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Detecting hierarchical organization 
of pervasive communities 
by modular decomposition 
of Markov chain
Hiroshi Okamoto 1,2* & Xule Qiu 3

Connecting nodes that contingently co-appear, which is a common process of networking in social 
and biological systems, normally leads to modular structure characterized by the absence of definite 
boundaries. This study seeks to find and evaluate methods to detect such modules, which will be 
called ‘pervasive’ communities. We propose a mathematical formulation to decompose a random walk 
spreading over the entire network into localized random walks as a proxy for pervasive communities. 
We applied this formulation to biological and social as well as synthetic networks to demonstrate 
that it can properly detect communities as pervasively structured objects. We further addressed a 
question that is fundamental but has been little discussed so far: What is the hierarchical organization 
of pervasive communities and how can it be extracted? Here we show that hierarchical organization of 
pervasive communities is unveiled from finer to coarser layers through discrete phase transitions that 
intermittently occur as the value for a resolution-controlling parameter is quasi-statically increased. To 
our knowledge, this is the first elucidation of how the pervasiveness and hierarchy, both hallmarks of 
community structure of real-world networks, are unified.

Discovering modular structure of networks, a process known as community detection, is fundamental for 
understanding functional properties of complex systems described by networks. Much effort has been dedicated 
to developing effective and efficient methods for community detection since the early days of network science, 
rendering hundreds of methods proposed so far1. Meanwhile, pursuing the universal method for community 
detection is criticized as ill-defined2, as individual methods are separately optimized to find what they respectively 
define as communities. To make our study of community detection meaningful, therefore, we should specify 
what we seek as communities. On this account, we begin by classifying potential structure of communities into 
two categories; one would be described as ‘definite’ and the other as ‘pervasive’.

‘Definite’ communities are characterized as having clear boundaries that separate their inside from their 
outside. Whether a given node belongs to a specific community is clearly determined by its boundary. Each 
node (or link) may belong to more than one community. If this is the case, communities are overlapping3–8. 
Even so, clear boundaries still exist, though they are intersecting. In contrast, ‘pervasive’ communities are best 
characterized by the absence of clear boundaries. More precisely, a pervasive community can be defined by 
a conditional probability p(n|k), which represents the relative membership of node n in community k, and 
a probability π(k) , which corresponds to the relative size of community k. The p(n|k) generally takes graded 
values. Pervasive communities therefore have distributed structure, making separation of their inside and 
outside obscure. Rather, any node can be a member of any pervasive community irrespective of the level of its 
membership in that community. In the begging of the next section, we will discuss the notion that a common 
process of networking in social and biological systems naturally leads to pervasive structure of communities.

Most of community detection methods proposed so far are designed to discover definite structure of 
communities1. Although several related attempts have already been examined9–13, to establish theoretically well-
principled detection of pervasive communities is still a challenge of network science (see also “Discussions” for 
our view about soft clustering using graph embedding). Here we put forward a mathematical formulation to 
detect communities as pervasively structured objects. Our key idea is to express a random walk spreading over 
the entire network as a mixture of localized random walks (Fig. 1). By the use of a probabilistic machine-learning 
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approach to mixture modelling14, we have succeeded in formulating decomposition of the global random walk 
into local modules as a proxy for pervasive communities.

Hierarchical organization of communities is another essential aspect of real-world networks5,7,15–23. As noted 
by Simon24, the hierarchy in modular structure is a fundamental architecture of social and biological systems. 
To fully illustrate the hierarchy, it is necessary not only to discover modules (e.g., clusters or communities) in 
each layer but also to identify parent–child relationships between modules in adjacent layers. Parent–child 
relationships in hierarchical organization of definite communities can be identified just by finding communities 
to which individual nodes belong in each layer and then tracing the affiliation of each node from one layer to 
the next.

Turning now to pervasive communities, we realize that little has been discussed about their hierarchical 
organization so far. Given that the hierarchy and pervasiveness are both hallmarks of community structure of 
real-world networks, it may be surprising that few scholars have attempted to unify them, albeit several studies 
conducted to merge the hierarchy and overlapping of definite communities5,7,23,25. A difficulty lies in that, since 
pervasive structure no longer defines a single or a finite number of communities to which a given node belongs, 
the tracing strategy to identify parent–child relationship as above is no longer effective. To reveal hierarchical 
organization of pervasive communities is therefore another huge challenge of network science. Towards this 
ultimate goal, here we demonstrate that hierarchical organization of pervasive communities can be unveiled 
by exploiting phase transition. To our knowledge, this is the first elucidation of hierarchical organization of 
pervasive communities.

Results
Relative membership of nodes.  We assume that non-negative quantities fk(n) (k = 1, . . . , K) underlie 
the network from which we wish to detect communities. In the social context, fk(n) represents, for instance, 
the frequency of participation or the level of commitment of person n in activity k; in the brain, it would 
be the firing rate of neuron n during the performance of cognitive behaviour k. We further assume a non-
negative quantity g(k), which would represent the frequency of occurrence of activity k. Just for convenience, we 
normalize fk(n) and g(k) so that we can manipulate them as probabilities: p(n|k) ≡ fk(n)/

∑

n fk(n) (≥ 0) and 
π(k) ≡ g(k)/

∑

k g(k) (≥ 0) , hence 
∑

n p(n|k) = 1 and 
∑

k π(k) = 1 . We call p(n|k) the ‘relative membership’ 
of node n in group k and π(k) the ‘relative size’ of group k. The relative membership should not be confused with 
the membership function mk(n) of fuzzy set k26,27, though they looks similar; in fact, they are strictly different 
concepts. The mk(n) is the absolute level of belonging of element n to set k, ranging from 0 to 1, and is defined 
independently from those for the other nodes and the other sets. Indeed, we cannot derive mk(n) from p(n|k) 
and π(k) , and vice versa.

Connecting co‑appearing nodes.  The probability of co-appearance of nodes n and m in group 
k is therefore given by p(n|k)p(m|k). As the probability of occurrence of group k is π(k) , the probability of 
co-appearance of nodes n and m in any group is given by 

∑

k π(k)p(n|k)p(m|k) . We assume that connections 
between nodes n and m are generated according to this probability; specifically, the number (a) of links will be 
generated between nodes n and m following the Poisson distribution p(a) = µae−µ/a! with the rate parameter 
µ ∝

∑

k π(k)p(n|k)p(m|k) . Connecting co-appearing nodes is a common process of generating social and 
biological networks. For instance, co-participation of persons in any activity is the chance for them to become 
acquainted and get connected on social networking service. The process is also comparable to Hebb’s rule28, 
which is the leading principle of modern neuroscience. This rule states that co-activation of neurons strengthens 
the synaptic connection between them; more succinctly, cells that fire together wire together.

Definition of community detection.  Nodes that co-appear in group k become densely connected, thus 
forming a structure called community k. Therefore, p(n|k) and π(k) represent the relative level of membership of 
node n in community k and the relative size of community k, respectively. Now we specify our problem setting 

π 1 × π 2 × π ×

|1 |2 |

+ ⋯ ++=

Mr. XMr.rr X

Figure 1.   Illustrating the image of MDMC: p(n) =
∑K

k=1 π(k)p(n|k) . The probability p(n) that Mr. X is at 
node n is expressed by the grey strength of each node in the network drawn in the left-hand side. The probability 
p(n|k) (k = 1, 2, . . . , K) that Mr. X is at node n conditioned that he is staying in community k is expressed by 
the colour strength of each node in the networks drawn in the right-hand side. The π(k) is the probability that 
Mr. X is staying in community k.
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of community detection. Here we define community detection as a task to decode p(n|k) and π(k) from a given 
network (namely, the adjacency matrix determining this network). In doing so, we assume that the network from 
which we wish to detect communities is generated through probabilistic linking between co-appearing nodes as 
described above.

