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Reduced order modeling 
for flow and transport problems 
with Barlow Twins self‑supervised 
learning
Teeratorn Kadeethum 1,2, Francesco Ballarin 3, Daniel O’Malley 4, Youngsoo Choi 5, 
Nikolaos Bouklas 2* & Hongkyu Yoon 1*

We propose a unified data‑driven reduced order model (ROM) that bridges the performance gap 
between linear and nonlinear manifold approaches. Deep learning ROM (DL‑ROM) using deep‑
convolutional autoencoders (DC–AE) has been shown to capture nonlinear solution manifolds but fails 
to perform adequately when linear subspace approaches such as proper orthogonal decomposition 
(POD) would be optimal. Besides, most DL‑ROM models rely on convolutional layers, which might 
limit its application to only a structured mesh. The proposed framework in this study relies on 
the combination of an autoencoder (AE) and Barlow Twins (BT) self‑supervised learning, where 
BT maximizes the information content of the embedding with the latent space through a joint 
embedding architecture. Through a series of benchmark problems of natural convection in porous 
media, BT–AE performs better than the previous DL‑ROM framework by providing comparable 
results to POD‑based approaches for problems where the solution lies within a linear subspace as 
well as DL‑ROM autoencoder‑based techniques where the solution lies on a nonlinear manifold; 
consequently, bridges the gap between linear and nonlinear reduced manifolds. We illustrate that a 
proficient construction of the latent space is key to achieving these results, enabling us to map these 
latent spaces using regression models. The proposed framework achieves a relative error of 2% on 
average and 12% in the worst‑case scenario (i.e., the training data is small, but the parameter space is 
large.). We also show that our framework provides a speed‑up of 7× 10

6 times, in the best case, and 
7× 10

3 times on average compared to a finite element solver. Furthermore, this BT–AE framework can 
operate on unstructured meshes, which provides flexibility in its application to standard numerical 
solvers, on‑site measurements, experimental data, or a combination of these sources.

A reduced order model (ROM) is devised to provide an acceptable accuracy while utilizing a much lower com-
putational cost compared to the full order model (FOM)1. In recent years, a non-intrusive or data-driven ROM 
approach has grasped attention because (1) it has a straightforward implementation (i.e., does not require any 
modifications of FOM), (2) it easily lends itself to different kinds of physical problems, and (3) it allows for more 
stable and much faster prediction than intrusive ROM for nonlinear  problems2–7. Traditionally, proper orthogonal 
decomposition (POD) is used as a data compression tool (i.e., linear subspace approach), which is the optimal 
way to construct the linear reduced manifolds. However, POD-based solutions on a linear subspace are often 
restrictive for highly nonlinear problems where reduced spaces lie in nonlinear manifolds. More recently, nonlin-
ear compression using autoencoder-based deep learning (DL) architectures or nonlinear manifold  approach5,6,8,9 
has been suggested to reconstruct these nonlinear manifolds, resulting in generic and more refined predictive 
capabilities than linear subspace approaches for nonlinear problems. Recent extensive comparisons, however, 
show a performance deficit for DL-ROM approaches in some  cases6.

Kadeethum et al.6 illustrate that there are two essential issues for DL-ROM. First, the nonlinear approach 
outperforms its linear counterpart in specific settings (e.g., boundary conditions and domain geometry), but 
the opposite can occur in other settings. This is because POD provides the optimal data compression in a lin-
ear subspace for the problems with fast-decaying Kolmogorov’s n-width that measures the degree of accuracy 
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by n-dimensional linear  subspaces10–13. Therefore, the DL-ROM approach could not exceed the level of POD 
accuracy for problems that naturally lie within linear manifolds. However, for problems with slowly decaying 
Kolmogorov’s width, the nonlinear manifold approach outperforms the linear subspace one. Even though the 
authors hypothesize that a visual comparison between principal component analysis (PCA) and t-Distributed 
Stochastic Neighbor Embedding (t-SNE) could indicate which method will perform better before employing any 
specific compression strategy, there is no unified model that could be used across problem settings without an 
extensive case-based hyperparameter search. Second, although the nonlinear approach excels in very complex 
settings, it relies on convolutional operators, hindering its application for unstructured meshes and limiting DL-
ROM approaches to less practical problems. Hence, these limitations in DL-ROM methods need to be resolved 
and tested with varying degrees of complex problems.

Convection in porous media is an important process in various applications in natural and engineered envi-
ronments (e.g., biomedical engineering, multiphase flow in the subsurface, seawater intrusion, geothermal energy, 
and storage of nuclear and radioactive waste)14–17. As the media temperature and composition (fluid concentra-
tion) are altered, the dynamics of fluid density and viscosity variations could drive the flow field through flow 
 instabilities18,19. The gravity-driven flow problem is usually characterized by Rayleigh number ( Ra ) in which if the 
Ra is low, the flow field is laminar, while if the Ra is high, the flow turns into a turbulent regime. In cases where 
the driving force is strong enough (very high Ra ), the flow might also exhibit fingering  behavior20.

Numerical simulation of gravity-driven flow in porous media has been a subject of extensive research. Notable 
examples of full order model (FOM) include: (1) TOUGH software suite, which includes multi-dimensional 
numerical models for simulating the coupled thermo-hydro-mechanical-chemical (THMC) processes in porous 
and fractured  media21,22, (2) SIERRA Mechanics, which has simulation capabilities for coupling thermal, fluid, 
aerodynamics, solid mechanics and structural  dynamics23, (3) PyLith, a finite-element code for modeling dynamic 
and quasi-static simulations of coupled multiphysics  processes24, (4) OpenGeoSys project, which is developed 
mainly based on the finite element method using object-oriented programming THMC processes in porous 
 media25, (5) IC-FERST, a reservoir simulator based on control-volume finite element methods and dynamic 
unstructured mesh  optimization26, (6) DYNAFLOW™, a nonlinear transient finite element analysis  platform27, (7) 
DARSim, multiscale multiphysics finite volume based  simulator28, (8) the CSMP, an object-oriented application 
program interface, for the simulation of complex geological processes, e.g. THMC, and their  interactions29, and 
(9) PorePy, an open-source modeling platform for multiphysics processes in fractured porous  media30. In this 
study, we utilize the FOM developed in the previous works, a locally conservative mixed finite element framework 
for coupled hydro-mechanical-chemical processes in heterogeneous porous  media31,32 in which interior penalty 
enriched Galerkin and mixed finite element are employed. This FOM, however, is computationally expensive for 
two reasons. The first one is the problem of interest is highly nonlinear; hence, it takes more nonlinear iterations 
to converge. The second reason is to satisfy the Courant–Friedrichs–Lewy (CFL) condition, the FOM needs to 
march through many intermediate time-steps to reach the time-steps of  interest33–35.

