrax case data, collected systematically over a surveillance period of 15 years in Kenya. We first 
develop a purely spatial model to explore associations between anthrax incidence across Kenya and ecological 
covariates. We then build a spatial–temporal hurdle model (comprising two models: an occurrence and an inci-
dence model) using the same data to investigate the socio-economic drivers of the geographical distribution of 
anthrax occurrence and incidence at the sub-county level. The occurrence model investigates the factors that 
determine whether an outbreak occurs or not (presence or absence), while the incidence model investigates what 
determines the severity of an outbreak (number of livestock cases) after it occurs. Both are equally important 
because they provide insight that can help policy makers to design interventions to prevent the occurrence of 
an outbreak or to reduce the severity in the event that it occurs.

Methods
Data sources. We analyzed records of confirmed and suspected livestock deaths attributed to anthrax 
occurring from 1 January 2006 to 31 December 2020 across Kenya (available online along with full code for 
the analysis in this paper https:// github. com/ spati almod els/ Kenyan_ anthr ax_ model). The case records covering 
the entire country were reported from the Kenya Directorate of Veterinary Services (KDVS) located in Nairobi 
and the five Regional Veterinary Investigation Laboratories located in Nakuru, Eldoret, Karatina, Kericho, and 
Mariakani. The anthrax outbreaks were considered as any livestock (cattle, goats, sheep, pigs, camels) or wildlife 
deaths confirmed through clinical and laboratory diagnosis. Clinical diagnosis was defined as an acute disease 
accompanied by sudden death, bleeding from body orifices, swelling, lack of rigor mortis, and oedema of the 
neck and face in pigs. Laboratory confirmation was done through methylene blue staining to identify the char-
acteristic bacterial capsule and the rod-shaped bacilli in clinical specimens collected from the infected carcasses.

We extracted data from old paper records of livestock anthrax cases into Microsoft Excel. These records 
comprised the location of the livestock outbreaks, name of the farmer, number of animals dead and herd size, 
species affected, date, method of diagnosis, and the details of the reporting veterinary doctor. Since the locations 
of livestock anthrax outbreaks were reported at sub-county/district levels (districts refer to the old naming given 
to current sub-counties before the rollout of the current constitution), we recorded the geographic coordinates of 
livestock cases at the district level. During data cleaning, we removed duplicate coordinates, outliers, and entries 
with missing variables. In the end, we had 540 livestock cases that we used for analysis. The spatial granularity 
and prolonged surveillance period of these data allow for a more detailed perspective on the major drivers of 
anthrax across Kenya. We also collected wildlife data from the Kenya Wildlife Service (KWS). Most of the data 
from KWS was lacking information on the geographic coordinates of the outbreaks, so we visited the actual 
locations and collected the coordinates. We recorded 20 wildlife cases that we used to validate the performance 
of the spatial model.

Processing socio‑economic and ecological covariates. We gathered geospatial data on ecological 
and socio-economic correlates of B. anthracis ecology and distribution. For the spatial model, we obtained the 
following variables: rainfall, vegetation, elevation, distance to permanent water bodies, and soil patterns. For 
the spatiotemporal models, we used human population estimates (total population, population density, and 
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male and female population per sub-county), host population (livestock producing households, total number of 
indigenous, exotic dairy, and exotic beef cattle per sub-county), and agricultural practices that lead to soil dis-
turbance (agricultural area under cultivation, number of farming households, and crop-producing households).

We chose seven environmental covariates for the spatial model based on known correlates of B. anthra-
cis suitability identified from previous peer-reviewed  studies9,10,13,15,21–23. These comprised three soil variables, 
including soil pH (× 10) in  H2O at a depth of 0 cm, exchangeable calcium at a depth of 0–20 cm, and soil water 
availability (volume of water per unit volume of soil) retrieved at a resolution of 250 m from the International Soil 
Reference and Information Centre (ISRIC) data hub (https:// data. isric. org/ geone twork/ srv/ eng/ catal og. searc h#/ 
home). We used the shallowest depth available because although the bacterial spores can persist in the surface 
soil for up to five years and indefinitely in much deeper  soils24, the spores in the surface soils are more likely to 
trigger host  infection25. We retrieved monthly Enhanced Vegetation Index (EVI) data from 1 January 2006 to 31 
December 2020 (180 tiles in total) from The Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) 
Vegetation Indices (MYD13A3 v.6) at a resolution of 1  km2 (https:// lpdaac. usgs. gov/ produ cts/ myd13 a3v006/). 
The mean EVI was then calculated using QGIS by averaging all 180 tiles. EVI reduces variations in the canopy 
background and retains precision over dense vegetation conditions. Monthly Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS) rainfall data from rain gauge and satellite observations was retrieved 
from the United States Geological Service (USGS) at a resolution of 0.05 degrees (https:// clima teserv. servi rglob 
al. net/ map). Since the rainfall data also comprised 180 tiles, the mean rainfall was calculated by averaging all 180 
tiles using QGIS. We also collected data on the distance to permanent water bodies from a global hydrology map 
obtained from ArcGIS version 10.6.1.26 and elevation data at 1  km2 resolution from the Global Multi-resolution 
Terrain Elevation Data (GMTED2010) dataset available from USGS (Table 1).