Definite versus pervasive community.  Suppose π(k) > 0 ; that is, community k is non-vanishing. Then, 
possible patterns of p(n|k) as a function of n can roughly be divided into two categories. In the first category, 
p(n|k) > 0 for some n’s ( n ∈ Nk ) and p(n|k) = 0 for the other n’s ( n /∈ Nk ); typically, fk(n) = 1 and hence 
p(n|k) = 1/|Nk| for n ∈ Nk (node n is a member of community k), and fk(n) = 0 and hence p(n|k) = 0 for 
n /∈ Nk (node n is a non-member of community k). Patterns of p(n|k) in this category give clear separations 
of nodes between members and non-members. Therefore, community k has a clear boundary that definitely 
separate its inside and outside. We will refer to communities with such clear boundaries as ‘definite’ communities. 
Specially, the problem of detecting definite communities can be replaced to that of finding their boundaries, 
which can be solved with less computational cost than directly solving p(n|k) and π(k) . Most of community 
detection methods proposed so far are designed to find such boundaries1.

In the second category, p(n|k) is nonzero positive for any node n. Indeed, this is often the case in the social 
context, where persons might be unaware to which activities they are participating or even ignorant about seg-
mentation of activities itself. In such situations, each person would contingently participate in any activity even 
if the level of his/her participation to it might be relatively low. Consequently, p(n|k) would in principle have any 
positive value. Therefore, community k, in which the relative level of membership of each node is represented by 
p(n|k) > 0 , has no clear boundary separating member and non-member nodes; rather, every node is a member 
of any community irrespective of the level of membership in this community. We will refer to such communi-
ties as ‘pervasive’ communities. The present study seeks to find and evaluate methods that are optimized to find 
pervasive communities. Unlike detection of definite communities, that of pervasive communities has no other 
way than to directly solve p(n|k) and π(k).

Contingent activation of neuron n in response to the execution of cognitive behaviour k, which is measured 
by the firing rate, would be graded rather than all-or-none29–31. Therefore, p(n|k) corresponding to the firing 
rate of neuron n is, in principle, nonzero positive. Hebb’s rule thus forms pervasive communities in the brain 
network, which are called ‘cell assemblies’ in neuroscience28. Cell assemblies are hypothesized to be the functional 
modules of information processing in the brain. Pervasive structure of cell assemblies would be essential for 
parallel distributed processing in the brain.

Concluding this subsection, we argue that pervasiveness is a hallmark of the structure of communities in 
real-world networks that are generated not by any global design or control but in a self-organized manner by 
some local rules such as connecting contingently co-appearing nodes. Artificial boundaries that separate mem-
bers and non-members would be set only after the formation of a faction is declared (such as the separation of 
the karate club32) or a list of names is established. The absence of each node’s (e.g. each person’s) explicitness to 
which communities he/she is belonging makes it difficult to define the ground truths of pervasive communities 
for real-world networks, which would commonly be required to validate community detection.

Soft overlapping of pervasive communities.  Co-existence of a number of pervasive communities 
in a network entails intricate, soft overlapping between them. Detecting soft-overlapping communities has 
been perceived as a difficult problem, remaining largely unsolved. In our problem setting of community 
detection, however, soft overlapping of communities is consequently found once p(n|k) and π(k) are solved, 
though difficulty of the problem is not necessarily reduced with that. In our view, soft-overlapping is not the 
definition but consequential characteristics of pervasive communities. In this sense, finding soft-overlapping of 
communities itself is not the goal but a bonus of pervasive community detection.

Modular decomposition of Markov chain (MDMC).  It is noticeable that prominent methods for 
community detection are, or can be, based upon the idea of random walk (see Supplementary Information 
for brief review). The map equation33–36, which detects communities by searching for the most parsimonious 
way to describe a random walk on the network, has performed the best in comparative studies37,38. Modularity 
maximization39,40, renowned as a standard for community detection41, is equivalent to maximization of 
the probability that a random walker remains in the same community, relative to that expected under null 
models42–44. These methods suggest that exploiting random walk is an effective approach to designing community 
detection45. Our formulation, which we call modular decomposition of Markov chain (MDMC), is also in line 
with this approach.

The idea behind MDMC is illustrated in Fig. 1. Imagine that a random walker, say Mr. X, is travelling in a 
network from which we wish to detect communities. Let p(n) be the probability that Mr. X is at node n. Given 
that the network comprises several communities, Mr. X is trapped by some community and stays there for a 
while; at some time, he chances to move to another community and then stays there for a while, and so forth. 
Let p(n|k) be the probability that Mr. X is at node n conditioned that he is staying in community k. The ‘global’ 
probability p(n) will then be expressed as a mixture of ‘local’ probabilities p(n|k):

(1)p(n) =
K
∑

k=1

π(k)p(n|k) ,
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where K is the putative number of communities; π(k) (≥ 0) is the probability that Mr. X is staying in community 
k, satisfying 

∑K
k=1 π(k) = 1 ; π(k) > 0 if community k really exists and π(k) = 0 otherwise. Community 

detection is achieved if Eq. (1) is solved to p(n|k) and π(k).
Imagine that D ‘investigators’ are distributed over the network to search for the whereabouts of Mr. X. Each 

investigator ought to detect which ‘street’ (namely, which link) Mr. X is moving along. Search for Mr. X by indi-
vidual investigators is carried out independently; that is, they neither communicate nor exchange information 
with each other. Suppose that investigator d has observed that Mr. X is moving along a link from node nfromd  to 
node ntod  . Let τ (d) denote the result of this observation. The probability of τ (d) conditioned that Mr. X is staying 
in community k is modelled by the product of categorical distributions:

where N is the total number of nodes; and pt(n|k) is the probability that Mr. X is at node n at time t conditioned 
that he is staying in community k. The form of Eq. (2) is consistent with the probability that persons n and m co-
appear in activity k, which has been discussed earlier in this section to define pervasive communities. Therefore, 
solving for pt(n|k) (and πt(k) ) enables us to detect what we define as communities.

In Eq. (2), 
{

pt(n|k)
}N

n=1
 , which satisfy pt(n|k) ≥ 0 and 

∑N
n=1 pt(n|k) = 1 , serve as parameters. These are then 

upgraded to stochastic variables by introducing the conjugate prior defined as a Dirichlet distribution in the form

where Ŵ(·) denotes the gamma function; Tnm is the rate for transition from node m to node n; α (> 0) is the 
parameter that controls the concentration of the Dirichlet distribution. As α → +∞ , the Dirichlet distribution 
is concentrated onto the point that gives the ‘classical’ Markov chain

For finite values of α , pt(n|k) fluctuates around 
∑N

m=1 Tnmpt−1(m|k) ; the smaller the value for α , the more apart 
pt(n|k) can deviate from 

∑N
m=1 Tnmpt−1(m|k) . Equation (3) thus describes a stochastic generalization of the 

Markov chain, which will turn out to be an essential component of MDMC. In the absence of this prior, our 
formulation becomes equivalent to a class of stochastic block modelling (see “Methods”).

Results of observations by D investigators are gathered to give data D =
{

τ (1), . . . , τ (D)
}

 . The elements 
τ (1), . . . , τ (D) are independent and identically distributed (i.i.d.). Now we introduce latent variables 
z
(d) =

{

z
(d)
1 , . . . , z

(d)
K

}

 representing the community in which Mr. X was staying when investigator d observed 
him. These variables are given by a 1-of-K vector (just one component is unity and the K − 1 others are zero); 
for instance, if Mr. X is staying in community k′ when observed by investigator d, z(d)k = δkk′ . The probability of 
z
(d) is modelled by a categorical distribution

where {πt(k)}Kk=1 are parameters satisfying πt(k) ≥ 0 and 
∑K

k=1 πt(k) = 1 . Under the i.i.d. assumption for data 
D , the joint probability is expressed as

with notations Pt =
{

{

pt(n|1)
}N

n=1
, . . . ,

{

pt(n|K)
}N

n=1

}

 and Z =
{

z
(d)

}D

d=1
.

In general, one can solve the joint probability (6) to the stochastic variables Pt , Z and the parameters {πt(k)}Kk=1 
by optimization procedure. Indeed, one can derive expectation-maximization (EM) algorithm as a solver for this 
optimization problem (see “Methods” for a detailed derivation), which is given in the form:

(2)
p(τ (d)|

{

pt(n|k)
}N

n=1
) =

N
∏

n=1

[

pt(n|k)
]δ

n, nfrom
d ×

N
∏

n=1

[

pt(n|k)
]δ

n, nto
d

= pt(n
from
d |k)pt(ntod |k) ,

(3)

p
(

{

pt(n|k)
}N

n=1
|
{

pt−1(n|k)
}N

n=1

)

=
Ŵ(α + N)

∏N
n=1 Ŵ

(

α
∑N

m=1 Tnmpt−1(m|k)+ 1
)

×
N
∏

n=1

[

pt(n|k)
]

(

α
∑N

m=1 Tnmpt−1(m|k)+1
)

−1
,

(4)pt(n|k) =
N
∑

m=1

Tnmpt−1(m|k) .