Kadeethum et al.6 propose a data-driven reduced order model (ROM) that can reduce computation cost while 
maintaining an acceptable accuracy for natural convection in porous media problems. The model is applicable 
to parameterized  problems1,13,36–41, depending on a set of parameters ( µ ) which could correspond to physical 
properties, geometric characteristics, or boundary conditions. This model sequentially follows (1) the offline and 
(2) online  stages1,42. The offline stage begins with initializing a set of input parameters, which we call a training set. 
Then the FOM is solved corresponding to each member in the training set (in the following, we will refer to the 
corresponding solutions as snapshots). Either linear, relying on  POD4,43 or nonlinear compression, depending on 
deep convolutional autoencoder (DL-AE or DL-ROM)5,6,8, is then used to compress FOM snapshots to produce 
basis functions that span reduced spaces of very low dimensionality, but still guarantee accurate reproduction 
of the  snapshots44,45. The ROM can then be solved during the online stage for any new value of µ by seeking an 
approximated solution in the reduced space.

In this work, we propose a unified data-driven ROM using a combination of Barlow Twins (BT) self-super-
vised learning and an autoencoder (BT–AE) that bridges the performance gap between linear and nonlinear 
manifold approaches. In particular, we use BT self-supervised learning to maximize the information content 
of the embedding with the latent space through a joint embedding  architecture46. With four different example 
cases that span the degree of complexity to cover both linear and nonlinear problems, a comparison of the 
proposed BT–AE framework with both linear (POD) and nonlinear (DL-AE) ROM approaches is conducted 
to demonstrate the performance of the unified data-driven ROM framework that (1) excels in all test cases 
(whether the solution can be captured in a linear or nonlinear manifold) and (2) operates on either structured 
or unstructured meshes. Importantly, this model is fully data-driven; it could be trained by data produced by 
FOM, on-site measurement, experimental data, or a combination of them. This characteristic can provide flex-
ibility across the spectrum in more complex problems. Since it is not limited by the Courant–Friedrichs–Lewy 
condition for conventional FOMs, it could deliver quantities of interest at any given time contrary to the  FOM6.

Results
Data generation. We present a summary of all geometries and boundary conditions we use in Fig. 1. In 
short, Examples 1, 2, and 3 represent cases where µ is a scalar quantity, namely Ra , while Example 4 illustrates a 
case where µ is a four-dimensional vector, composed of Ra1 , Ra2 , Ra3 , and Ra4 . The information of each example 
is presented in Table 1. We note that Mvalidation and Mtest represent the number of the validation and testing sets 
with varying Rayleigh number ( Ra ), respectively (Table 1). Due to time dependence, the total number of train-
ing, validation, and test samples is the product of M and Nt with varying Nt ranges. Specifically the validation 
samples, MvalidationN

t , is determined by MvalidationN
t = 0.1MNt by randomly sampling 10% of the sum of train-

ing/validation sets ( MNt).
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Figure 1.  Domain and boundary conditions for (a) Example 1 (heating from the left boundary), (b) Example 
2 (Elder problem), (c) Example 3 (unit cell of micromodel), and (d) Example 4 (modified Hydrocoin with four 
subdomains). The red line indicates the region of the boundary where the temperature is elevated.

Table 1.  Summary of main information for each example.

Example 1 Example 2 Example 3 Example 4 Remark

M 40 40 40 81 Training set for the parameter space µ

MvalidationN
t 10% of MNt 10% of MNt 10% of MNt 10% of MNt Validation set—randomly select from MNt

Mtest 10 10 10 10 Test set for the parameter space µtest

MNt 16,802 36,110 44,354 90,175 Total training/validation data

MtestN
t 3260 8951 11,238 11,432 total testing data

N
t range [226, 477] [790, 1010] [951, 1265] [907, 1280] for training, validation, and test sets

N
T

h
7110 9600 17,064 11,382 Degree of freedom (DOF): Th

t range [0.0, 0.1] [0.0, 0.1] [0.0, 0.1] [0.0, 0.1]
[

t
0, tN

]

µ Ra ∈ [40, 80] Ra ∈ [350, 450] Ra ∈ [350, 450]

Ra1 ∈ [350, 450]

Only Example 4 has four parameters
Ra2 ∈ [350, 450]

Ra3 ∈ [350, 450]

Ra4 ∈ [350, 450]
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It is noted that the final total training samples are 0.9MNt because we allocate 10% of the training samples 
for the validation set. The total of testing data is MtestN

t . We want to emphasize that our Nt is not constant, 
but it is a function of µ . To elaborate, the higher Ra value will result in the higher Nt to satisfy CFL condition.

The summary of each model, including the subspace dimension and compression method, is presented in 
Table 2. The detailed description of POD, AE, and DC–AE models is provided in Kadeethum et al.6, and our 
newly developed BT–AE models are described in “Methodology” section. In short, for POD models, we use 
proper orthogonal decomposition as a compression tool. The AE models use an autoencoder as a compression 
method. We employ a deep convolutional autoencoder to compress our training snapshots ( MNt ) for DC–AE 
models. The BT–AE models utilize a combination of an autoencoder and Barlow Twins self-supervised learning 
in their compression procedure. For the POD models, linear compression, subspace dimension refers to the 
number of reduced basis or N as well as the number of intermediate reduced basis or Nint . We assume N = Nint 
for all models for simplicity. The subspace dimension is the number of latent space ( Q ) for the nonlinear com-
pression, AE, DC–AE, and BT–AE models.

