
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19885  | https://doi.org/10.1038/s41598-022-24504-y

www.nature.com/scientificreports

Retrospective analysis 
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Rapid detection of intracranial haemorrhage (ICH) is crucial for assessing patients with neurological 
symptoms. Prioritising these urgent scans for reporting presents a challenge for radiologists. Artificial 
intelligence (AI) offers a solution to enable radiologists to triage urgent scans and reduce reporting 
errors. This study aims to evaluate the accuracy of an ICH-detection AI software and whether it 
benefits a high-volume trauma centre in terms of triage and reducing diagnostic errors. A peer review 
of head CT scans performed prior to the implementation of the AI was conducted to identify the 
department’s current miss-rate. Once implemented, the AI software was validated using CT scans 
performed over one month, and was reviewed by a neuroradiologist. The turn-around-time was 
calculated as the time taken from scan completion to report finalisation. 2916 head CT scans and 
reports were reviewed as part of the audit. The AI software flagged 20 cases that were negative-by-
report. Two of these were true-misses that had no follow-up imaging. Both patients were followed 
up and exhibited no long-term neurological sequelae. For ICH-positive scans, there was an increase 
in TAT in the total sample (35.6%), and a statistically insignificant decrease in TAT in the emergency 
(− 5.1%) and outpatient (− 14.2%) cohorts. The AI software was tested on a sample of real-world data 
from a high-volume Australian centre. The diagnostic accuracy was comparable to that reported in 
literature. The study demonstrated the institution’s low miss-rate and short reporting time, therefore 
any improvements from the use of AI would be marginal and challenging to measure.

Brain computed tomography (CT) imaging is essential in detecting intracranial haemorrhage (ICH), a condition 
where timely diagnosis and management is essential1. In Australia, the use of diagnostic imaging has increased 
rapidly, with a study finding that the number of billed CT scans rose by over 300% from 1993/94 to 2012/132. 
This amplified workload on Australian radiologists is projected to increase with time, due in part to an ageing 
population, increasing complexity of radiological scans, and increased supply of other health professionals, 
especially subspecialists3.

Artificial intelligence (AI) decision support systems have become prolific in recent years, aiming to (1) assist 
in triage of urgent cases via flags and widgets, as well as insertion of secondary captures into the picture archiv-
ing and communication system (PACS) workstation and (2) act as an automated second-read quality assurance 
checker to avoid diagnostic misses by human radiologists4–6. Aidoc, a widely used FDA-approved commercial 
AI decision support system7 for the detection of ICH has been validated previously to have a sensitivity of 88.7 
to 96.2% and a specificity of 92.3 to 99.0%4,7–9. Recent studies have noted that Aidoc for ICH can decrease scan 
view delay by 10% in inpatients10, decrease turn-around-time for flagged cases5,11 and reduce length of stay for 
Emergency Department (ED) patients who did not have ICH5.
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Deep learning models, such as Aidoc, are known to have inconsistencies in performance when used on 
different clinical sites4,12. Hence, there remains uncertainty in an Australian context as to whether Aidoc can 
maintain performance, improve radiologist efficiency, and detect clinically significant abnormalities that a clini-
cal radiologist may have missed.

The present study aims to first apply the Aidoc ICH detection algorithm retrospectively, on ICH-negative 
studies, to assess the pre-implementation radiologist’s miss-rate, and to determine whether these were clinically 
significant to patient care. Second, to evaluate the prospective diagnostic accuracy of Aidoc’s ICH detection 
algorithm at the same tertiary hospital, in terms of diagnostic accuracy and changes in turn-around-time (TAT).

Methods
Approval for this single-centre retrospective study was provided by The Alfred Hospital Human Research Ethics 
Committee (Local Project Number 519/19). The study was considered low-risk and the requirement for patient 
informed consent was waived as per the Alfred Hospital Human Research Ethics Committee. All methods were 
conducted in adherence to ICH/GCP requirements.