(5)p
(

z
(d)|{πt(k)}Kk=1

)

=
K
∏

k=1

[πt(k)]
z
(d)
k ,

(6)

p
(

D, Pt , Z|{πt(k)}Kk=1

)

=
D
∏

d=1

K
∏

k=1

[

π(k)

N
∏

n=1

[

pt(n|k)
]δ

n, nfrom
d

+δ
n, nto

d

]z
(d)
k

×
K
∏

k=1

Ŵ(α + N)
∏N

n=1 Ŵ

(

α
∑N

m=1 Tnmpt−1(m|k)+ 1
)

×
K
∏

k=1

N
∏

n=1

[

pt(n|k)
]α

∑N
m=1 Tnmpt−1(m|k)

,
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E-step

M-step

In the E-step, r(k|l) is the probability that link l belongs to community k; nfroml  and ntol  denote the initial- and 
terminal-end nodes of link l, respectively. In the M-step, L is the total number of links; α is the only parameter 
whose value should be defined externally and will turn out to be controlling the resolution of community detec-
tion. See “Methods” for definitions of other notations. Pseudo code of the algorithm of MDMC is given below, 
where S and T are respectively the predefined numbers of steps of Markov chain and the EM-algorithm to suf-
ficiently approach the steady states.

The probability that Mr. X is staying in community k conditioned that he is at node n is given by the formula

which represents the relative ‘belonging’ of node n to community k. To compare communities detected by 
MDMC with ground-truth communities of benchmark networks, which are commonly presented as sets of 
non-overlapping communities called ‘partitions’1, we define the community to which node n mainly belongs 
by argmaxk p(k|n).

(7)r(k|l) =
πt−1(k)pt−1(n

from
l |k)pt−1(n

to
l |k)

∑K
k=1 πt−1(k)pt−1(n

from
l |k)pt−1(n

to
l |k)

,

(8)πt(k) =
L

∑

l=1

pst(l)r(k|l) ,

(9)

pt(n|k) =
α

α + πt(k)

N
∑

m=1

Tnmpt−1(m|k)

+
1

α + πt(k)

1

2

L
∑

l=1

pst(l)r(k|l)
(

δn, nfroml
+ δn, ntol

)

.

(10)p(k|n) =
p(n|k)π(k)

p(n)
,
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Detecting pervasive communities: fundamental properties of MDMC.  First, we demonstrate 
fundamental properties of MDMC using Zachary’s karate club network32,46. Figure 2a shows how the probabilities 
π(k) of communities evolve with the EM step. For any K chosen initially, π(k) of only two communities survive and 
converge to positive values, whereas those of K − 2 others decay to zero (for the current choice of the parameter 
value, here α = 0.5 ). Thus, MDMC automatically determines the final number of communities. Figure 2b shows 
the probability distributions p(n|k) for the survived communities, which delineate their pervasive structures. 
For most nodes the relative belonging p(k|n) to either community is near (but not exactly) unity or zero, but for 
node 3 the relative belongings to both communities are very close (Fig. 2c, top). Indecisive belonging of node 3 
to either community accounts for why this node is often misclassified in conventional community detection2. 
Identifying the main belonging of each node by argmaxk p(n|k) correctly recovers the actual separation of the 
karate club, which is the commonly used ground-truth of this best-known social network (Fig. 2c, bottom). We 
also addressed the role for parameter α . The number of survived communities decreased as α increased (Fig. 2d). 
Thus, α controls the resolution of decomposition of the network into communities: For smaller α , the network is 
decomposed into more communities of smaller sizes.

We also examined MDMC applied to larger networks, whose communities are supposed to have pervasive 
structure. Figure 2e–h shows results for the collaboration network of condensed-matter physicists (35,977 nodes 
and 175,692 undirected, weighted links)47 and the internet peer-to-peer network (10,876 nodes and 39,994 
directed links)48. We again confirmed that the smaller the value for α , the finer the resolution of community 
detection (Fig. 2e,g). The probability distributions p(n|k) for the three largest communities detected from either 
network are shown in Fig. 2f,h, which demonstrate that they are pervasively structured and formidably soft 
overlapping.

Comparative study: evaluating the performance of pervasive community detection.  Second, 
we conducted a comparative experiment to evaluate MDMC’s performance in detecting pervasive communities. 
The following three methods were taken for this comparison: non-negative matrix factorization (NMF)9,10, 
Bayesin non-matrix factorization (Bayesian NMF)11 and a stochastic block model proposed by Ball, Karrer 
and Newman (BKN’s SBM)12. Theoretically principled detection of pervasive communities is still a challenge 
of network science and only a few related methods have been examined so far, among which the above three 
are supposed to be representative. NMF tries to detect pervasive communities from a network by finding a best 
decomposition of its N × N adjacency matrix into the product of N × K and K × N non-negative matrices with 
K(≪ N) being the predefined number of communities. The idea of NMF was originally inspired by Hebb’s rule9. 
Psorakis, Roberts and Ebden examined Bayesian extension of NMF (Bayesian NMF) by introducing priors11. 
Ball, Karrer and Newman12 proposed a stochastic block model (BKN’s SBM) that generates networks planted 
with pervasive communities, which can also be used conversely to detect pervasive communities from networks. 
Most importantly, MDMC is equivalent to BKN’s SBM for α → 0 (see “Methods”). In this sense, MDMC is a 
Bayesian extension of BKN’s SBM.

NMF, Baysian NMF, BKN’s SBM and MDMC equally assume that the network from which they try to detect 
communities were generated by probabilistic linking between co-appearing nodes defined by the Poisson 
distribution:

where

(11)p(Anm) =
µAnm

Anm!
e−µ ,

(12)µ ∝
K
∑

k=1

π(k)p(n|k)p(m|k) .

Figure 2.   (a–d) Pervasive community detection from Zachary’s karate club network. (a) Evolution of 
community sizes π(k) with the EM step for different settings of the putative number of communities ( K = 5, 
10, and 15). (b) top, The probability distribution p(n|k) delineating the pervasive structure of the survived 
communities (indicated by blue and red); middle and bottom, Visualization of the pervasive structure of the 
survived communities. (c) top, The relative belonging p(k|n) of each node n to either community, with the 
horizontal dashed line indicating the value 0.5; bottom, Visualization of the main belonging of each node. (d) 
The number of survived communities, averaged over 24 trials, is plotted as a function of α . (e–h) Pervasive 
community detection from larger networks: the collaboration network of condensed matter physicists (35,977 
nodes and 175,692 undirected, weighted links)47 (e and f) and the internet peer-to-peer network (10,876 nodes 
and 39,994 directed links)48 (g and h). (e and g) The number of survived communities, averaged over 24 trials, is 
plotted as a function of α . (f) and (h) The probability distributions p(n|k) for the three largest communities (say, 
communities for k = 1, 2 and 3) detected from either the collaboration network for α = 0.1 (f) or the internet 
peer-to-peer network for α = 0.05 (h) are shown in the top, middle and bottom panels. In the top panel, the 
node number (#) is sorted in the abscissa according to the descending order of p(n|1) (blue). The abscissa is 
truncated by the top 1000 nodes just for visualization convenience. The middle and bottom panels show the 
same three distributions but with the node number sorted according to the descending order of p(n|2) (orange) 
and p(n|3) (grey), respectively. Error bars in (d), (e) and (g) indicate standard deviations.

◂
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is the rate parameter and Anm is the number of links from nodes m to n. Comparing the performance of 
community detection between these four therefore makes sense because what they seek to find as communities 
are the same2.

The schema of our comparative experiment is shown in Fig. 3a. First, probability distributions p∗(n|k∗) 
and π∗(k∗) (k∗ = 1, . . . , K∗) , which define the ‘true’ pervasive communities, are specified. Then, a benchmark 
network planted with these communities is generated by the Poisson distribution (11), for which BKN’s SBM is 
actually used. Generating a benchmark network is regarded as the process of encoding p∗(n|k∗) and π∗(k∗) into 
the adjacency matrix A = (Anm) of this network. Pervasive community detection either by NMF, Bayesian NMF, 
BKN’s SBM or MDMC is therefore the process of decoding the adjacency matrix into probability distributions 
p(n|k) and π(k) (k = 1, . . . , K) . The performance of pervasive community detection by each method is then 
evaluated by measuring how well p(n|k) and π(k) reconstruct p∗(n|k∗) and π∗(k∗) . Note that the number K of 
detected communities is not necessarily equal to the number K∗ of true communities.