Details of POD, AE, DC–AE models are provided in Kadeethum et al.6.

Comparisons of BT–AE with POD, AE, and DC–AE models in simple domains. We first compare 
the BT–AE model accuracy (for different numbers of Q ) with the models developed by Kadeethum et al.6,43 
(i.e., POD, AE, and DC–AE models) in relatively simple model domains. Example 1 illustrates a case where a 
linear manifold is optimal, while Example 2 presents a case where a nonlinear manifold is optimal. The results of 
POD, AE, and DC–AE models presented in Kadeethum et al.6 demonstrated that the POD-based and DL-ROM 
approaches are more suitable for the linear and nonlinear manifold problems, respectively, and they are used in 
this manuscript to evaluate the performance of BT–AE models.

Example 1: Heating from the left boundary. The geometry and boundary conditions are shown in Fig. 1a, and 
we adopt this example from Zhang et al. and Kadeethum et al.6,47. This example represents a case where its fluid 
flow is driven by buoyancy as the fluid is heated on the left side of the domain. The fluid then flows upwards and 
rotates to the right side of the domain. We set µ = (Ra) , and its admissible range of variation is [40.0, 80.0], see 
Table 1. For the training set, we use M = 40 , which lead to, in total, MNt = 16802 training data points.

We present the test case results of the BT–AE model (BT–AE 16 Q) as supplimental information (SI-Ani-
mation-Example 1). The difference between solutions produced by the FOM and ROM (DIFF) is calculated by

where ϕh is a finite-dimensional approximation of the set of primary variables corresponding to velocity, pressure, 
and temperature fields. ϕ̂h is an approximation of ϕh produced by the ROM. Thus, ϕh(·; tk ,µ

(i)
test) and ϕ̂h(·; tk ,µ

(i)
test) 

represent ϕh and ϕ̂h at all space coordinates (i.e., evaluations at each DOF) at time tk with input parameter µ(i)
test , 

respectively. Note that we only present the results of the temperature field. Hence, ϕh and ϕ̂h represent Th and ̂Th , 
respectively. From SI-Animation-Example 1, we observe that BT–AE 16 Q provides a reasonable approximation 
of the temperature field.

The results of Example 1 is presented in Fig. 2. In Fig. 2a, The performance of the different models (Table 2) 
is evaluated with the mean square error ( MSEϕ(:,µ

(i)
test) ) of the test cases defined as follows

(1)DIFFϕ(t
k ,µ

(i)
test) =

∣
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∣
ϕh(·; t

k ,µ
(i)
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(i)
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Table 2.  Summary of naming for each model.

Model name Compression Subspace dimension Compression techniques

POD 16 RB Linear 16 Proper orthogonal decomposition

POD 50 RB Linear 50 Proper orthogonal decomposition

POD 100 RB Linear 100 Proper orthogonal decomposition

POD 500 RB Linear 500 Proper orthogonal decomposition

AE 4 Q Nonlinear 4 Autoencoder

DC–AE 4 Q Nonlinear 4 Deep convolutional autoencoder

BT–AE 4 Q Nonlinear 4 Barlow twins + autoencoder

AE 16 Q Nonlinear 16 Autoencoder

DC–AE 16 Q Nonlinear 16 Deep convolutional autoencoder

BT–AE 16 Q Nonlinear 16 Barlow twins + autoencoder

AE 256 Q Nonlinear 256 Autoencoder

DC–AE 256 Q Nonlinear 256 Deep convolutional autoencoder

BT–AE 256 Q Nonlinear 256 Barlow twins + autoencoder
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Figure 2.  Example 1—results: (a) mean squared error (MSE) of each model (please refer to Table 2), and blue 
texts represent a mean value of the box plots—here we show that BT–AE 16 gives performance similar to POD-
based approaches, but AE and DC–AE models do not, (b) data compression loss for validation set (Eq. 18), (c) 
mapping using ANN loss for validation set (Eq. 19), (d) latent space plot of DC–AE 16 Q model, and (e) latent 
space plot of BT–AE 16 Q model. Latent space plots are constructed using t-Distributed Stochastic Neighbor 
Embedding (t-SNE). Different colors represent each value of Ra value. We calculate the t-SNE plots using Scikit-
Learn package using its default setting and perplexity of 15.
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where MSEϕ(:,µ
(i)
test) represents the MSE values of all t for each µ(i)

test . The MSE results show that BT–AE models 
perform better than AE and DC–AE models. Besides, BT–AE 16 Q delivers similar MSE results to those of the 
POD models. In contrast to the findings presented in Kadeethum et al.6 where the linear compression (POD) 
outperforms nonlinear compression (AE and DC–AE), BT–AE models in this study could perform similar to 
the POD models. To be accurate, BT–AE models still underperform, but errors are comparable.

We then investigate how the performance of BT–AE models compares to DC–AE. First, we examine the 
data compression loss of the validation set (see Eq. 18) which is presented in Fig. 2b. From this figure, the data 
compression losses of BT–AE models are slightly better than those of the DC–AE models. Subsequently, we 
illustrate the mapping using ANN loss of the validation set, see Eq. (19), in Fig. 2c. From Fig. 2c, we observe that 
the mapping losses of the BT–AE models are six orders of magnitude less than those of the DC–AE models. This 
behavior shows that the BT–AE’s latent spaces are easier to be mapped (i.e., ANN loss of the validation set for 
the BT–AE mapping is much lower than that of the DC–AE.). This speculation is explained by Fig. 2d,e, using a 
t-Distributed Stochastic Neighbor Embedding (t-SNE) plot. From Fig. 2d, one could see that all latent variables 
of DC–AE 16 Q blend (i.e., you cannot differentiate among cases with different Ra values.). The latent variables 
of the BT–AE 16 Q model, on the other hand, shown in Fig. 2e, behave in a much better structure (i.e., we can 
differentiate among cases with different Ra values.).