The institution has a total of five CT scanners that have ≥ 64 detectors; two Aquilion One (Canon Medical 
Systems), two Revolution (GE Healthcare), and one Optima (GE Healthcare). All non-contrast CT scans (NCCT) 
of the head were performed in an axial plane with 0.625 mm slice thickness. All images are routinely assessed to 
ensure consistent signal-to-noise ratios between scanners within the department. The CT scans were interpreted 
by either consultant neuroradiologists, consultant radiologists, or senior radiology registrars.

All head CT scans were analysed using a proprietary TGA-approved AI software, based on a convolutional 
neural network (CNN) architecture (Aidoc “BriefCase” v.1.3. Tel Aviv, Israel). The ICH triage and notification 
module was loaned to the institution for a 6-month trial period.

CT scans that included motion artefacts, severe metal artefacts or an inadequate field of view were deemed 
technically inadequate and were excluded from analyses. DICOM files were de-identified per the HIPAA safe har-
bor de-identification protocol before being transferred beyond the institution’s firewall for cloud-based analysis. 
All 18 fields defined by the protocol were removed, and a unique study ID was assigned to each exam. Imaging 
data was re-identified when returned to the on-site virtual machine, which routed the flagged studies to the 
desktop-based widget on several radiologist workstations, shown in Fig. 1.

Retrospective Peer Review.  All clinically-acquired NCCT scans of the head were collected from Septem-
ber 2019 to October 2019—prior to the implementation of the ICH-detection into the radiologists’ workflow.

Report classification and image analysis.  To classify each case as positive or negative for ICH on the initial 
interpretation, all reports of the selected cases were analysed by a proprietary NLP tool (RepScheme, NLP tool). 
The NLP tool was configured using a sample of 1091 clinically-acquired reports, extraneous to the selected cases, 
that were manually classified as positive/negative for ICH by report. The CT imaging data corresponding to the 
reports that were classified as negative by NLP (“negative-by-report” cases) were analysed by the AI software for 
ICH detection.

Discrepancy review.  The cases with discrepancies—negative-by-report but positive-by-AI—were reviewed by 
a board-certified neuroradiologist. The reviewing neuroradiologist determined if the AI output correctly identi-
fied a missed ICH. The medical records of the patients with missed ICH were reviewed to identify any associated 
adverse outcomes.

Figure 1.   The integration of Aidoc in the institution’s current imaging and reporting systems. The integration 
allows for real-time analysis of non-contrast head CT scans. All data was de-identified before being transferred 
beyond the hospital firewall for cloud-based image analysis.
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Prospective validation.  The ICH detection software prospectively analysed all NCCT scans of the head 
for a 6-month trial period. The CT scans were interpreted by either consultant neuroradiologists, consultant 
radiologists, or senior radiology registrars. A board-certified neuroradiologist then performed a second read 
on cases from November 2019 to December 2019. This formed the ground truth for the validation of the ICH 
detection software, by which sensitivity, specificity, positive predictive value (PPV) and negative predictive value 
(NPV) were calculated. The confidence intervals for all statistics are exact binomial confidence intervals con-
structed using the method of Clopper and Pearson13.

The turn-around-time (TAT) was measured as the time from the completion of the scan to the report being 
finalised on the radiology information system (RIS). The post-implementation TAT (November 2019 to Decem-
ber 2019) was compared with a pre-implementation TAT (July 2019 to August 2019). A p-value of less than 0.05 
was considered statistically significant.

A short survey was distributed to the radiologists asking their usage of Aidoc as percentage of their report-
ing time: 0%, 25%, 50%, 75% and 100%. The radiologists were also asked to provide general feedback on their 
experience using Aidoc.

Ethics approval.  This study was performed in line with the principles of the Declaration of Helsinki. 
Approval was granted by The Alfred Hospital Human Research and Ethics Committee (22nd Aug 2019, Project 
No. 519/19). The Ethics Committee considered that study as low-risk and the requirement for patient informed 
consent was waived.