Unfortunately, theoretically sophisticated measures to evaluate the goodness of pervasive community 
detection still have not been established. We therefore introduce a heuristic measure, the maximum similar-
ity (MaxSim), which is given by calculating the similarity between planted p∗(n|k∗) and detected p(n|k) by 
∑N

n=1 min
(

p∗(n|k∗), p(n|k)
)

 (see “Methods” for a detailed definition of MaxSim). Additionally, we also defined 
partitions (namely, clear boundaries of non-overlapping, definite communities) from planted and detected per-
vasive communities by calculating the main belonging of each node (by argmaxk∗ p∗(k∗|n) and argmaxk p(k|n) 

Figure 3.   The performance of community detection from benchmark networks planted with K∗ = 10 
pervasive communities was compared between MDMC, Bayesian NMF, BKN’s SBM and NMF. (a) Schema 
of our comparative experimental procedure. (b) Results for pervasive community detection from benchmark 
networks of class 1 ( N = 1000 nodes and L = 20,000 undirected links, whereby the density D = L/N = 20 ). 
MaxSim, NMI and the number of survived communities calculated by MDMC and Bayesian NMF are plotted 
as functions of α and b in panels of the left and centre columns, respectively. MaxSim and NMI calculated by 
BKN’s SBM (blue) and NMF (red) are plotted as function of the predefined number K in panels of the right 
column. Filled inverted triangles in panels of the top and middle rows indicate peak MaxSims and NMIs. 
Horizontal dashed lines in panels of the bottom row and vertical dashed lines in panels of the right column 
indicate the true number K∗ = 10 of planted pervasive communities. (c) Peak MaxSims are compared 
between MDMC, Bayesian NMF, BKN’s NMF and NMF. The centre, top, bottom, left and right panels show 
the results obtained for class 1 ( N = 1000, L = 20,000, D = 20 ), class 2 ( N = 500, L = 20,000, D = 40 ), 
class 3 ( N = 2000, L = 20,000, D = 10 ), class 4 ( N = 1000, L = 10,000, D = 10 ) and class 5 
( N = 1000, L = 40,000, D = 40 ) benchmark networks, respectively. (d) Peak NMIs are compared between the 
four methods. The centre, top, bottom, left and right panels show the results obtained for class 1, class 2, class 3, 
class 4 and class 5 benchmark networks, respectively. Error bars in (b–d) indicate standard deviations.
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for planted and detected communities, respectively); we then examined the normalized mutual information 
(NMI) between the ‘planted’ and ‘detected’ partitions in the expectation that NMI may serve as a measure to 
evaluate pervasive community detection.

MDMC has a single parameter α that controls the resolution of community detection. Therefore, we examined 
MDMC’s performance by calculating MaxSim and NMI, as well as the number of the survived communities, as 
functions of α (Fig. 3b, left column). Bayesian NMF proposed by Psorakis et al. has two parameters a and b (see 
“Methods”). These authors argued in the literature that: Starting with the excessive number K of communities, 
the algorithm of Bayesian NMF automatically vanishes redundant ones, as MDMC can also do so (Fig. 2a). They 
also argued that the number of survived communities is almost insusceptible to the values of a and b. However, 
we found that, at least for our benchmark networks, the number of survived communities is quite dependent 
especially on b and vanishing of redundant communities is ineffective for larger b (Fig. 3b, bottom of the centre 
column); the latter is in contrast to community detection by MDMC, where the vanishing of redundant com-
munities is always effective though the number of survived communities varies with the resolution defined by α 
(Fig. 3b, bottom of the left column). Therefore, we examined the performance of Bayesian NMF by calculating 
MaxSim and NMI, as well as the number of survived communities, as functions of b while the value for a is fixed 
as a = 5 . The initial number of communities for MDMC and Bayesian NMF is set as K = 30 . The number of com-
munities to which the network should be decomposed by BKN’s SBM or NMI is required to be predetermined. 
Therefore, we calculated MaxSim and NMI for BKN’s SBM and NMI as functions of the predefined number K 
of communities (Fig. 3b, right column).

We examined five classes of benchmark networks. Class 1 networks have the exact N = 1000 number of 
nodes and the expected L = 20,000 number of undirected links. We define the density by D = L/N  . Class 1, 
whose density is 20, is set as a base (Fig. 3c, centre box in the inset). Class 2 and class 3 are characterized by the 
decreased N = 500 and increased N = 2000 number of nodes, respectively (Fig. 3c, top and bottom boxes in 
the inset). The density of class 2 and class 3 are 40 and 10, respectively. Class 4 and class 5 are characterized by 
the decreased L = 10,000 and increased L = 40,000 number of links, respectively (Fig. 3c, left and right boxes in 
the inset). The density of class 4 and class 5 are 10 and 40, respectively. Community detection is expected harder 
for the class with lower density.

For each of the five classes, 24 different benchmark networks were randomly generated to calculate MaxSim 
and NMI for each value of α , b or K. Results for class 1 ( N = 1000 , K = 20,000 and D = 20 ) are shown in Fig. 3b. 
MaxSim and NMI calculated by the four methods are all bell-shaped, characterized by the presence of their 
peak values (indicated by filled inverted triangles). Similar results obtained for the other classes of benchmark 
networks are shown in Supplementary Information. The number of detected communities at the peak points 
do not necessarily match the true number K∗ = 10 of planted communities (indicated by horizontal or vertical 
dashed lines in Fig. 3b).

Peak MaxSims and NMIs were compared between MDMC, Bayesian NMF, BKN’s SBM and NMF (Fig. 3c,d). 
Peak MaxSim by MDMC exceeds those by the other three especially for class 3 and class 4 benchmark networks, 
where the density is law ( D = 10 ). Peak MaxSims by Bayesian NMF, BKN’s SBM and NMF are almost equal. 
Outperforming of MDMC over Bayesian NMF is firmly statistically significant especially for class 3 and class 
4 ( p = 5.4× 10−12 and p = 3.2× 10−10 , respectively, by Welch’s t test). Peak NMIs by MDMC and Bayesian 
NMF exceed those by BKN’s SBM and NMF for any class of benchmark networks we examined. However, we 
could not detect difference in peak NMI between MDMC and Bayesian NMF with firm statistical significance.

These results suggest that MDMC performs pervasive community detection better than the other three; 
out-performance of MDMC over the other three is remarkable especially when community detection becomes 
harder as the density D of the network becomes lower. The fact that peak NMIs by MDMC and Bayesian NMF 
are higher than those by BKN’s SBM and NMF suggests that Bayesian extension of BKN’s SBM and NMF may 
improve some aspects of community detection that can be evaluated by NMI.

We admit that our evaluation as above is unpractical, as we do not know how to optimize the parameter 
α , b or K in the absence of knowledge about true communities. Indeed, to determine the optimal values for 
the parameters that defines the number of communities or clusters is a fundamental problem of unsupervised 
learning such as community detection, which is currently not fully solved. Nevertheless, the results of our 
evaluation suggest potential superiority of MDMC in pervasive community detection.