Example 2: Elder problem. The Elder  problem48 is a significantly more complicated and ill-posed  problem48,49. 
High Ra numbers considered in this case may cause the flow instability to be fingering behavior. The domain and 
boundary conditions are presented in Fig. 1b6,47,50. In short, the model domain is heated from the half of the bot-
tom boundary (Fig. 1b), and the flow is driven upwards by buoyancy force. We set µ = (Ra) , and its admissible 
range as [350.0, 400.0] (Table 1). Compared to Example 1, this higher range of Ra values affects the minimum 
and maximum Nt as its range increases to [790, 1010].

The results of Example 2 are presented in Fig. 3. From Fig. 3a, we observe that all the models using nonlinear 
compression (AE, DC–AE, and BT–AE) perform better than the linear compression (POD). Furthermore, the 
BT–AE model accuracy is comparable to that of the DC–AE models. However, the BT–AE model results seem 
to be insensitive to the number of Q , while the DC–AE model results are affected by the number of Q (i.e., the 
DC–AE 16 Q and DC–AE 256 Q are more accurate than the DC–AE 4 Q). We also present the results of the 
test cases for the BT–AE 16 Q model in the supplemental animation (SI-Animation-Example 2). From these 
results, we observe that the BT–AE 16 Q model delivers a reasonable approximation of the solution Th (i.e., ̂Th).

We present the data compression loss of the validation set (Eq. 18) in Fig. 3b. In contrast to the ones shown 
in Fig. 2b, the DC–AE models have a slightly lower loss than that of the BT–AE models. We then investigate the 
ANN mapping loss (see Eq. 19) of the validation set in Fig. 3c. Similar to those presented in Fig. 2c, the BT–AE 
models have much lower mapping losses compared to those of the DC–AE models. Among the BT–AE models, 
BT–AE 256 Q has the highest value of ANN mapping loss, which is expected since it has the highest output 
dimension (i.e., we are mapping t and µ to zQ ). Again, we observe a much better structure of the BT–AE 16 Q 
latent space than the one from DC–AE 16 Q (see Fig. 3d,e). To elaborate, the latent variables of the DC–AE 16 
Q are overlapped to hinder us from differentiating among each case (different Ra values). The latent variables of 
the BT–AE, on the contrary, are structured in a way that one can clearly observe different parts that represent 
different Ra values as shown in Fig. 3e.

Model performance of BT–AE models on complex geometries. From Examples 1 and 2, we have 
observed that the BT–AE models could provide good results while operating on unstructured data. In this sec-
tion, more challenging geometries which require an unstructured mesh for the FOM are evaluated with BT–AE 
models only since other methods are not suitable for unstructured mesh problems.

Example 3: Unit cell of micromodel. Example 3 uses a unit cell of micromodel where a central part of honey-
comb shape and four corners are impermeable for flow. Still, the heat can conduct through these five subdomains 
as presented in Fig. 1c. Over the past decade, the micromodel has been used to study multiple coupled processes, 
including flow, reactive transport, bioreaction, and flow  instability19,20,51–54. The flow is initiated from an influx at 
the bottom of the domain. This geometry is more complex than those utilized in Examples 1 and 2 (see Fig. 1a,b). 
The higher temperature at the bottom surface (shown in red) alters a fluid density at the bottom, and subse-
quently, a buoyancy force drives the flow upwards from the bottom (shown in red) to the top of the domain. Five 
subdomains contain very low flow conductivity, but they can conduct heat. Again, we set µ = (Ra) and its range 
as [350.0, 400.0] (Table 1). The range of Ra can also cause flow instability. We use M = 40 , MvalidationN

t = 10 % 
of MNt , and Mtest = 10 . We have in total MNt = 44354 training data points.

The summary of the Example 3 results is shown in Fig. 4. For all test cases the MSE values over time in 
Fig. 4a–c are in the range of ≈ 1× 10−5 . The MSE values tend to decrease over time until the temperature field 
becomes a steady state. Besides, BT–AE models with different Q values provide approximately similar results 
(in line with our findings from Examples 1 and 2). The behavior infers that utilizing only a small number of 
latent spaces; the model can achieve the same level of accuracy as the one with a large number of latent spaces. 
This behavior is very beneficial because the mapping between parameter space and latent space becomes more 
manageable. We also present the results of the test cases for the BT–AE 16 Q model in the supplemental anima-
tion (SI-Animation-Example 3). Overall, BT–AE 16 Q delivers a reasonable approximation of the Th (i.e., DIFF 
results are low, and the relative error lies within 2%).

The data compression loss (Eq. 18) is in the range of ≈ 1× 10−5 to 1× 10−6 (Fig. 4d) which is similar to that 
of Example 1 (Fig. 2b), but slightly lower than that of the Example 2 (Fig. 3b). The data compression loss seems 
to be invariant to Q values. We also present the Barlow Twins loss (Eq. 14) in Fig. 4e. We observe that the Barlow 
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Figure 3.  Example 2—results: (a) mean squared error (MSE) of each model (please refer to Table 2), and blue 
texts represent a mean value of the box plots—here we show that BT–AE models provide performance similar 
to DC–AE models, but POD-based approaches and AE models do not, (b) data compression loss for validation 
set (Eq. 18), (c) mapping using ANN loss for validation set (Eq. 19), (d) latent space plot of DC–AE 16 Q model, 
and (e) latent space plot of BT–AE 16 Q model. Latent space plots are constructed using t-Distributed Stochastic 
Neighbor Embedding (t-SNE). Different colors represent each value of Ra value. We calculate the t-SNE plots 
using Scikit-Learn package using its default setting and perplexity of 15.
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Figure 4.  Example 3 results: the moving average (a window size of 50) of mean squared error (MSE) of (a) BT–
AE 4 Q, (b) BT–AE 16 Q, (c) BT–AE 256 Q (please refer to Table 2). (d) Data compression loss for validation 
set (Eq. 18), (e) Barlow Twins loss for validation set (Eq. 14), (f) mapping using ANN loss for validation set 
(Eq. 19), and (g) latent space plot of BT–AE 16 Q model. Latent space plots are constructed using t-Distributed 
Stochastic Neighbor Embedding (t-SNE). Different colors represent each value of Ra value. We calculate the 
t-SNE plots using Scikit-Learn package using its default setting and perplexity of 15.
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Twins loss increases with increasing the Q value as in Zbontar et al.46. This can be explained that as the Q value 
grows larger, the cross-correlation matrix CT (t,µ) becomes bigger, resulting in more members in Eqs. (15) and 
(16). As stated by Zbontar et al.46, the absolute value of Eqs. (15) and (16) is not as important as their trend. To 
elaborate this, in Fig. 4e, all models (different Q values) reach their saturated points around 40 epochs, meaning 
that the minimization of Eqs. (15) and (16) is completed.