For the spatiotemporal sub-county-based models, we accessed the population data per sub-county (total 
population, male population, female population, and population density) from the 2019 Kenyan census report 
provided via the Humanitarian Data Exchange platform (https:// data. humda ta. org/ datas et/ kenya- popul ation- 
per- county- from- census- report- 2019). We also obtained data on livestock population (numbers of exotic dairy 
and beef cattle, and indigenous cattle), area of agricultural land in hectares, number of farming households, and 
the number of households actively practicing agriculture (crop production and livestock production) aggregated 
to the sub-county level from the 2019 Kenya Population and Housing Census volume IV provided by the Ope-
nAfrica platform (https:// open. africa/ datas et/ 2019- kenya- popul ation- and- housi ng- census).

We conducted data exploration to check for outliers, collinearity, and the relationships between the covariates 
and the response variables. We used Cleveland dot plots to check for outliers. We measured collinearity using 
variance inflation factors (VIF), Pearson correlation coefficients, and pairs plots. For VIF scores, the covariates 
with scores higher than 3 were eliminated one-by-one until all the scores were equal to or less than 3. All the 
covariates included in the study had correlation coefficient values of less than 0.6 (Figs. 1, 2).

Spatial model analysis. We used R version 4.1.0 together with the packages raster version 4.1.127, and 
R-INLA version 4.1.128 to conduct the data processing and statistical modelling. The R-INLA package applies 
the INLA framework in designing models. We used Quantum Global Information System (QGIS) version 3.16 
(https:// qgis. org) to create a 50 km buffer polygon around all the observed livestock outbreak points. We then 
created a 20  km2 grid within this buffer and counted the number of points within each grid cell to create a regular 
lattice with a given number of counts per cell. We then extracted the coordinates of the centroids of each cell to 
create marked locations with a given number of livestock cases per location. We essentially converted the data 
into a count process (number of livestock outbreaks per location). We had 95 cells with one or more counts 
which formed our new presence locations. We then randomly selected 95 pseudoabsences within the 50 km 
buffer polygon but at a distance of 10 km from the presence locations as shown in Fig. 3.

We defined a Zero-inflated Poisson (ZIP) regression model with spatially correlated random effects, imple-
mented as a generalized additive model (GAM) with anthrax incidence as the response variable. The model is 
defined as shown in Eqs. (1), (2), and (3)

(1)Ci ∼ zero− inflated Poisson
(

µi , pi
)

,

Table 1.  Summary of the environmental variables used in the spatial model including variable name, unit, and 
spatial resolution.

Variable name Units Spatial resolution

Rainfall ml 0.05°

Enhanced Vegetation Index (EVI) units 1 km

Elevation (m) m 1 km

Distance to permanent water bodies (km) km (Euclidean distance) 1 km

Soil calcium cmolc/kg 250 m

Soil pH Units (0–14) 250 m

Soil water v% 250 m

https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
https://lpdaac.usgs.gov/products/myd13a3v006/
https://climateserv.servirglobal.net/map
https://climateserv.servirglobal.net/map
https://data.humdata.org/dataset/kenya-population-per-county-from-census-report-2019
https://data.humdata.org/dataset/kenya-population-per-county-from-census-report-2019
https://open.africa/dataset/2019-kenya-population-and-housing-census
https://qgis.org
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where Ci denotes the observed number of anthrax livestock cases at location i, µi and pi are parameters of the 
ZIP distribution. expected(Ci) refers to the expected number of outbreaks at location i, α is the intercept, β are 
the beta coefficients for the covariates, X is the matrix with all the covariates, δk are the non-linear effects (cubic 
regression splines), and ui is the spatial random effect at location i.

To test whether the addition of the GAM smoothers and the spatially correlated random effects improved the 
fit of the model, we also considered candidate models without smoothers and spatial random effects. We tested 
three versions of the spatial model: the first used distance to water, elevation, and EVI as linear covariates without 
spatial random effects, the second applied non-linear terms to elevation and EVI also without spatial random 
effects, and the final model was similar to the second model but with the addition of spatial random effects. We 
then measured the DIC values of the candidate models to select the final spatial model.

We conducted model validation by assessing the posterior distributions of the parameters and the residuals 
for adherence to the distributional assumptions. We checked whether the residuals were independent and nor-
mally distributed. We also plotted a sample variogram to check for any residual spatial auto-correlation using a 
well-defined  method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.

The estimated model was used to map posterior predicted distributions for the incidence of anthrax disease 
(plotted as mean and 95% credible intervals). We validated the model using independent evaluation data with-
held from the model calibration. This evaluation dataset comprises the wildlife cases collected from KWS. We 
then calculated the sensitivity by estimating the proportion of wildlife case locations correctly identified by the 
model, using the minimum presence training threshold (minimum value of the fitted presence training points).

Spatiotemporal model analysis. Our second objective was to investigate the socio-economic, popula-
tion-based drivers of livestock anthrax risk at the sub-county level. These socioeconomic variables are usually 
collected at the sub-county level. Therefore, we developed a second areal model with the number of observations 
per sub-county as the new response variable. The occurrence data, gathered by the Kenya Directorate for Vet-
erinary Services (KDVS), consisted of monthly case reports of livestock anthrax cases collected by all 290 sub-

(2)expected(Ci) =
(

1− pi
)

× µi ,

(3)log(µi) = α +

∑

j

βjXj,i +

∑

k

δk,i + ui ,

Figure 1.  Results of correlation between covariates using Pearson’s correlation coefficient test for the spatial 
model. Correlation between covariates is shown by red numbers (negative correlation) and blue numbers 
(positive correlation). Correlations with a p-value > 0.01 are regarded as insignificant and the correlation 
coefficient values are left blank. The figure was generated using R software v. 4.1.028.
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counties across Kenya between January 2006 to December 2020. We analyzed the whole monthly case time series 
from the year 2006 to 2020 and mapped out the annual counts of confirmed and suspected livestock anthrax 
cases across Kenya at the sub-county level to analyse the spatial and temporal trends throughout the surveillance 
period. The sub-county shapefiles that were used for mapping and modelling were derived from Humanitarian 
Data Exchange version 1.57.16 under a Creative Commons Attribution for Intergovernmental Organisations 
license (https:// data. humda ta. org/ datas et/ ken- admin istra tive- bound aries).