System analysis of the mouse visual cortex by MDMC.  The pathway structure of visual cortex 
is known to a certain extent for humans and primates. Taking this as a putative ground truth, we examined 
pervasive community detection by MDMC from the structural network of mouse visual cortex (Fig.  4a), 
which was constructed from high-resolution connectome data49. The network has N = 468 nodes connected 
by L = 219,024 links that are directed and weighted. Each node represents a voxel and belongs to one of the 
10 areas (Fig. 4a). The weight of each link represents the connection strength between the voxels connected 
by this link. MDMC for α = 0.2 detected two pervasive communities (Fig. 4b,c, top). Probability distributions 
of one (blue) and the other (red) communities are ventrally and dorsally biased, respectively. Both are also 
highly concentrated around the primary visual area (VISp). This makes sense because VISp is the gate of the 
visual cortex for visual sensory input, from which signals are distributed to other brain areas. The visual cortex 
of humans and primates is known to be functionally segregated into ventral and dorsal pathways, which are 
engaged in object recognition and contextual processing, respectively. Results of recent studies suggest that the 
visual cortex of rodents such as mice also has similar functional segregation50–53. Our finding that the structural 
network of mouse visual cortex is decomposed into pervasive communities either ventrally or dorsally biased 
with heavy overlapping around VISp supports this view. For α = 0.1, the network is decomposed into three 
pervasive communities (Fig. 4c, middle). The first two (blue and red) inherit the ventrally and dorsally biased 
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communities obtained for α = 0.2. In the third one (green), which is seemingly separated from the dorsally 
biased community, most probability mass is concentrated around VISp. The third community is likely to gate the 
visual cortex. For α = 0.05, the fourth one (yellow), seemingly separated from the ventrally biased community, 
emerges (Fig. 4c, bottom). Besides high concentration around VISp, probability mass of the fourth community 
also substantially resides around VISl and VISal. We suppose that the fourth community serves as a bridge 
between the ventral and dorsal pathways. Interestingly, an experimental study50 demonstrated that a dorsal part 
of VISp projects to the VISl/VISal border while a ventral part projects to two separated patches (namely, VISl 

Figure 4.   (a) Mouse visual cortex and its 10 areas, traced by Brain Explore (https://​mouse.​brain-​map.​
org/​static/​brain​explo​rer). (b) The probability distributions π(k)p(n|k) of detected two communities (say, 
community k = 1 (blue) and community k = 2 (red)) for α = 0.2 . In the top and bottom panels, the node 
number (#) is sorted in the descending order of p(n|1) and p(n|2), respectively. (c) The probability distributions 
of communities detected from the network for α = 0.2 , 0.1, and 0.05 are shown in the top, middle, and 
bottom panels, respectively. The ordinate value represents the probability at each area obtained by calculating 
∑

n∈Ar
π(k)p(n|k) , where Ar ( r = 1, . . . , 10 ) symbolize the areas listed along the abscissa.

https://mouse.brain-map.org/static/brainexplorer
https://mouse.brain-map.org/static/brainexplorer


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20211  | https://doi.org/10.1038/s41598-022-24567-x

www.nature.com/scientificreports/

and VISal centres) flanking the VISi/VISal border. The former and latter projections are in agreement with the 
structure of the third and fourth communities, respectively.

Hierarchical organization of pervasive communities.  The observation that the resolution of 
decomposition into pervasive communities changes with α (Figs.  2d,e,g, 3b) raises a fundamental question: 
What is the hierarchical organization of pervasive communities? In fact, to answer this question is nontrivial. 
To reveal hierarchical organization of modular structure generally requires not only to find blocks (such as 
clusters or communities) at each layer but also to identify relationship between blocks in a given layer (say, a 
‘child’ layer) and those in the next layer (its ‘parent’ layer). For hierarchical organization of definite communities, 
parent–child relationship can easily be identified just by tracing each node from a community with which it 
is affiliated in a child layer to that with which it is affiliated in the parent layer. The relationship between a 
community in a child layer and that in the parent layer can then be given, for instance, as the bundle of traces 
from the former to the latter. However, this tracing strategy is no longer effective for hierarchical organization of 
pervasive communities because the pervasive structure by its nature no longer defines a single or a finite number 
of communities to which a given node belongs.

To address the problem, here we propose the following procedure: Fix α to a very small value and run the 
EM step to decompose the network into a large number of small communities; then, increase α quasi-statically 
(that is, very slowly) while continuing the EM step. We applied this procedure to the karate club and the mouse 
whole brain network54. For both networks we observed discrete phase transition that intermittently occurred 
as α increased (Fig. 5a,c). At each point of phase transition, the probabilities π(k) of some communities sharply 
increased whereas those of some others sharply decreased (normally to zero), indicating that smaller communi-
ties merged to form larger communities. Within each interval bounded by one and the next phase transition, the 
probabilities π(k) stayed almost constant, indicating a stable state corresponding to a specific layer of hierarchy.

The relationship between pervasive communities in a child layer and those in the parent layer will then be 
defined by flows of probabilities from the former to the latter (see “Methods” for mathematical details). The par-
ent–child relationship thus defined can be well visualized by the Sankey diagram55 (Fig. 5b,d). For both networks, 
notably, the hierarchical organization of pervasive communities is non-tree structured; that is, a community in 
a child layer is generally related to more than one community in the parent layer. Especially for brain networks, 
the non-tree structured hierarchy indicates that distinct functional modules share or recruit the same functional 
sub-modules, implying an effective and flexible architecture of information processing in the brain.

It should be emphasized that serially unveiling the hierarchical organization, from layers of finer resolution to 
those of coarser one, by quasi-static increase in the resolution-controlling parameter α is essential to reveal the 
parent–child relationship for pervasive communities. This process enables us to trace flows of probabilities from 
pervasive communities in a child layer to those in the parent layer, by which we have defined the parent–child 
relationship. Just finding pervasive communities for different values of α separately is insufficient to reveal such 

Figure 5.   Hierarchical organization of pervasive communities of the karate club network (a,b) and the 
mouse whole brain network (c,d). (a,c), Each layer of hierarchy emerges through a series of discrete phase 
transitions induced by quasi-static increase in α . (b,d) Sankey diagrams illustrating parent–child relationships in 
hierarchical organization of pervasive communities. Vertically aligned rectangles represent communities in each 
layer, and the width of a band connecting a child community (one rectangle in one layer) and one of its parent 
communities (one rectangle in the next layer) expresses the amount of flow of the probability from the former to 
the latter.
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flows. It should be noted that a similar problem is associated with extraction of hierarchical organization of 
definite communities, which has been sought to solve using the method of multi-layer networks20,44.

Discussions
Pervasive communities, which are structurally distributed and hence characterized by the absence of clear 
boundaries separating their insides from their outsides, are thought to be a hallmark of biological and social 
networks whose cohesive structure emerges in a self-organized manner such as connecting contingently co-
appearing nodes. Here we have put forward a mathematical formulation to find communities as pervasively 
structured objects from networks. Our formulation, which we have called modular decomposition of Markov 
chain (MDMC), is based on the idea that a ‘global’ random walk spreading over the entire network is expressed 
as a mixture of ‘local’ random walks that contribute a proxy for pervasive communities. We have applied MDMC 
to brain and social networks, as well as synthesized networks planted with pervasive communities, and have 
demonstrated that MDMC can properly detect pervasive communities from these networks.

Modularity maximization39–44 and map equation33–36 are the prevailing methods for community detection 
that exploit random walk, but they cannot help discover the pervasive structure of communities1. Moreover, they 
rely on greedy search such as the Louvain method56. By contrast, MDMC detects pervasive communities using 
a theoretically principled, probabilistic machine learning-based approach14. The computational cost of MDMC 
for a given resolution scales as ∼ O(KL) , which means that MDMC belongs to the fastest class of algorithms to 
detect pervasive communities.

MDMC has a single parameter α , which comes from the precision of the Dirichlet distribution describing 
a stochastic generalization of the Markov chain (see Eq. (3)). We have found that this parameter controls the 
resolution of community detection; for smaller values of α , the network is decomposed into more communities of 
smaller sizes. This role of α is comparable with that of the time-scale parameter t, which appears in the modularity 
maximization and the map equation (see Supplementary Materials for review). To reveal hierarchical organiza-
tion of pervasive communities, we propose to exploit the resolution controlling property of α as follows: Fix α to 
a very small value to decompose the network into many communities of small sizes; then quasi-statically increase 
α to examine the structure of pervasive communities at coarser resolution. Applying MDMC with this proce-
dure to social and brain networks, we have observed that the hierarchy is serially unveiled from lower (finer) to 
upper (coarser) layers through discrete phase transitions that intermittently occurs as α increases. Continuously 
changing α while running MDMC is essential to reveal parent–child relationship between pervasive communi-
ties in adjacent layers. To our knowledge, this is the first elucidation of how pervasively structured modules are 
hierarchically organized. We believe that the proposed method is particularly beneficial to reveal the architecture 
of structural and functional brain networks, where cooperation of pervasiveness and hierarchy plays an essential 
role in flexible and adaptive information processing of the brain. Previous studies20,57–60, in contrast, have sought 
to extract hierarchical organization of definite communities from brain networks.