The mapping of the latent space using ANN loss (Eq. (19)) is presented in Fig. 4f. Similar to Examples 1 and 
2 (Figs. 2c, 3c), the mapping loss is in range of ≈ 1× 10−5 to 1× 10−7 . The higher Q values, the mapping loss 
grows larger because there are more outputs to map. We present the latent space structure in Fig. 4g (only for 
BT–AE 16 Q). Following the results shown in Figs. 2e and 3e, the latent structure of the BT–AE model has a 
good structure since we can differentiate among different Ra values. This behavior stems from the fact that the 
BT losses maximize the information content of the embedding with the latent space through a joint embedding 
architecture.

Example 4: Modified hydrocoin with four subdomains. Example 4 uses the hydrocoin  problem55,56 with the 
domain geometry shown in Fig. 1d. In this example, the domain is subdivided into four subdomains with dif-
ferent Ra values (i.e., µ = (Ra1, Ra2, Ra3, Ra4) ). The range of Ra values is [350.0, 400.0]. Similar to the previous 
examples, this Ra range causes fingering behavior as shown in the supplemental animation (SI-Animation-Exam-
ple4). We use M = 81 , MvalidationN

t = 10 % of MNt , and Mtest = 10 . We have in total MNt = 90,175 training 
data points. We note that as we use M = 81 = 34 equally spaced samples, for each parameter Rai , i = 1, 2, 3, 4 , 
we only have three values. As an example, for Ra1 we only sample Ra1 = (350, 400, 450) for the training set. The 
same goes for Ra2, Ra3, and Ra4 . As a result, training with relatively sparse samples of each parameter Rai makes 
it very challenging to obtain an accurate data-driven framework in  general1,4.

Even though this setting is very challenging, we still observe that the BT–AE 16 Q delivers a reasonable 
approximation of the Th as seen in the supplemental animation (SI-Animation-Example4). The summary of the 
Example 4 results is shown in Fig. 5. We present the MSE values as a function of time in Fig. 5a–c. We can observe 
that the MSE values for all test cases are in the range of ≈ 1× 10−1 to 1× 10−5 , which are significantly higher 
than those of Examples 1, 2, and 3. Moreover, the MSE values generally increase as we approach steady-state solu-
tions, unlike the behaviors shown in Example 3. Again, BT–AE models with different Q provide approximately 
similar results (in line with our finding from Examples 1, 2, and 3).

The data compression loss (Eq. 18) is in the range of ≈ 1× 10−2 to 1× 10−4 (Fig. 5d), which is significantly 
higher than that of Examples 1, 2, and 3. This behavior illustrates that this example is the most challenging case 
for the BT–AE models. The data compression loss is the lowest for Q = 256 and the highest for Q = 4 , but the 
difference is not critical. As shown in the Barlow Twins loss (Eq. 14) in Fig. 5e, the higher values of Q the larger 
Barlow Twins loss is (as we discussed in the previous example.).

The mapping of the latent space using ANN loss (Eq. 19) is presented in Fig. 5f. The mapping loss is in the 
range of ≈ 1× 10−4 to 1× 10−5 , which is significantly higher than those of Examples 1, 2, and 3 (see Figs. 2c, 3c, 
4f). This behavior also contributes to the higher MSE values of the BT–AE models. We present the latent space 
structure (only for BT–AE 16 Q) in Fig. 5g,h for Ra1 and Ra4 , respectively. Since Example 4 has different Ra values 
in four subdomains, the differentiation of the latent space of individual Ra does not provide good solutions as 
each latent space of each subdomain might also be interconnected.

Discussion
Recent developments in ML-based data-driven reduced order modeling (DL-ROM or DC–AE in this study)5,6 
have shown promising results in capturing parametrized solutions of systems of nonlinear equations. These 
models, however, rely on convolutional operators, which hinders the applicability of these models to complex 
geometries where an unstructured mesh is required for FOMs, as in Examples 3 and 4. Though we could utilize an 
autoencoder without convolutional layers, the model could not achieve the same level of accuracy as DL-ROM6. 
Kadeethum et al.6 also illustrate that in a specific setting (simple geometry and boundary conditions), a linear 
compression approach using POD can outperform the DL-ROM model (Example 1). We have demonstrated 
that the autoencoder model through Barlow Twins self-supervised learning (BT–AE) could achieve the same 
accuracy as DL-ROM (Example 2 where POD models perform much worse than DL-ROM) by regularizing the 
latent space or nonlinear manifolds. Besides, it also yields optimal results in the case where the linear compres-
sion model outperforms the DL-ROM (Example 1). It means that the BT–AE model excels in all the test cases 
(Examples 1 and 2) while it still can operate on an unstructured mesh. This behavior has a significant advantage 
in scientific computing since most realistic problems require unstructured mesh representations. Besides, the 
BT–AE’s performance is insensitive to the number of latent spaces, suggesting that with only a small number of 
latent spaces, the model can achieve the same level of accuracy as the one with a large number of latent spaces. 
This behavior is very beneficial because the mapping between parameter space and latent space becomes more 
manageable.

The computational time used to develop our ROM can be broken down into three primary parts: (1) genera-
tion of training data through FOM (the second step in Fig. 6), (2) training BT–AE (the third step in Fig. 6), and 
(3) mapping of t and µ to reduced subspace (the fourth step in Fig. 6). Each FOM model (corresponding to each 
set of µ or Ra in this work) takes, on average, about two hours on AMD Ryzen Threadripper 3970X (4 threads). 
We note that our FOM utilizes the adaptive time-stepping; hence, each µ(i) may require a substantially different 
computational time. To elaborate, cases that have higher Ra usually have a smaller time-step ( Nt becomes larger), 
and subsequently, they require more time to complete.