Due to the sparsity of data, we aggregated the monthly case counts and modelled the quarterly occurrence 
and incidence of anthrax at the sub-county-level scale, including spatial and temporal effects, to determine the 
spatial socio-economic drivers of livestock anthrax disease risk across Kenya. We used R-INLA version 4.1.1 
(26) to conduct the data processing and statistical modelling. We used quarterly case counts that were confirmed 
per sub-county across the 15 years of surveillance (2006–2020) as a measure of anthrax incidence. Due to the 
zero-inflated and over-dispersed nature of the distribution, which is difficult to fit incidence counts, we employed 
a two-stage modelling approach using the hurdle model distribution to separately model anthrax occurrence 
(presence or absence) across all sub-counties via logistic regression, and incidence counts using a zero-inflated 
Poisson distribution. We were then able separately to estimate the contributions of the various socio-ecological 
factors that drive disease occurrence (the presence or absence of anthrax) and total incidence counts.

We model the quarterly anthrax occurrence (n = 290 sub-counties over 60 quarters; 17,400 observations) 
where Yi,t refers to the binary presence (denoted as 1) or absence (denoted as 0) of anthrax in sub-county i dur-
ing year t, and Pi,t is the probability of anthrax occurrence, thus:

We model quarterly anthrax incidence counts Ci,t using a zero-inflated Poisson process with parameters µi,t 
and pi,t (see Eq. (5)). Equation (6) denotes the expected values for the ZIP distribution at sub-county i during 
year t.

(4)Yi,t ∼ Bernoulli
(

Pi,t
)

.

(5)Ci,t ∼ Zero− inflated Poisson
(

µi,t , pi,t
)

,

(6)expected
(

Ci,t

)

=

(

1− pi,t
)

× µi,t .

Figure 2.  Results of correlation between covariates using Pearson’s correlation coefficient test for the 
spatiotemporal model. Correlation between covariates is shown by red numbers (negative correlation) and 
blue numbers (positive correlation). Correlations with a p-value > 0.01 are regarded as insignificant and the 
correlation coefficient values are left blank. The figure was generated using R software v. 4.1.028.

https://data.humdata.org/dataset/ken-administrative-boundaries
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Both the Bernoulli and the ZIP distributions are modelled separately as functions of the covariates and the 
spatial and temporal random effects using a general linear predictor as shown in Eqs. (7) and (8):

where α denotes the intercept; X signifies a matrix made up of the socio-economic covariates accompanied by 
their linear coefficients denoted as β ; spatiotemporal reporting trends at the sub-county level were accounted for 
in the models using spatially structured ( ui,t ; conditional autoregressive) and unstructured noise ( vi,t ; i.i.d—inde-
pendent and identically distributed) random-effects specified jointly as a Besag–York–Mollie  model30,31, as well 
as temporally structured ( yi,t ) random effects of the first order where wi,t is a pure noise term that is normally 
distribute with a mean of zero and a variance of σ2. We used uninformative priors with a Gaussian distribution 
for the fixed effects and penalized complexity priors for the hyperparameters of all the random effects.

For the two spatiotemporal models, we applied linear effects for all the variables: population density, total 
population, number of exotic dairy cattle, agricultural land area, and number of livestock producing households. 
We scaled the continuous covariates by standardizing them (to a mean of 0 and standard deviation of 1) before 
fitting the linear fixed effects.

We used R-INLA to conduct model inference and selection and used DIC to evaluate the model fit for both 
the occurrence and incidence models. For both models (occurrence and incidence), we created 4 candidate 
models, compared them, and selected the model with the lowest DIC as the final model. The candidate models 
included: a baseline intercept only model; a second model with the intercept and covariates; a third model with 

(7)logit
(

Pi,t
)

= α +

∑

j

βjXj,i + ui,t + vi,t + yi,t ,

(8)log
(

µi,t

)

= α +

∑

j

βjXj,i + ui,t + vi,t + yi,t ,

(9)yi,t = yi,t−1 + wi,t ,

Figure 3.  Spatial distribution of thinned livestock anthrax case locations across Kenya from 2006 to 2020. 
The map shows livestock anthrax case locations (n = 540) thinned to pixels of 20  km2 to form 95 new marked 
locations. The orange dots show the new presence locations which are marked points with colour intensity 
representing the number of livestock cases per location. The white triangles show the random pseudo-absence 
locations. The yellow squares are the wildlife cases obtained from the Kenya Wildlife Service. The green polygon 
is the background calibration buffer used to derive the random pseudo-absence locations. This map was 
generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https:// www. qgis. org/ en/ site/ 
forus ers/ downl oad. html).

https://www.qgis.org/en/site/forusers/download.html
https://www.qgis.org/en/site/forusers/download.html
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the intercept, covariates, and the spatial random effects; and a fourth model with the intercept, covariates, spatial 
random effects, and a temporal trend.