Graph embedding61 is a method to project graph objects such as nodes or links onto continuous vectors in 
the geometric space, which is widely used for tasks such as node classification or link prediction. Techniques 
of graph embedding have been developed in a research trend somewhat different from traditional network sci-
ence. Interestingly, however, the-state-of-the-art methods of graph embedding also exploit random walk on the 
network62,63. Graph embedding is supposed to project nodes in the same community closely in the geometric 
space. With the aid of conventional clustering methods (e.g., k-means clustering), therefore, graph embedding 
could achieve community detection. Recent results suggest that graph embedding does not yield an improvement 
over traditional community detection algorithms as to discovery of definite, non-overlapping communities64. 
Nevertheless, as conventional machine-learning research has developed numerous methods of soft clustering, 
graph embedding in combination with such methods might open an avenue to pervasive community detection, 
which is still a challenge in traditional network science. Comparing the performance of pervasive community 
detection by graph embedding to that by MDMC will be conducted in future studies.

It should also be noted that MDMC itself serves as graph embedding. The conditional probabilities, 
{

p(k|n)
}K

k=1
 , can be viewed as a projection of node n onto a point on the simplex, 

∑K
k=1 p(k|n) = 1 , embedded in 

the K-dimensional space. Alternatively, one can use a set of joint probabilities, 
{

p(n, k)
}K

k=1
 , as a K-dimensional 

vector representation of node n.
Community detection with resolution parameters35,36,42–44 tends to merge or split communities that are too 

small or too large compared to characteristic scales defined by these parameters, respectively65–68. We confess 
that MDMC with parameter α is also unescapable from this problem. The origin of the scale defining the size of 
detected communities in MDMC is the concentration of the Dirichlet prior for putative modules of random walk 
(see Eq. (3)). The present formulation assumes the same concentration (namely, the same α ) for each module. 
Our preliminary results69 suggest that removing this restriction remedies the resolution-limit problem. At the 
same time, however, we have also observed that a naive extension of the formulation confronts stiff behaviour 
of the EM algorithm, which results in falling into unwanted local minimums. A more mathematically-elegant 
formulation of MDMC to solve the resolution-limit problem will be discussed in forthcoming studies.

To establish methods for finding the true number of communities or clusters is one of the ultimate goals 
of unsupervised learning, which is not yet fully achieved. The present study has shown that MDMC can auto-
matically determine the number of communities for a given value of the resolution-controlling parameter α 
(Fig. 2a), marking a step towards this goal. However, the problem of optimizing α still remains. In this regard, 
we alternatively pose a notion that: Hierarchical organization is the nature of community structure of real-world 
networks and the number of communities, as well as their sizes, varies depending on the resolution at which the 
user wants to see. For instance, decomposition of the army corps into divisions or brigades would be appropriate 
to strategic or tactical operations, respectively. In this view, to ask uniquely the correct number of communities 
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may be nonsense; it would be more essential to reveal layers of hierarchy that really exist. We have demonstrated 
that MDMC can extract existent layers as stable states through discrete phase transitions. In physics, to be exist-
ent is to be stable. Thus, MDMC is likely to be closely approaching the solution to the problem of the number 
of communities. To verify the above notation, however, more extended study will be required. In particular, 
to solve the problem of resolution limit or detecting fals communities, which also bothers MDMC as well as 
standard community detection methods such as the map equation or modularity maximization, is prerequisite.

In this short article, we have focused on the theoretical foundation of MDMC and demonstrated its capability 
in detecting pervasive communities using a limited spectrum of networks. More extensive evaluation using a 
wider spectrum of networks and comparison with other community detection methods (partially conducted in 
Supplementary Information) will be discussed in forthcoming studies.

Methods
EM algorithm.  In this section, we show a detailed derivation of the EM algorithm, a solver to maximization 
of the joint probability (6). Let A = (Anm) be the adjacency matrix of the network from which we wish to detect 
communities; Anm is the weight of the link from node m to node n, which can take any non-negative value. If 
nodes n and m are connected by an undirected link, we set Anm = Amn . The rate for transition from node m to 
node n is then defined by Tnm = Anm/

∑N
n′=1 An′m.

According to the standard procedure to derive the EM algorithm, we first marginalize the joint probability 
(6) with respect to Z:

Taking the log of this, we have

Introducing r(k|d) (≥ 0) satisfying 
∑K

k=1 r(k|d) = 1 and then using Jensen’s inequality, we derive

We finally obtain the lower bound Q of log p
(

D, Pt |{πt(k)}Kk=1

)

:
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Maximization of the joint probability (6) can therefore be substituted with maximization of this lower bound.
Maximizing Q with respect to r(k|d) under the constrain 

∑k
k=1 r(k|d) = 1 gives the E-step:

Maximizing Q with respect to π(k) and pt(n|k) under the constraints 
∑K

k=1 πt(k) = 1 and 
∑N

n=1 pt(n|k) = 1 
gives the M-step:

where Dk =
∑D

d=1 r(k|d) . Note here that pt(n|k) , which has been upgraded to stochastic variables by Eq. (3), is 
now solved by maximum a posteriori estimate.

The first and second terms on the right-hand side of Eq. (18) describe a ‘global’ random walk along common 
links and a bias to community k, respectively. The linear combination of these two as Eq. (18) therefore gives a 
random walk ‘localized’ to community k, which conforms to the idea of personalized PageRank algorithm70,71.

Suppose that D is sufficiently large. Even so, the number of observation patterns is L, the total number of 
links. Let these observation patterns be represented by {τ̃l}Ll=1 . Here we assume that the frequency of observing 
pattern τ̃l is approximated by Dp̃st(l) = DTñtol ñ

from
l

pst(ñfroml ) , where p̃st(l) and pst(n) are the probabilities of link 
l and node n in a stationary state of the classical Markov chain, respectively. The latter satisfies

If the network is ergodic (that is, connected and irreducible) iterative calculation of the classical Markov chain 
leads to a unique stationary distribution70.

Therefore, we can replace the second term on the right-hand side of Eq. (18) as

where r̃(k|l) is the probability that link l belongs to community k; and ñfroml  and ñtol  denote the initial- and 
terminal-end nodes of link l, respectively. Setting α̃ = α/2D , we finally obtain the EM algorithm expressed by 
Eqs. (7), (8) and (9), where (and from now on) the ornament tildes are removed for brevity.

The Q function (15) is arranged in the limit D → +∞ to obtain

(15)

Q =
D
∑

d=1

K
∑

k=1

r(k|d)
[

logπt(k)+
N
∑

n=1

(

δn, nfromd
+ δn, ntod

)

log pt(n|k)− log r(k|d)
]

+
K
∑

k=1

N
∑

n=1

(

α

N
∑

m=1

Tnmpt−1(m|k)
)

log pt(n|k)

+ K logŴ(α + N)−
K
∑

k=1

N
∑

n=1

logŴ

(

α

N
∑

m=1

Tnmpt−1(m|k)+ 1

)

.

(16)

r(k|d) =
πt(k)

∏N
n=1

[

pt(n|k)
]δ

n, nfrom
d

+δ
n, nto

d

∑K
k=1 πt(k)

∏N
n=1

[

pt(n|k)
]δ

n, nfrom
d

+δ
n, nto

d

=
πt(k)pt(n

from
d |k)pt(ntod |k)

∑K
k=1 πt(k)pt(n

from
d |k)pt(ntod |k)

.

(17)πt(k) =
Dk

D
,

(18)

pt(n|k) =
α

α + 2Dk

N
∑

m=1

Tnmpt−1(m|k)

+
1

α + 2Dk

D
∑

d=1

r(k|d)
(

δn, nfromd
+ δn, ntod

)

,

(19)pst(n) =
N
∑

m=1

Tnmp
st(m) .