The wall time used to train BT–AE is approximately 0.4 hours using a single Quadro RTX 6000. It is noted 
that this computational cost is much cheaper than that of the DC–AE model, taking around four to six  hours6. 
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Figure 5.  Example 4 results: the moving average (a window size of 50) of mean squared error (MSE) of (a) BT–
AE 4 Q, (b) BT–AE 16 Q, (c) BT–AE 256 Q (please refer to Table 2). (d) Data compression loss for validation 
set (Eq. 18), (e) Barlow Twins loss for validation set (Eq. 14), (f) mapping using ANN loss for validation set 
(Eq. 19), and latent space plot of BT–AE 16 Q model for (g) Ra1 and (h) Ra4 . Latent space plots are constructed 
using t-Distributed Stochastic Neighbor Embedding (t-SNE). Different colors represent each value of Ra value. 
We calculate the t-SNE plots using Scikit-Learn package using its default setting and perplexity of 15.
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This is because DC–AE relies on convolutional layers, dropout, and batch normalization, which require much 
higher computational resources. The BT–AE, on the other hand, utilizes only a plain autoencoder. The BT–AE 
model is also cheaper than the POD model. However, we note that this may not be a fair comparison as we per-
form POD and BT–AE using different machines (i.e., our POD framework only works on CPU, but our BT–AE 
is trained using GPU). Please refer to Kadeethum et al.6 for detailed wall time comparisons among POD and 
DC–AE models. The mapping of t and µ to reduced subspace through artificial neural networks (ANN) takes 
around half an hour to one hour using a single Quadro RTX 6000. As mentioned in “Methodology” section, we 
do not terminate the training of both BT–AE and mapping of t and µ to reduced subspace through ANN early, 
but rather use the model with the best validation loss through the final epochs. For example, we train for 50 
epochs, but the model that offers the best validation loss might be the model at 20 epochs. However, the training 
time we report here is for 50 epochs. Thus, our training time provided here is considered conservative.

Even though the ROM training time is not trivial, it could provide a fast prediction during the online phase. 
Using AMD Ryzen Threadripper 3970X, the ROM takes approximately several milliseconds for a query of a 
pair of tk and µ(i) . We also note that, as discussed previously, our ROM is needed to be trained on GPU for 
the problems at hand. Still, it could utilize CPU during an online time since we do not have to deal with back-
propagation or optimization during the prediction time. On the contrary, one FOM simulation (for each µ(i) 
for all t ∈ 0 =: t0 < t1 < · · · < tN := τ ) takes about two hours. So, assuming that we query all t similar to those 
of the FOM, ROM takes only a matter of several seconds. In practice, however, we might not need to evaluate 
all timestamps in 0 =: t0 < t1 < · · · < tN := τ because the quantities of interest at the specific time may be 
more important. Since ROM is not bound by the CFL condition and can predict the quantities of interest at any 
specific time without intermediate computation, we could simply perform one query—tN and µ(i) , resulting in 
saving computational time significantly. Our ROM could provide a speed-up of 7× 106 at any specific time step 
for Example 2, and a speed-up of 7× 103 to 7× 106 for all examples considered in this work.

Our model is developed upon the data-driven paradigm, which is applicable to any FOM. Besides, it could be 
trained using data produced by FOM, on-site measurements, experimental data, or a combination among them. 
This characteristic provides flexibility, which intrusive approaches could not provide. The data-driven model, 
though, is usually hungry for training samples. We have illustrated that as the dimensionality of our parameter 
space grows, the model requires more training samples, or it will suffer by losing its accuracy significantly as in 
Example 4 compared to accurate prediction in Example 3. We speculate that an adaptive sampling  technique57–59, 
incorporating physical  information60,61, or including multimodal unsupervised  training62 might provide a resolu-
tion to this issue in the future work. Another gap in data-driven machine learning ROM is that a posteriori error 

Figure 6.  The summary of procedures taken to establish the proposed BT–AE.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20654  | https://doi.org/10.1038/s41598-022-24545-3

www.nature.com/scientificreports/

is exceptionally challenging to quantify. An error estimator developed by  Xiao63 for linear manifolds could be 
adapted and extended to the nonlinear manifold paradigm. Additionally, epistemic uncertainty could also be 
quantified by adopting the ensemble technique proposed by Jacquier et al.64.

Methodology
A graphical summary of our procedure is presented in Fig. 6: the computations are divided into an offline phase 
for the ROM construction, which we will show through four consecutive main steps and (single-step) online 
stage for the ROM evaluation.

The first step of the offline stage represents an initialization of a training set ( µ ), validation set ( µvalidation ), 
and test set ( µtest ) of parameters used to train, validate, and test the framework, of cardinality M , Mvalidation , 
Mtest . For the rest of sections we will discuss only µ . The same analogy goes for µvalidation and µtest . Let P ⊂ R

P , 
P ∈ N , be a compact set representing the range of variation of the parameters µ ∈ P . For the sake of notation we 
denote by µp , p = 1, . . . , P , the p-th component of µ . To explore the parametric dependence of the phenomena, 
we define a discrete training set of M parameter instances. Each parameter instance in the training set will be 
indicated with the notation µ(i) , for i = 1, . . . ,M . Thus, the p-th component of the i-th parameter instance in the 
training set is denoted by µ(i)

p  in the following. The choice of the value of M , as well as the sampling procedure 
from the range P , is typically user- and problem-dependent. In this work, we use an equispaced distribution for 
the training set as done  in6,43.