We evaluated the posterior distributions of the parameters and the residuals for adherence to the distribu-
tional assumptions. We assessed the residuals to check whether they were independent and normally distributed. 
We also plotted the residuals against the covariates to check for any non-linear patterns using a well-defined 
 method29. We then ran 1000 simulations to check whether the model was capable of handling zeros.

Ethics statement. Licence to conduct the research was granted by the National Council for Science, Tech-
nology, and Innovation (NACOSTI) under reference number 651983, and the Kenya Wildlife Service under 
reference number KWS-0003-01-21.

Results
Spatial model. The best spatial model with the lowest DIC had the distance to water as a linear effect and 
EVI and elevation as non-linear terms with the addition of spatially correlated random effects. The model also 
passed validation checks (Table 2).

We validated the performance and robustness of the model using both sensitivity of the prediction against 
withheld data and geographical cross validation. The wildlife cases (n = 20) from KWS were then used to calculate 
the sensitivity of the model by extracting the predicted values of known wildlife case locations and comparing 
them against the positivity threshold (minimum training presence threshold) to identify locations that were 
correctly predicted. The sensitivity was then calculated by dividing the number of correctly predicted test loca-
tions by the total number of positive test locations, resulting in a spatial sensitivity of 75% (95% CI 65–75). Geo-
graphical cross-validation was done by examining the sensitivity of the model outputs to geographically based 
cross-validation by fitting a separate model holding out all the livestock data points from the coastal region of 
the country (n = 11). The fixed effects magnitude and direction were similar for the final model and the holdout 
model, showing that the findings were robust following the exclusion of a spatially distinct block of data (Fig. 4).

The posterior means and the 95% credible intervals for the fixed effects parameters used in the final model are 
shown in Table 3. The estimated model demonstrates a negative association between distance to permanent water 
bodies and anthrax incidence. However, EVI had a strong positive association with anthrax incidence between 

Table 2.  Comparison of the three candidate models of the spatial model.

Model DIC WAIC

Zero-inflated Poisson Generalized Linear Model (GLM) 1280 1425

Zero-inflated Poisson Generalized Additive Model (GAM) 1057 1258

Zero-inflated Poisson Generalized Additive Model (GAM) + spatial random effects 605 622

Figure 4.  Geographical cross-validation tests for spatial model robustness. The figure shows the magnitude and 
direction of the fixed effects for the final model and the holdout model to test whether the model was robust 
following the exclusion of a spatially distinct block of data.
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1367 and 5600 units (Fig. 5). Similarly, increasing elevation was also associated with an increased incidence of 
anthrax disease from about 150 to 215 m (Fig. 5). The final model was used to predict anthrax incidence across 
Kenya. The figure was generated using R software v. 4.1.028.

The spatially projected nationwide maps from the best model identified large parts of Western Kenya, the 
Rift-Valley, Central, and Coastal regions to be at high risk of livestock, human, and wildlife anthrax disease 
(Fig. 6 and Table 4), and showed the uncertainty estimates around the predictions (Fig. 7). The INLA model was 
able to identify locations of wildlife outbreaks withheld from the model calibration such as Shompole Wilder-
ness, Garissa, Tsavo National Park, Meru National Reserve, Kyelu Ranch, and Kaluku, Hells Gate, Lake Nakuru 
National Park, Nairobi National Park, Mbagathi, and Soysambu Conservancy.

Spatiotemporal sub‑county model. Recent trends in anthrax surveillance in Kenya. We analyzed the 
temporal trends in confirmed and suspected livestock anthrax cases within and between years. Monthly case 
counts of anthrax were aggregated across the country and illustrated as aggregated monthly livestock case totals 
and quarterly case accumulation curves (Fig. 8). Annual peaks of anthrax cases were shown to occur from Janu-
ary and July, which have the dry and hot followed by the wet and cool seasons, with secondary peaks occurring 
between October and December which is the wet and hot season (Fig. 8). Overall temporal trends suggest that 
2006–2010 appear to be distinctly different from the previous years, with markedly high peaks in confirmed 
livestock anthrax cases (Fig. 8). Throughout the study, 86 sub-counties in 26 of 47 counties reported confirmed 
livestock anthrax cases with evidence of marked spatial as well as temporal clustering (Figs. 8, 9). However, 204 
sub-counties reported no confirmed livestock anthrax cases (total = 290 sub-counties; median 0 cases, mean 
1.3, range 0–22). For instance, most livestock cases (~ 70%; 266/378 cases) were reported from 25 sub-counties 

Table 3.  The posterior means and the 95% credible intervals for the fixed effects parameters of the covariates 
used in the spatial model. a Statistically significant posterior mean value.

Variable Basis functions Mean Lower 95% CI Upper 95% CI

Distance to water (km) − 0.26a − 0.49 − 0.03

Elevation (m)

1 0.34 − 0.54 1.22

2 0.80a 0.26 1.33

3 − 1.36a − 2.26 − 0.45

Enhanced Vegetation Index (EVI)

1 2.04a 0.87 3.21

2 2.85a 1.60 4.11

3 2.22a 1.12 3.33

Figure 5.  Smoothed fits for Enhanced Vegetation Index (EVI) (units) and elevation (m). The solid black line 
shows the posterior mean of the smoothing function, and the shaded grey areas represent the 95% credible 
intervals. The y-axis shows the estimated incidence of anthrax. The figure was generated using R software v. 
4.1.028.
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within 13 of the 47 Kenyan counties (Bomet, Kericho, Kiambu, Kilifi, Kirinyaga, Laikipia, Mombasa, Murangá, 
Nairobi, Nakuru, Nyeri, Tharaka-Nithi, Uasin Gishu), with much lower incidence in northern counties.