(20)
D
∑

d=1

r(k|d)
(

δn, nfromd
+ δn, ntod

)

→ D

L
∑

l=1

p̃st(l)r̃(k|l)
(

δn, ñfroml
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where Stirling’s formula log z ∼ log
√
2π − z + (z − 1/2) log z for z → +∞ is used. Eqs. (7), (8) and (9) can 

also be gained by variation of Q̃ with respect to pt(n|k) , πt(k) and r̃(k|l).
Initial conditions of the EM step are set as follows: π0(k) (≥ 0) and p0(n|k) (≥ 0) are chosen randomly so 

that 
∑K

k=1 π(k) = 1 and 
∑N

n=1 p0(n|k) = 1 ; using these π0(k) and p0(n|k) , we define r(k|l) by Eq. (7). With 
these initial conditions, the EM step by Eqs. (7), (8) and (9) is iterated for a predefined number of times. We 
can also define the convergence criteria to stop the EM step more elaborately, but in the present study we have 
just heuristically defined the number of iterations. Several hundred iterations are normally enough to gain aptly 
convergent results, but more iterations are sometimes necessary—especially when non-clique like communities 
are to be detected35.

Teleportation: prescription for directed networks.  Directed networks might include so-called 
‘dangling’ nodes that have no links from them. The Markov chain for directed networks with dangling nodes no 
longer give ergodic stationary state because the probability is irreversibly absorbed to dangling nodes. To recover 
the ergodic property, we follow the prescription once proposed for the PageRank algorithm70. Suppose that Mr. 
X teleports from the current node to any node with probability ρ ; especially when Mr. X reaches a dangling node, 
he teleports to any node with probability unity. These processes are implemented by replacing Tnm with

where Dm = 1 if node m is a dangling node or Dm = 0 otherwise. As Mr. X is unobservable during teleportation, 
∑L

l=1 p
st(l) becomes less than unity. To resume summed-up-to-unity, we redefine

The above prescription is used for the mouse visual cortical network (Fig. 4) and the mouse whole brain 
network (Fig. 5). In both, we chose ρ = 0.15 following the work in70.

Extracting hierarchical organization of pervasive communities.  MDMC has a single hyper-
parameter α . Having observed that α controls the resolution of decomposing the network into communities 
(Figs. 2d,e,g, 3b), we sought to derive hierarchical organization of communities by making use of this property. 
Specifically, we propose a procedure consisting of the following processes. In the first process, α is fixed to a very 
small value αini and the EM step is run to decompose the network into a large number of small communities. In 
the second process, α starts to increase quasi-statically (that is, very slowly) at time step tini while the EM step is 
continued; α is thus increased until it reaches αfin at time step tfin . The resolution of decomposition is gradually 
reduced in the second process, whereby hierarchical structure emerged from the bottom through a series of 
discrete phase transitions (Fig. 3a,c). The increment of α per time step should be smaller for a finer resolution. 
To implement this, we adopted the flowing schedule for changing α:

Before applying the above procedure to real-world networks to reveal their hierarchical organization of 
pervasive communities, we have examined a couple of artificial networks planted with hierarchical organization 
of definite communities. The first network, which we will call a ‘block-of-blocks-of-blocks’, is given by a type of 
Erdos-Renyi model generalized to have hierarchical organization as follows. The whole network is constructed 
of five sub-networks that are mutually and randomly connected; each sub-network is further constructed of 
five sub-sub-networks that are also mutually and randomly connected; each sub-sub-network, consisting of 40 
nodes, constitutes an original Erdos-Renyi model. Its adjacency matrix is shown in Fig. 6a. The block-of-blocks-
of-blocks has two layers of hierarchy. Note that each module in each layer has a cohesive structure, with its 
internal connections being uniformly random. The second network, which we will call a ‘ring-of-rings-of-rings’, 
constitutes a ring of five sub-networks; each sub-network further constitutes a ring of five sub-sub-networks; each 
sub-sub-network constitutes a ring of 40 nodes. The ring-of-rings-of-rings thus has two layers of hierarchy, as also 
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seen from Fig. 6b. Each module in each layer has a non-cohesive structure. Previous studies have demonstrated 
that the resolution-controlling parameter plays an essential role in extracting such a non-cohesively structured 
communities35.

The above procedure was applied to the block-of-blocks-of-blocks. The obtained courses of π(k) ’s with quasi-
static increase in α are displayed in Fig 6c. We considered that relatively stable phases characterize detected layers 
of hierarchy. At values for α indicated by the vertical dotted lines in Fig 6c, therefore, we defined by using Eq. 
(10) definite communities constituting the corresponding layers. A numeral (‘25’ or ‘5’) attached to each vertical 
dotted line indicates the number of definite communities thus detected. Then, the normalized mutual information 
(NMI) was calculated between a set of 25 or 5 detected communities and that of 25 or 5 communities constituting 
the first or second layer of the planted hierarchy. Results are summaized in Table 1. The NMI is close to or exact 
unity in diagonal cells, while it takes much lower values in off-diagonal ones. We also applied the procedure to 
the ring-of-rings-of-rings and obtained essentially the same results (Fig. 6d and Table 2). These strongly support 
that the proposed procedure can properly extract hierarchical organization of communities.

Identifying parent–child relationships between pervasive communities.  Parent–child 
relationships in the hierarchical organization of pervasive communities are determined in the following way. Let 
p(h)(k|n) denote the belonging of node n to community k at layer h, which is specifically defined by the value 

Figure 6.   (a) The adjacency matrix of a block-of-blocks-of-blocks. (b) A network diagram of the ring-of-
rings-of-rings. (c,d) The course of π(k) ’s as quasi increase in α for the block-of-blocks-of-blocks (c) and the 
ring-of-rings-of-rings (d). Relatively stable phases, for which centre values for α are indicated by vertical dotted 
lines, characterize individual layers of hierarchy. A numeral attached to each dotted line indicates the number of 
non-vanishing π(k)’s, namely, the number of survived communities in the corresponding layer.

Table 2.   NMI between detected communities and planted communities for the ring-of-rings-of-rings. In 
the most left column, D25 and D5 symbolize sets of 25 and 5 communities detected from the network for 
α = 1.0651 and 3.2512 (indicated by the vertical dotted lines with numerals ‘25’ and ‘5’ in Fig. 6d), respectively. 
In the top row, P25 and P5 symbolize sets of 25 and 5 communities constituting the first and second layers of 
the planted hierarchy, respectively.

P25 P5

D25 1 0.666667

D5 0.666667 1
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for p(k|n) at α = (αh−1→h + αh→h+1)/2 . Here, αh−1→h is the value for α at which the discrete phase transition 
from layer h− 1 to h occurred. Similarly, π(h)(k) is defined to denote the probability of community k at layer h. 
The variation of p(k|n), the belonging of node n to community k, from layer h to layer h+ 1 is

The amounts of flow-in and flow-out of p(k|n) from layer h to layer h+ 1 are max
(

�p(h→h+1)(k|n), 0
)

 and 
max

(

−�p(h→h+1)(k|n), 0
)

 , respectively. Therefore, the flow from p(h)(k′|n) to p(h+1)(k|n) is given by

Finally, the net flow from π(h)(k′) to π(h+1)(k) is obtained by marginalizing Eq. (26) with respect to n:

Mergers or splits in these flows across layers can be expressed using Sankey diagrams55, which represent par-
ent–child relationships in hierarchical organization of pervasive communities very well (Fig. 5b,d).

To gain consistent structure of hierarchy.  Most of community detection algorithms, including MDMC, 
are associated with any non-deterministic nature and their results depend on the random seeds, initial conditions 
or other stochastic elements. Methods to gain consistent and accurate results under such non-deterministic 
conditions have been devised, one of the best practices of which is the consensus clustering19,72.

To gain consistent structure of hierarchical organization of pervasive communities by MDMC, here we pro-
pose to refine the first process of the procedure, as follows: For a fixed value of α that is sufficiently small, MDMC 
is run many trials, with each for different random seed rendering different initial setting of the EM algorithm; 
the convergence value for Q̃ of Eq. (21) is calculated each trial; the random seed that gives the largest value for Q̃ 
is then chosen and the EM algorithm with the same fixed value for α is run again. The results of the first process 
thus optimized serve as the initial setting of the EM algorithm run in the second process with increasing α . For 
a fixed number of steps between tini and tfin , the second process, which no longer involves stochastic elements, 
yields the consistent structure of hierarchy.

Behind the above device is our belief that the larger the convergence value for Q̃ , the more accurate pervasive 
community detection. Additionally, the larger the number of steps between tini and tfin , which means slower 
increment of α , the more accurate the structure of hierarchy at the expense of longer calculation time.