Results
Retrospective peer review.  The dataset for the retrospective review included 2916 head CT scans with 
corresponding reports. 20 negative-by-report CT scans were flagged by Aidoc. Ten of the 20 flags were false-
positives caused by artefacts (n = 6), calcification (n = 2), falx cerebri (n = 1) or the straight sinus (n = 1). One flag 
was equivocal as the hyperdense focus could relate to either a small contusion or a hyperdense lesion. Nine were 
deemed ICH-positive by the reviewing neuroradiologist; two were stealth reformats, with the haemorrhages 
described in a separate report; three were haemorrhages in keeping with expected postoperative appearances. 
Of the remaining four ICH-positive scans, two had follow-up imaging where the haemorrhage had resolved, and 
two had no follow-up imaging. One of the misses was a small area of subarachnoid haemorrhage, and the other 
was a very small extra-axial haemorrhage (Fig. 2).

Excluding the flagged scans that were stealth and postoperative imaging, the emergency department were 
contacted with the findings and addenda were issued to all reports that missed an ICH. The emergency depart-
ment arranged contact with the two patients which did not have any follow-up imaging. Both patients exhibited 
no long-term sequelae.

Prospective validation.  For the prospective validation, a total of 1446 head CT scans were analysed by 
Aidoc for the presence of ICH. The reviewing neuroradiologist identified 212 of these as ICH-positive; a preva-
lence of 14.7%. The prevalence of ICH in the emergency cohort was 6.3% (56/884), inpatient 30.3% (141/456) 
and outpatient 13.4% (13/97).

Aidoc flagged 220 as ICH-positive, of which 180 (81.81%) were true-positive. Out of the 1226 scans that were 
not flagged by Aidoc, 30 (2.5%) were false-negatives.

The diagnostic accuracy of the software for all cases was as follows: sensitivity 85.7% (95% CI 80.3–90.2%); 
specificity 96.8% (95% CI 95.6–97.6%); PPV 81.8% (95% CI 76.8–86.0%), NPV 97.6% (95% CI 96.6–98.2%). The 
diagnostic accuracy stratified by location is shown in Table 1. The specificity and NPV were consistent between 
the different locations. The sensitivity and PPV were highest in the inpatient cohort (90.1% and 93.4%), followed 
by emergency (82.1% and 68.8%), then outpatients (53.8% and 53.8%).

The false-positive scans had a single or multiple feature(s) that were incorrectly identified as an ICH. The 
majority of these features were normal or calcified falx cerebri (9/40, 22.5%), followed by artefacts (7/40, 17.5%), 
postoperative dural thickening (6/40, 15.0%), meningioma (4/40, 10%), normal or calcified choroid (2/40, 5.0%), 
vessels (2/40, 5.0%), other calcification (2/40, 5.0%), developmental venous anomaly (1/40, 2.5%), cavernoma 
(1/40, 2.5%), encephalomalacia (1/40, 2.5%), hyperdense tumour (1/40, 2.5%), colloid cyst (1/40, 2.5%), dural 
venous sinus (1/40, 2.5%), pannus at C1-C2 (1/40, 2.5%), tentorium (1/40, 2.5%).

Nineteen of the 30 false-negatives were subacute ICH and 11 were acute ICH. The majority were subdural 
haemorrhages (12/30, 40%), followed by subarachnoid haemorrhages (6/30, 20%), post-operative extra-axial 
haemorrhages (4/30, 13%), intraparenchymal haemorrhages (3/30, 10%), other extra-axial haemorrhages (3/30, 
10%) and basal ganglia haemorrhages (2/30, 7%). The inpatient and outpatient cohorts had a higher rate of suba-
cute misses (10/13 and 4/6, respectively). Six acute and five subacute ICH were missed in the emergency cohort.

Turn‑around‑time (TAT).  The turn-around-time (TAT) for the post-implementation dataset described 
above was compared with a pre-implementation dataset, which included 1628 head CT scans; 1469 (90.2%) were 
negative for ICH and 159 (9.8%) were positive for ICH. Both datasets had a similar proportion of emergency, 
inpatient, outpatient cases. The inpatient cohort had the highest incidence of ICH (18% pre, 31% post), followed 
by outpatients (9% pre, 13% post) then emergency (5% pre, 6% post).