Evaluating the geographical distribution and correlates of anthrax occurrence and incidence. For the spatiotem-
poral occurrence and incidence models, we fitted linear relationships for population density, total population, 
number of exotic dairy cattle, agricultural land area, and number of livestock-producing households. The models 
with the socio-economic variables explained significantly more of the variation within the dataset compared to 
the baseline (intercept only) model (occurrence ΔDIC =  − 338; incidence ΔDIC =  − 332; Table 5). The addition 
of the spatial random effects and the temporal trend further improved the model fit compared to the model 
with the covariates alone (occurrence ΔDIC =  − 583; incidence ΔDIC =  − 591;Table 5). Thus, the occurrence and 
incidence models with the covariates, spatial random effects, and the temporal trend were selected as the final 
models. Both models passed the validation checks.

To examine model robustness, we examined the sensitivity of the model outputs to geographically based 
cross-validation by fitting separate models, in turn, holding out high burden sub-counties from each of 11 
counties that had high reported anthrax incidence (Nairobi, Kiambu, Murang’a, Nyeri, Tharaka-Nithi, Nakuru, 
Kericho, Uasin Gishu, Bomet, Kilifi, and Mombasa) (Table 6). The fixed effects magnitude and direction were 
robust across all the holdout models, showing that the findings were not overly influenced by data from any 
geographical location (Fig. 10).

Both the incidence and occurrence models had positive linear effects on total population and exotic dairy cat-
tle, and negative linear effects on population density, agricultural land area, and livestock producing households 

Figure 6.  The posterior predicted mean of the incidence of anthrax disease across Kenya from livestock data 
(2006–2020). The scale for anthrax incidence shows colours ranging from blue to red, with blue showing areas 
with low incidence and warmer colours towards red showing areas with higher anthrax incidence. This map was 
generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https:// www. qgis. org/ en/ site/ 
forus ers/ downl oad. html).

Table 4.  Counties identified to be at high risk of livestock, human, and wildlife anthrax disease by region.

Region Counties

Western Kenya and Rift Valley Narok, Bomet, Kisii, Kericho, Nandi, Uasin Gishu, Kakamega, Vihiga, and Kisumu, southern regions of 
West Pokot and central Trans Nzoia, and Busia counties

Central Kiambu, Muranga, southern parts of Nyeri, Kirinyaga, Nyandarua, Nakuru, and most parts of Meru, 
Tharaka-Nithi, and Embu

Coastal Kwale, Kilifi, Mombasa, and Lamu

Northern Samburu, Turkana, Marsabit, and southern regions of Garissa County

https://www.qgis.org/en/site/forusers/download.html
https://www.qgis.org/en/site/forusers/download.html


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20083  | https://doi.org/10.1038/s41598-022-24589-5

www.nature.com/scientificreports/

Figure 7.  The uncertainty around the slope of the posterior predicted incidence of anthrax disease across 
Kenya. The grey areas show locations where greater than 5 percent (a) and 10 percent (b) of the slope of 
predicted incidence was below the cut-off (0.205) for positivity. We extracted the fitted density distributions of 
the predicted anthrax incidence and calculated the percentage/proportion of the density distribution that was 
lower than the positivity cut-off, then greyed out areas that had more than 5% (a) or 10% (b) of the fitted density 
below the cut-off. The scale for anthrax incidence shows colours ranging from blue to red, with blue showing 
areas with low incidence and warmer colours towards red showing areas with higher anthrax incidence. Maps 
generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https:// www. qgis. org/ en/ site/ 
forus ers/ downl oad. html).

Figure 8.  Temporal trends in country-wide livestock anthrax cases from 2006 to 2020. The polygon height 
illustrates the monthly total livestock cases reported across Kenya. The full anthrax case time series was 
assembled from the Kenya Directorate of Veterinary Services: Monthly case reports from 2006 to 2020. Full 
details of reporting procedures and case definitions are provided in Methods. The figure was generated using R 
software v. 4.1.028.

https://www.qgis.org/en/site/forusers/download.html
https://www.qgis.org/en/site/forusers/download.html
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(Fig. 11c and Table 7). The spatial maps of the fitted probability of anthrax occurrence and incidence (Fig. 11a,b) 
suggest that large parts of Kenya (particularly Central, western, and Coastal Kenya) are suitable for anthrax 
transmission.

Although the socio-economic covariates used in our models can explain a bit of the pattern of anthrax occur-
rence and incidence, they do not fully account for the observed spatial distribution of anthrax. There is still some 
residual spatial variation that is not explained by fitted covariates. Consequently, the addition of the spatial ran-
dom effects (Fig. 12) and the random walk trend (Fig. 13) further improves the fit of the model. Figure 13 shows 
that there was a downward trend in anthrax livestock cases from 2006 to 2012 followed by a slight incline up to 
2018 and then a drop again. Including this information produces a much better model fit.