Benchmark networks planted with pervasive communities.  MDMC’s ability to detect pervasive 
communities was evaluated using benchmark networks planted with pervasive communities. These networks 
were synthesized by a specific type of stochastic block models, which has been proposed by Ball, Karrer and 
Newman.

Ball‑Karrer‑Newman’s stochastic block model.  BKN’s SBM12 defines the probability of generating a network 
with adjacency matrix A = (Anm) by a Poisson distribution in the form

Here, θnk is a parameter representing the ‘propensity’ of node n to block k and taking a continuous non-
negative value, whereby delineating the pervasive structure of block k; and 

∑K
k=1 θnkθmk is the rate for a Poisson 

event of generating a link between nodes n and m. BKN’s SBM thus generates networks planted with pervasively 
structured blocks (namely, pervasive communities). As 

∑K
k=1 θnkθmk is symmetric between n and m, BKN’s SBM 
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Table 1.   NMI between a set of detected communities and that of planted communities for the block-of-
blocks-of-blocks. In the most left column, D25 and D5 symbolize sets of 25 and 5 communities detected from 
the network for α = 0.028712 and 0.176854 (indicated by the vertical dotted lines with numerals ‘25’ and ‘5’ 
in Fig. 6c), respectively. In the top row, P25 and P5 symbilize sets of 25 and 5 communities constituting the first 
and second layers of the planted hierarchy, respectively.

P25 P5

D25 0.948318 0.6649

D5 0.666667 1
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is basically applicable for undirected networks. Therefore, in the rest of this section, we assume that the adjacency 
matrix is symmetric ( Anm = Amn).

BKN’s SBM can also be used for detection of pervasive communities. This is achieved by inferring θnk for 
adjacency matrix A = (Anm) of a given network. Ball-Karrel-Newman derived the EM algorithm to solve θnk , 
as follows:

E-step

M-step

MDMC for a specific case ( α = 0) is equivalent to BKN’s SBM.  Here we demonstrate that BKN’s SBM is a specific 
instance of MDMC. Setting α = 0 in Eq. (9), we have

For undirected networks ( Anm = Amn ), the steady-state distribution pst(n) can be given in the analytical 
form42–44:

where 2L =
∑N

n, m=1 Anm . This leads

Eq. (31) can therefore be rewritten as

Now, we define qntol nfroml
(k) and θnk in terms of r(k|l), pt(n|k) , and πt(k) as

Rewriting Eqs. (34) and (7) in terms qnm(k) (of Eq. (35)) and θnk (of Eq. (36)) simply gives the EM algorithm 
of BKN’s SBM given by Eqs. (29) and (30).

MDMC defines the probability of observations D =
{

τ (1), . . . , τ (D)
}

 as

Suppose that the number of times at which Mr. X is observed moving along link l is Anlml
 . The result of 

∑N
n, m=1 Anm = 2L times of observation can therefore be expressed as {Anm}Nn, m=1 . Note here that Anm = 0 if 

nodes n and m are unconnected. From Eq. (37), we can derive the probability of {Anm}Nn, m=1 given by a multi-
nomial distribution in the form
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Noticing p(
∑N

n, m=1 Anm = 2L) = (2L)2L exp(−2L)/(2L)! , we finally have

Expressed in terms of qnm(k) and θnk , this becomes Eq. (28). Thus, we conclude that MDMC for α = 0 and 
BKN’s SBM are equivalent. The above demonstration appears to be analogous to the proof that modularity 
maximization is equivalent to a specific class of stochastic block modelling75.

Benchmark networks planted with pervasive communities.  Benchmark networks to evaluate pervasive community 
detection were synthesized using BKN’s SBM, as follows. First, 

{

p∗(n|k∗)
}N

n=1
 and {π∗(k∗)} ( k∗ = 1, . . . , K∗ ) 

were stochastically generated so that they follow power-law distributions p
(

p∗(n|k∗)
)

∼
[

p∗(n|k∗)
]−γ 

and p(π∗(k∗)) ∼ [π∗(k∗)]
−β , respectively. Here, the subscript asterisk is used to discriminate planted ones 

from p(n|k) and π(k) to be inferred. Powe-law distributions for 
{

p∗(n|k∗)
}N

n=1
 and {π∗(k∗)} stem from the 

empirical fact that distributions of community sizes and degrees of nodes follow power laws in many real-
world networks73,74. The stochastic generation of 

{

p∗(n|k∗)
}N

n=1
 and {π∗(k∗)} was also devised so that the 

ratios maxn p∗(n|k∗)/minn p∗(n|k∗) and maxk∗ π∗(k∗)/mink∗ π∗(k∗) fall within moderate ranges. Benchmark 
networks were then generated according to the probability defined by Eq. (40). The parameter values for the 
synthesis were set as follows: N = 1000 , K∗ = 10 , γ = 3 , and β = 2.

Non‑negative matrix factorization.  Pervasive community detection by non-negative matrix factorizaton 
(NMF)9,10 is done by finding decomposition of the N × N adjacency matrix A = (Anm) into N × K and K × N 
non-negative matrices W = (Wnk) and H = (Hkm) ( n, m = 1, . . . , N and k = 1, . . . , K with K ≪ N ): 
A ≈ WH . NMF assumes network generation by the Poisson distribution p(Anm) = µAnme−µ/Anm! with the 
rate parameter µ ∝

∑K
k=1 WnkHkm . Therefore, W and H are determined so that the generalized Kullback-

Leibler divergence

is maximized. Lee and Seung10 derived update rules to maximize this:

For undirected networks ( Anm = Amn ), we can set Wnk = Hkm , whereby the relation to p(n|k) and π(k) is 
given as

where Wk =
∑

n Wnk.

Bayesian non‑negative matrix factorization.  The original NMF was then extended by introducing priors11
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where HN (x|0, σ 2) denotes the half-normal distribution. Update rules for W , H and β are now

For undirected networks, we can again set Wnk = Hkm and have the same relations (44) and (45).

Measuring the performance of pervasive community detection.  Whereas partitioning networks into non-
overlapping communities can be evaluated using information-theoretically principled measures such as 
normalized mutual information, sophisticated measures to evaluate pervasive community detection still have 
not been established. We therefore introduce a heuristic measure, the ‘maximum similarity (MaxSim)’, defined as 
follows. Let K∗ and K be the number of planted and detected communities, respectively. The similarity between 
probability distributions p∗(n|k∗) and p(n|k) is defined by Sim(k∗, k) =

∑N
n=1 min

(

p∗(n|k∗), p(n|k)
)

, which 
is then calculated for all combinations of k∗ (k∗ = 1, . . . , K∗) and k (k = 1, . . . , K) . MaxSim is hence given by

MaxSim ranges from zero to unity. When MaxSim = 1, recovery of planted pervasive communities is perfect. 
For each value of α , MDMC is examined for 24 benchmark networks (synthesized using the same parameter 
values but with different random seeds) and MaxSim is averaged over these networks. Pervasive community 
detection by BKN’s SBM is taken as a baseline for comparison. This competition seems advantageous to BKN’s 
SBM because the task is to detect (that is, decode) the community structure that is generated (that is, encoded) 
by BKN’s SBM itself. Despite that, MDMC is shown to outperform BKN’s SBM.

Brain network data.  We believe that brain networks are the best examples of real-world networks endowed 
with pervasive structure of communities. Therefore, we examined two brain networks, both constructed from 
connectome data downloaded from Allen Mouse Brain Connectivity Atlas49,54. One is a structural network of 
mouse visual cortex, which was compiled from the high-resolution connectome data49. This network includes 
N=468 nodes and L=219,024 links. Each node represents a voxel 300 μm on each side and belongs to any one 
of the following 10 areas constituting the mouse visual cortex (Fig.  4a): primary visual area (VISp); lateral 
visual area (VISl); laterointermediate area (VISli); posterolateral visual area (VISpl); postrhinal area (VISpor); 
posteromedial visual area (VISpm); Anteromedial visual area (VISam); Anterior area (VISa); rostrolateral 
visual area (VISrl); and Anterolateral visual area (VISal). The other one is a whole brain network compiled from 
connectome data of the area-level resolution54. This network has N = 213 nodes and L = 16,954 links. Each node 
represents a cortical area in the right hemisphere. Links of both networks are directed and weighted.
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Data and codes used in the present study are available at: https://​github.​com/​HO299​792458/​Modul​arDec​ompos​
ition​OfMar​kovCh​ain.
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