In the second step, we query the FOM, based on the finite element solver proposed and made publicly avail-
able in Kadeethum et al.6,32, for each parameter µ in the training set. In short, we are interested in gravity driven 
flow in porous media, and here we briefly describe all the equations used in this study: (1) mass balance and (2) 
heat advection–diffusion equations. Let � ⊂ R

d ( d ∈ {1, 2, 3} ) denote the computational domain and ∂� denote 
the boundary. X∗ are spatial coordinates in � (e.g., X∗ = [x∗, y∗] when d = 2 , which we will focus on throughout 
this study). The time domain is denoted by T = (0, τ ] with τ > 0 (i.e., τ is the final time). Primary variables used 
in this paper are u∗(·, t∗) : �× T → R

d , which is a vector-valued Darcy velocity (m/s), p∗(·, t∗) : �× T → R
d , 

which is a scalar-valued fluid pressure (Pa), and T∗(·, t∗) : �× T → R
d , which is a scalar-valued fluid tempera-

ture (C). Time is denoted as t∗ (s).
Following  Joseph65, the Boussinesq approximation to the mass balance equations results in the density dif-

ference only appearing in the buoyancy term. The mass balance equation reads

and

where κ = k/µf  is the porous medium conductivity, k is the matrix permeability tensor, µf  is the fluid viscosity, 
y is a unit vector in the direction of gravitational force, g is the constant acceleration due to gravity, ρ and ρ0 are 
the fluid density at current and initial states, respectively. We assume that ρ is a linear function of T∗47,66

where α is the thermal expansion coefficient, and T∗
0  is the reference fluid temperature. We note that Eq. (5) is 

the simplest approximation, and one may easily adapt the proposed method when employing a more complex 
relationship provided  in67. The heat advection–diffusion equation defined as

Here, γ is the ratio between the porous medium heat capacity and the fluid heat capacity, K is the effective thermal 
conductivity, and fc∗ is a sink/source. We follow Nield and  Bejan18 and define dimensionless variables as follows

where H is the dimensional layer depth, and �T∗ is the temperature difference between two boundary layers. 
From these dimensionless variables, we could rewrite our Eqs. (3) and (4) as

where ∂�p and ∂�q are the pressure and flux boundaries (i.e., Dirichlet and Neumann boundary conditions), 
respectively. Here, Ra is the Rayleigh number

We then write Eq. (6) in dimensionless form as follows

(3)u
∗ + κ

(

∇p∗ + y(ρ − ρ0)g
)

= 0,

(4)∇ · u∗ = 0

(5)ρ = ρ0
(

1− α
(

T∗ − T∗
0

))

,

(6)γ
∂T∗

∂t∗
+ u

∗ · ∇T∗ − K∇2T∗ − fc
∗ = 0.

(7)X :=
1

H
X
∗, t :=

κ

µγH2
t∗, p :=

κ

K
p∗, u :=

H

K
u
∗, T :=

T∗ − T∗
0

�T∗
, fc :=

t∗

�T∗
fc
∗,

(8)

u+∇p− yRaT = 0, in �× T,

∇ · u = 0, in �× T,

p = pD on ∂�p × T,

u · n = qD on ∂�q × T,

p = p0 in � at t = 0,

(9)Ra :=
gακ�T∗H

K
.
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where ∂�T is temperature boundary (Dirichlet boundary condition), ∂�in and ∂�out denote inflow and outflow 
boundaries, respectively, which are defined as

The detail of discretization could be found in Kadeethum et al.6,32, and the FOM source codes are provided in 
Kadeethum et al.32. After the second step, we have M snapshots of FOM results associated with the different 
parametric configurations in µ . Since the problem formulation is time-dependent, the output of the FOM solver 
for each parameter instance µ(i) collects the time series representing the time evolution of the primary variables 
for each time-step t. Thus, each snapshot contains approximations of the primary variables ( uh , ph , and Th ) at 
each time-step of the partition of the time domain T . Therefore, based on the training set cardinality M and 
the number Nt of time-steps, we have a total of NtM training data to be employed in the subsequent steps. We 
note that as our finite element solver utilizes an adaptive time-stepping6,32, each snapshot may have a different 
number of time-steps Nt , i.e. Nt = Nt(µ).

The third step aims to compress the information provided by the training snapshots provided by the second 
step. Kadeethum et al.6 provide detailed derivations and comparisons between linear and nonlinear compression. 
Especially the convolutional layers, in their classical form, could not deal with an unstructured data structure 
(unstructured mesh), which is very common in scientific computing or, more specifically, finite element analy-
sis. Hence, our goal is to develop a nonlinear compression that (1) consistently outperforms (or at least delivers 
similar accuracy) the linear compression and (2) is compatible with an unstructured data structure.

To achieve this goal, we propose a nonlinear compression utilizing feedforward layers in combination with 
self-supervised learning (SSL) of Barlow Twins (BT) (Fig. 6). The BT for redundancy reduction is proposed by 
Zbontar et al.46. It operates on a joint embedding of noisy images by producing two distorted images from an 
original one through a series of random cropping, resizing, horizontal flipping, color jittering, converting to 
grayscale, Gaussian blurring, and solarization. Since we do not operate on structured data (image) but unstruc-
tured data produced by finite element solver, we only employ random noise and Gaussian blur operations to 
produce our noisy data set, see Fig. 6.

Let zu1 , · · · , z
u
Q , zp1 , · · · , z

p
Q , and zT1 , · · · , z

T
Q be the nonlinear manifolds of the uh , ph , and Th , respectively. For 

the sake of compactness, we will only discuss primary variable Th . The same procedure holds for uh and ph . Our 
goal is to achieve Q ≪ MNt where MNt is the total training data, which implies that our nonlinear manifolds 
could represent our training data using much lower dimension. We employ a vanilla AE (using only feedforward 
layers) that is regularized by Barlow Twins SSL to obtain zT =

[

zT1 , · · · , z
T
Q

]

 . We do not use any batch normaliza-
tion or dropout. The summary of the training process is presented in Algorithm 1. We will provide the detailed 
implementation in https:// github. com/ sandi alabs.