Figure 9.  Spatiotemporal trends in confirmed livestock anthrax cases across Kenya. Maps illustrate the 
total reported livestock anthrax cases in each sub-county from 2009 to 2020. Map generated using Quantum 
Geographical Information Systems (QGIS) v. 3.16.11 (https:// www. qgis. org/ en/ site/ forus ers/ downl oad. html).

Table 5.  Model comparison of the fitted INLA occurrence and incidence models using linear associations. 
Variables acronyms are Tot.pop Total population, Pop.den Population density, Dairy.c Exotic dairy cattle, Agric.
land Agricultural land area, Livestock.hh Livestock producing households, ɸ Spatial random effect, Ω Temporal 
trend.

Model DIC CPO

Occurrence model

Intercept only 3923 0.112

Intercept + Tot.pop + Pop.den + Dairy.c + Agric.land + Livestock.hh 3585 0.103

Intercept + Tot.pop + Pop.den + Dairy.c + Agric.land + Livestock.hh + ɸ 3047 0.086

Intercept + Tot.pop + Pop.den + Dairy.c + Agric.land + Livestock.hh + ɸ + Ω 3002 0.085

Incidence model

Intercept only 4526 0.130

Intercept + Tot.pop + Pop.den + Dairy.c + Agric.land + Livestock.hh 4194 0.120

Intercept + Tot.pop + Pop.den + Dairy.c + Agric.land + Livestock.hh + ɸ 3643 0.104

Intercept + Tot.pop + Pop.den + Dairy.c + Agric.land + Livestock.hh + ɸ + Ω 3603 0.103

https://www.qgis.org/en/site/forusers/download.html
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Discussion
Spatial model. We used available livestock anthrax data from 2006 to 2020 to develop a spatial ecological 
model of livestock, human, and wildlife anthrax risk across Kenya using gridded environmental covariates. Our 
final spatial model showed that distance to water bodies had a significant negative association with anthrax 
incidence. This observation is consistent with past studies which have demonstrated a significant negative link 
between distance to water bodies and the suitability of an area for the occurrence of B. anthracis15. This is most 
likely linked to the fact that most animals use communal watering points, thus, there is an increased likelihood 
of observing anthrax outbreaks close to water bodies than further away. EVI had a strong positive association 
with anthrax incidence between 1367 and 5600 units. Similarly, increasing elevation was also associated with an 
increased incidence of anthrax disease from about 150 to 215 m.

The spatially projected nationwide maps from the best model showed large parts of Western Kenya, the Rift-
Valley, Central, and Coastal regions to be at high risk of livestock, human, and wildlife anthrax disease (Fig. 3) 
with adequate precision (Fig. 4). The model correctly identified known locations of wildlife outbreaks within 
Tsavo National Park, Shompole Wilderness, Meru National Reserve, Kyelu Ranch, Hells Gate, Lake Nakuru 
National Park, and Nairobi National Park. Previous studies have reported wildlife and livestock anthrax outbreaks 
across the same  areas11,17. The counties with the highest predicted anthrax intensity were the southern regions of 
West Pokot and central Trans Nzoia, and Busia counties which lie next to the eastern border of Uganda, Narok 
County bordering the Serengeti National Park in Tanzania, Kajiado around Mt. Kilimanjaro National Park, Taita 
Taveta and Makueni counties around Tsavo West National Park, and within Kitui County around Tsavo East 
National Park. Anthrax risk areas were also detected around Namunyak Wildlife Conservation Trust in Wamba 

Table 6.  High burden sub-counties from each of 11 counties held out in turn from model fitting during 
geographically based cross-validation.

County Withheld sub-counties

Nairobi Langata, Roysambu, Westlands

Kiambu Githunguri, Kabete, Kiambu, Kikuyu, Limuru, Ruiru, Thika Town

Murang’a Kiharu, Maragwa

Nyeri Mathira, Mukurweni

Tharaka-Nithi Maara

Nakuru Nakuru Town East, Nakuru Town West, Rongai

Kericho Ainamoi

Uasin Gishu Kapseret, Soy, Turbo

Bomet Sotik

Kilifi Kaloleni

Mombasa Kisauni

Figure 10.  Geographical cross-validation tests for model robustness. The figures show the magnitude and 
direction of the fixed effect across all the holdout models to test whether the findings were overly influenced by 
data from any geographical location. The figure was generated using R software v. 4.1.028.
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and vast areas of Maralal and Mukawa within Samburu County. Several counties in Central Kenya were also 
identified as high-risk areas consistent with previously published  studies11,17,32.

Although the results of the model suggest that many parts of Kenya are at risk of livestock, human, and wildlife 
anthrax, a key alarming observation is the high intensity of anthrax predicted across the Northern parts of the 
country, specifically across Turkana, Samburu, and Marsabit counties. Most parts of these counties are classified 
as arid and semi-arid land (ASAL) comprising pastoralists who are often economically and politically marginal-
ized, lacking access to both veterinary and public health  services33. Such services are usually unavailable in these 

Figure 11.  Spatial distribution and correlates of annual anthrax occurrence and incidence (2006–2020) at 
sub-county level across Kenya. Maps show the fitted probability of anthrax occurrence (a) and incidence (b; 
livestock cases per 100,000 people) for 290 sub-counties in the last quarter of 2020. The points and error bars (c) 
illustrate the parameter estimates of the linear socio-economic fixed-effects (the posterior mean estimate and the 
95% credible interval) for the best-fitting models of anthrax occurrence (red) and incidence (blue) (n = 17,400 
observations). The linear covariates were standardized (centered and scaled) before model fitting, such that 
parameters estimate the effect of 1 standard deviation change in the covariate on either the odds of occurrence 
or incidence. The models both included spatiotemporal random effects (sub-county per year) to incorporate 
spatial and temporal heterogeneity and were robust to geographical cross-validation tests (Fig. 10). Maps were 
generated using Quantum Geographical Information Systems (QGIS) v. 3.16.11 (https:// www. qgis. org/ en/ site/ 
forus ers/ downl oad. html).