For all ICH-negative scans, the mean pre-implementation TAT was 90.9 (SD 279.8) minutes, and the mean 
post-implementation TAT was 133.2 (SD 442.9) minutes. For all ICH-positive scans, the mean pre-implemen-
tation TAT was 66.7 (SD 41.5) minutes, and the post-implementation TAT was 80.0 (SD 54.25) minutes. The 
TAT stratified by emergency, inpatient and outpatient cases is shown in Table 2.
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Figure 2.   Two missed ICH detected by Aidoc. The key slices [right] and the saliency map generated by Aidoc 
[left] of the missed ICH identified by the audit; (A) a subarachnoid haemorrhage in the inferior right frontal 
lobe; and (B) a trace of extra-axial blood in the left parietal region.

Table 1.   Confusion matrix with calculated sensitivity, specificity, positive predictive value (PPV) and negative 
predictive value (NPV) of Aidoc ICH in emergency, inpatient, and outpatient CT head scans.

Flagged Not flagged

Emergency

ICH-Positive 46 10

ICH-Negative 25 803

Inpatient

ICH-Positive 127 14

ICH-Negative 9 465

Outpatient

ICH-Positive 7 6

ICH-Negative 6 78

Emergency Inpatient Outpatient

Sensitivity (95% CI) 82.1% (69.6–91.1%) 90.1% (83.9–94.5%) 53.8% (25.1–80.8%)

Specificity (95% CI) 97.0% (95.6–98.0%) 97.2% (94.8–98.7%) 92.9% (85.1–97.3%)

PPV (95% CI) 64.8% (55.1–73.4%) 93.4% (88.1–96.4%) 53.8% (31.7–74.6%)

NPV (95% CI) 98.8% (97.9–99.3%) 95.7% (93.2–97.4%) 92.9% (87.8–95.9%)
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There was a decrease in TAT for ICH-positive scans in the emergency and outpatient cohorts by 3.7 min 
(− 5.1%) and 9.9 min (− 14.2%), respectively. There was an increase in TAT for ICH-positive scans in the inpa-
tient by 22.6 min (35.6%). The difference in TAT for all cases and the inpatient cases were statistically significant 
(P = 0.017 and P = 0.003). The difference in TAT for the emergency and outpatient cohorts were not statistically 
significant (P = 0.59 and P = 0.07).

Out of 49 consultant radiologists and registrars, 26 responded to the survey. Three radiologists used Aidoc 
100% of their reporting time; three 75%; four 50%; seven 25% and nine 0%.

Discussion
The ICH-detection module of the TGA-approved AI software, Aidoc, was assessed at one of Australia’s busiest 
trauma centres. Aidoc was used “off-label” to perform a retrospective audit of all non-contrast CT scans of the 
head to identify the institution’s miss-rate prior to the implementation of the Aidoc into the clinical workflow. 
The retrospective audit of 2916 scans identified two cases (0.07%) where a small ICH was not documented in 
the initial report and the patient had no follow up imaging. Despite the audit capturing only a month’s worth of 
data, the institution’s miss-rate was orders of magnitude lower than that reported in previous studies14. However, 
with the institution’s yearly average of 20,000 head CT scans, the miss-rate of approximately 1 in 1400 would lead 
to 13–14 missed ICH annually. This indicates the value of enhanced detection when using AI in time-critical 
indications such as ICH, and can serve as a QA second-read system.

The sensitivity and specificity of the AI showed comparable results to that reported in literature (4, 7–9), 
indicating generalisability in an Australian clinical context. The majority of false-positives were caused by cal-
cifications and structures, such as the falx cerebri, that share similar density values as ICH15. A PPV of 82% 
equated to 1–2 cases in 10 that were incorrectly prioritised. As the dashboard accumulated these false-positives, 
the reporting radiologists were at risk of alert fatigue. This was exacerbated by the majority of flagged CT scans 
arising from the inpatient cohort, which were often follow-up imaging of previously documented haemorrhages. 
However, the issue was communicated with the Aidoc team who then deployed a feature that would display a 
“follow-up” label on flagged CT scans if the patient had a previously flagged scan within 7 days. The effect this 
had on reducing alert fatigue needs to be further investigated.