(10)

∂T

∂t
+ u · ∇T −∇2T − fc = 0, in�× (0,T],

T = TD on ∂�T × (0,T],

(−uT +∇T) · n = Tinu · n on ∂�in × (0,T],

∇T · n = 0 on ∂�out × (0,T],

T = T0 in� at t = 0,

(11)∂�in := {X ∈ ∂� : u · n < 0} and ∂�out := {X ∈ ∂� : u · n ≥ 0}.

https://github.com/sandialabs
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In short, during the training phase, our BT–AE model is composed of one encoder, one decoder, and one 
projector. The training entails two sub-tasks; the first is BT (encoder and projector), which takes place in the 
outer loop. The second sub-task is responsible for the training of AE (encoder and decoder), which takes place 
inside the inner loop. The main reasons for this procedure are two folds. The first reason is Zbontar et al.46 states 
that the BT works better with large batch sizes. The AE, however, generally requires a small batch  size68,69. Our 
previous numerical experiments based on DC–AE6 also align with this statement. Consequently, we set our batch 
size of the outer loop as Bouter = 512 , and the batch size of the inner loop as Binner = 32

Prior to the training, we distort our training set (i.e., creating Th,A(t,µ) and Th,B(t,µ) from T(t,µ) ) through 
a series of two operations. First, add random noise is added as follows

where ˜Th,A(t,µ), ˜Th,B(t,µ) are intermediate distorted input data. The constant ǫ , which is set to 0.1, determines 
the noise level as it is multiplied with the standard deviation of the input field. G (0, 1) is a random value which is 
sampled from the standard normal distribution with mean and standard deviation of zero and one, respectively.

Subsequently, we pass ˜Th,A(t,µ), ˜Th,B(t,µ) through Gaussian blur operation, which reads

to obtain Th,A(t,µ) and Th,B(t,µ).
We use a number of the epoch of 50, see Algorithm 1. The outer loop works as follows: training BT begins 

with passing Th,A(t,µ) and Th,B(t,µ) to the encoder (it is noted we have only one encoder) resulting in zTA(t,µ) 
and zTB (t,µ) . We then use zTA(t,µ) and zTB (t,µ) as input to the projector resulting in cross-correlation matrix 

(12)˜Th,A(t,µ), ˜Th,B(t,µ) = T(t,µ)+ ǫSD(T(t,µ))G (0, 1)

(13)Th,A(t,µ),Th,B(t,µ) =
1

�

2πSD
�

�Th,A(t,µ), �Th,B(t,µ)
�2

exp






−

�Th,A(t,µ), �Th,B(t,µ)
2

2SD
�

�Th,A(t,µ), �Th,B(t,µ)
�2
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CT (t,µ) . CT (t,µ) is a square matrix with the dimensionality of the projector’s output, and its values range 
between -1, perfect anti-correlation, and 1, perfect correlation.

The Barlow Twins loss L T
BT (BT loss) is then calculated using

where

and

where CT
ii (t,µ) denotes the i-th diagonal entry of CT (t,µ) , � is a positive constant, which is set to 5× 10−3 as 

recommended by Zbontar et al.46, and CT
ij  are off-diagonal entries of CT . In short, we train our BT part by trying 

to force L T
I  to 1, but L T

RR to 0 resulting in teaching the encoder and projector learn how to get rid off noise 
from the distorted data, Th,A(t,µ) and Th,B(t,µ) , and construct a representation that conserves as much T(t,µ) 
information as possible.

Here, we follow the training procedures used by Kadeethum et al.6,70. We use the ADAM  algorithm71 to 
adjust learnable parameters of encoder(W and b ) and projector(W and b ). The learning rate ( η ) is calculated  as72

where ηc is a learning rate at step stepc , ηmin is the minimum learning rate, which is set as 1× 10−16 , ηmax is the 
maximum or initial learning rate, which is selected as 1× 10−4 , stepc is the current step, and stepf  is the final 
step. We note that each step refers to each time we perform back-propagation, including updating both encoder 
and projector’s parameters.

The inner loop is as follows: training AE starts with obtaining zT (t,µ) by passing Th(t,µ) to the encoder. We 
then use zT (t,µ) to reconstruct ̂Th(t,µ) through the decoder. Subsequently, we calculate our data compression 
loss or AE loss ( L T

AE ) using

Similar to the training of BT, we use ADAM to adjust learnable parameters of encoder(W and b ) and decoder(W 
and b ) according the gradient of Eq. (18). The ηc is adjusted by Eq. (17). In contrast to the training of BT, we use 
ηmin = 1× 10−16 , and ηmax = 1× 10−5.

Following the training of the BT–AE, we now establish the manifold zT (t,µ), ∀t ∈ T and∀µ ∈ P during 
the fourth step shown in Fig. 6. The data available for this task are the pairs (t,µ) and zT (t,µ) in the training set. 
We achieve this through the training of artificial neural networks (ANN). Following Kadeethum et al.6,43, our 
ANN has five hidden layers, and each layer has seven neurons. We use tanh as our activation function. Here, we 
use a mean squared error ( MSEz

T ) as the metric of our network loss function, defined as follows

To minimize Eq. (19), we use the ADAM algorithm to adjust each neuron W and b , a batch size of 32, a learning 
rate of 0.001, a number of epoch of 10,000, and we normalize both our input ( t,µ ) and output ( zT ) to [0, 1]. 
To prevent our networks from overfitting behavior, we follow early stopping and generalized cross-validation 
 criteria4,73,74. Note that instead of literally stopping our training cycle, we only save the set of trained weight and 
bias to be used in the online phase when the current validation loss is lower than the lowest validation from all 
the previous training cycle.

During the online phase (the fifth step shown in Fig. 6), we utilize the trained ANN and the trained decoder 
to approximate ̂Th(·; t,µ) for each inquiry (i.e., a pair of (t,µ) ) through

and, subsequently,

We note that, for the prediction phase, our ROM could be evaluated using any timestamps, including one that 
does not exist in the training phase (i.e., any t that lies within [t0, τ ]) because our ROM treats the time domain 
T continuously. Besides, in contrast with the FOM, the ROM is not bound by the CFL condition and can predict 
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the quantities of interest at any specific time without intermediate computation. Hence, our proposed framework 
can reduce the computational time significantly.

Data availability
Our model scripts and all data generated or analyzed during this study will be available publicly through the 
Sandia National Laboratories software portal—a hub for GitHub-hosted open source projects (https:// github. 
com/ sandi alabs).
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