Table 7.  The posterior means and the 95% credible intervals for the fixed effects parameters of the covariates 
in the spatiotemporal occurrence and incidence model.

Parameters

Occurrence model Incidence model

Mean Lower CI (2.5%) Upper CI (97.5%) Mean Lower CI (2.5%) Upper CI (97.5%)

Intercept − 5.067 − 5.331 − 4.824 − 3.910 − 4.239 − 3.589

Total population 0.456 0.282 0.631 0.490 0.309 0.671

Population density − 0.383 − 0.788 − 0.046 − 0.401 − 0.823 − 0.044

Dairy exotic cattle 0.500 0.289 0.711 0.533 0.314 0.752

Agricultural land area − 0.459 − 0.830 − 0.138 − 0.405 − 0.758 − 0.100

Livestock producing households − 0.360 − 0.650 − 0.071 − 0.440 − 0.735 − 0.148

https://www.qgis.org/en/site/forusers/download.html
https://www.qgis.org/en/site/forusers/download.html
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Figure 12.  The posterior mean of the spatial random effects. The maps show the posterior mean of the 
spatial random effects for the occurrence (a) and incidence (b) models. Maps were generated using Quantum 
Geographical Information Systems (QGIS) v. 3.16.11 (https:// www. qgis. org/ en/ site/ forus ers/ downl oad. html).

Figure 13.  Random walk trend for the occurrence (a) and incidence (b) models. The lower panels show the 
marginal posterior distribution for the standard deviation (σ) hyperparameter of the random walk trend for 
the occurrence model (c) and the incidence model (d). The image was derived from the results of the R-INLA 
 package20 implemented via R v. 4.1.028.

https://www.qgis.org/en/site/forusers/download.html
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areas due to poor communication, roads, and  infrastructure33. Since hospitals and veterinary clinics are few or 
non-existent in most of these parts, these services follow the existing infrastructure and are primarily mobile-
assisted by local NGOs and government-aided mobile  outreaches34. These factors predispose the pastoralists to 
a greater risk of zoonotic diseases such as anthrax. The sparsity of recorded anthrax livestock outbreaks in this 
region could reflect the poor surveillance practices and not necessarily the absence of livestock cases.

During the 2021 Kenya One Health Conference held between December 6th and 8th, the National Strategy for 
Control of Anthrax in Kenya 2021–2036 was presented by Dr Augusta  Kivunzya35. The strategy highlighted four 
key phases: Phase 1 focused on a preparatory and adoption phase running from 2021 to 2023 which will involve 
identifying the disease epidemiology and developing a structured control  plan35,36. Although it was mentioned 
that the high-risk areas across Kenya would be identified from a review of past records, these records suffer 
from sampling bias that gives more weight to counties that have better surveillance  systems11. The strategy also 
proposed focusing on anthrax reports spanning the last 5 years (2014–2019) meaning that only counties that had 
reported livestock anthrax cases during that time would be identified as high risk and would benefit from the 
pilot program which will include vaccinations and enhanced  surveillance35,36. The first phase will also include the 
development of a risk map for anthrax which will be used to guide the implementation of the pilot program only 
within the areas that have had anthrax over the past 5  years35,36. Other risk areas that have not had anthrax in the 
past 5 years will only be classified as high-risk areas if an anthrax outbreak occurs there. In phase 2 the country 
will start the implementation of the strategy in high-risk areas (from 2024 to 2027) involving a nationwide live-
stock vaccination program, while in phase 3 the country will continue with the prevention strategy (from 2028 
to 2032) with plans to review and update the national risk maps as well as obtain a countrywide vaccination 
coverage of 80% of the susceptible  animals35,36. Considering this ambitious strategy, our study will provide policy 
makers with an idea of possible high-risk areas, particularly in the marginalized Northern Counties, where they 
could intensity anthrax surveillance efforts so that these counties do not miss out on the nationwide anthrax 
control program. Furthermore, the supply of vaccines was listed as a possible challenge and that the World 
Organisation for Animal Health (OIE) had offered to help by providing vaccines at a very good cost but only if 
Kenya presents its case as a  country35. Considering there are 47 governments (counties) within the country, the 
proposed solution was to identify the various requirements of the counties and take them to OIE as a  country35, 
further emphasizing the importance of boosting surveillance across all high risk areas identified in our study.