Interestingly, the outpatient cohort had a higher prevalence of ICH than the emergency cohort, yet the diag-
nostic accuracy of Aidoc was the lowest in the outpatient population. This study did not conduct a comprehensive 
failure mode analysis; however, the reduction in the sensitivity and PPV when analysing outpatient scans sug-
gests that there is impaired performance when detecting subacute haemorrhages in the outpatient population. 
This implies that there is a systematic difference in not just the prevalence but the actual appearance or content 
of the outpatient CT scans—perhaps scanner based or pathology based i.e. smaller or non-hyperdense bleeds.

The key metric of this study that demonstrates Aidoc’s triaging performance was the turn-around-time 
(TAT). A decrease in TAT would indicate a timelier diagnosis and subsequent treatment, which can drastically 
improve patient outcomes. Interestingly, there was a statistically significant increase in the overall TAT for ICH-
positive cases between the pre- and post-implementation groups. The TAT for the ED and OP ICH-positive cases 
was reduced, although it was not statistically significant. A major factor to consider is that the institution has 
a dedicated reporting room in ED allowing emergency physicians to inform the reporting radiologists which 
patients to prioritise based on the initial presentation. Additionally, communication between radiographers and 
radiologists assists with the prioritisation of urgent cases. This operational efficiency is depicted in the short TAT 
pre-implementation, causing any improvements from the use of AI to be marginal. Additionally, using TAT as a 
surrogate for the time taken for a clinical decision to be made has several drawbacks. For example, the reporting 
radiologist can communicate significant findings with the ED physicians before the report has been finalised on 
RIS. Hence, further refinement of this metric is required.

A limitation of this study was the departmental usage of Aidoc. From a convenience sample of 26 consultant 
radiologists, most only partially incorporated (25–75% of reporting time) Aidoc into their reporting workflow, 
and some did not use it at all. The collective opinion from the radiologists was that the ICH module represents a 
solution for a problem that the department does not currently have. They stated that the centre scans too many 
patients with ICH, many of which are repeat inpatient scans. Furthermore, as the software was implemented 
as a trial, there was limited integration allowed with the department’s PACS/RIS, which resulted in the Aidoc 

Table 2.   Turn-Around-Time (TAT) for the pre- and post-implementation datasets stratified by patient 
location: emergency, inpatient and outpatient.

All Emergency Inpatient Outpatient

Negative Positive Negative Positive Negative Positive Negative Positive

Pre-implementation

No. of scans (n) 1469 159 914 53 433 94 122 12

Average TAT (SD, 
min) 90.9 (279.7) 66.7 (41.5) 55.7 (36.0) 71.8 (40.1) 72.2 (92.1) 63.5 (43.3) 421.0 (888.2) 69.7 (32.5)

Post-implementation

No. of scans (n) 1234 212 827 57 323 142 84 13

Average TAT (SD, 
min) 133.2 (442.9) 80.0 (64.4) 65.4 (39.0) 68.1 (32.8) 80.0 (91.1) 86.1 (73.6) 1005.6 (1428.3) 59.8 (25.1)
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widget being installed on separate PCs in the reporting rooms, instead of each radiologist’s workstation. This 
added an element of inconvenience and resulted in the radiologists using Aidoc as a ‘second-read’ once they had 
reviewed the scan. Features such as worklist prioritisation and context matching were requested by the radiolo-
gists to improve their workflow but were not achievable with the institution’s PACS/RIS. These limitations led 
to a sub-optimal use of Aidoc throughout the department, which could be considered as one of the reasons why 
there was no significant impact on the TAT.

Currently, our institution’s imaging and reporting operations have a relatively short reporting time and 
low miss-rate. By performing a retrospective audit in addition to a standard validation, this study presents a 
framework to review the function and use of AI software, and also highlighting the challenges of tailoring AI 
diagnostic solutions to departmental needs. Further research into the changes in reporting time pre- and post-
implementation is required to assess the triaging capabilities and impact of the AI solution. Any improvements, 
as a result of AI implementation, would provide further evidence to support the use of AI technology in radiology 
to increase radiologists’ efficiency and improve patient care.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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