Wildlife case locations collected from KWS from 2000 to 2020 were used to validate the model performance. 
The model correctly predicted 15 out of the 20 wildlife anthrax case locations using the minimum training pres-
ence threshold resulting in a sensitivity of 75% (95% CI 65–75). Geographical cross-validation, performed to 
test the sensitivity of the model outputs by fitting a separate model holding out all the livestock data points from 
the coastal region of the country (n = 11), showed that the model was robust since the fixed effects magnitude 
and direction remained the same for the final model and the holdout model (Fig. 4). The recent continental 
study of the distribution of B. anthracis across Africa also had lower omission rates when no thinning (3.4%), 
30 km thinning (10%), and 50 km thinning (5.9%) were applied to the  datasets37. However, the models were 
created by randomly sampling 50% of the occurrence dataset for model calibration and the rest (50%) for model 
 validation37. Random partitioning of the data into training and testing sets can inflate the performance of a 
model and underestimate the error in the spatial prediction  evaluation38. Aside from the continental anthrax 
risk map, two additional livestock anthrax risk mapping studies were done in 2021 in  Kenya16,17. The first article 
applied Boosted Regression Trees (BRTs) to model the geographical distribution of anthrax in Kenya focusing 
on the southern parts of the  country17. Although the final ensemble model produced had a mean Area Under the 
Receiver Operating Characteristic Curve (AUC) of 0.8, the sample size used was smaller (n = 69), and the authors 
also restricted their model to the southern half of the country thereby limiting interpretation across the whole 
 country17. The second article also applied BRTs to model the future distribution of anthrax across Kenya under 
various climate change  scenarios16. The final model had a good mean training AUC (0.936; ± 0.0019) and mean 
testing AUC (0.929; ± 0.0039) under the current  scenario16. However, like the continental study, the occurrence 
dataset was randomly partitioned by splitting 75% of the data for model training and 25% for model testing 
which can inflate the performance of a  model16. Our study used an independent dataset comprising wildlife 
anthrax cases collected separately to validate the performance of our spatial model, as well as geographically 
based cross validation using a spatially distinct chunk of the livestock data. Both methods showed that the model 
had satisfactory precision and robustness.

The spatiotemporal models. The spatiotemporal occurrence and incidence models investigate the drivers of 
anthrax occurrence and incidence. The occurrence model investigates the factors that determine whether an 
outbreak occurs or not (presence or absence), while the incidence model investigates what determines the sever-
ity of an outbreak (number of livestock cases) after it occurs. Both are equally important because they provide 
insight that can help policy makers to design interventions to prevent an outbreak from occurring or to reduce 
the severity if it occurs. Both models show that livestock anthrax risk is strongly influenced by an increasing total 
human population which may increase demand for meat and hence the host population sizes, animal-human 
contact, access to healthcare, and anthrax awareness. Similarly, there is a substantial positive association with 
the number of exotic dairy cattle which can also influence host population sizes and human contact. The nega-
tive association between livestock anthrax risk and population density could be linked to increased risk in rural 
areas, which are less densely packed and have reduced access to healthcare and anthrax awareness programs and 
have more livestock in general compared to urban areas. The negative effect of increasing the number livestock 
producing households on livestock anthrax risk could be due to increased awareness of anthrax in areas with 
greater numbers of livestock farmers. Similarly, this might also explain the negative association between agricul-
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tural land area and anthrax occurrence. These findings were robust to geographically based cross-validation and 
were not overly influenced by data from any geographical location (Fig. 9).

The spatial map of the fitted probability of anthrax occurrence and incidence (Fig. 10a,b) shows that large 
parts of Central, Western, and Coastal Kenya appear suitable for anthrax transmission. One explanation for the 
findings could be that the geographical distribution of anthrax is mainly influenced by the surveillance effort 
and unreported livestock cases are more present everywhere than recognized. This is backed by the fact that 
B. anthracis spores can survive across diverse geographical regions even under severe environmental stress. In 
addition, since anthrax prevalence in livestock can change over tiny geographical scales, such as between sub-
counties, it is likely that livestock anthrax risk is highly localized. For instance, changes in the host populations, 
spore dispersal, immunity, and infection dynamics, could cause significant variations in the risk of spillover across 
space and time. There is currently very limited information on the prevalence of livestock anthrax vaccination in 
Kenya because vaccination is often performed as a reaction to an  outbreak36. However, the recent development 
of the “National Strategy for the Prevention and Control on Anthrax in Kenya in Humans and Animals in Kenya 
(2021–2036)” will provide systematically collected data on routine livestock anthrax vaccination  coverage36. To 
detect underreported areas at risk of livestock, human, and wildlife anthrax and target prevention interventions, 
future research outside the known endemic areas is necessary to investigate the unmeasured environmental and 
social factors driving anthrax risk e.g., high clinical and public knowledge and awareness, access to healthcare, 
agricultural activities, host immunity dynamics, or animal movement patterns.

Conclusion
Overall, the extent of the anthrax endemic area seems to be well defined by the various ecological and socioeco-
nomic conditions that drive human-host contact. Anthrax incidence in endemic regions is greater in areas with 
a higher total human population and numbers of exotic dairy cattle, suggesting that the socioeconomic variables 
influencing human exposure to anthrax are important drivers of disease risk. Public health programs aimed at 
reducing human-animal contact, improving access to healthcare, and increasing anthrax awareness, may have a 
positive effect in terms of reducing anthrax occurrence and incidence. By accounting for spatial dynamics within 
our observed data we have demonstrated an approach that is useful for studies that have surveillance data with 
spatial and temporal structural  dependencies39. Bayesian models based on INLA are more flexible, fast, and easy 
to interpret and implement even for non-experts18. The risk map we produce here for anthrax can support the 
planning of surveillance and prevention campaigns that can reduce the catastrophic impacts of disease livestock 
and human outbreaks particularly in marginalized pastoralist communities which are disproportionately affected.

Data availability
The datasets and R code supporting the conclusions of this article are available in the GitHub repository, https:// 
github. com/ spati almod els/ Kenyan_ anthr ax_ model.
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