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Generalisable machine learning 
models trained on heart rate 
variability data to predict mental 
fatigue
András Matuz1*, Dimitri van der Linden2, Gergely Darnai1,3,4 & Árpád Csathó1

A prolonged period of cognitive performance often leads to mental fatigue, a psychobiological 
state that increases the risk of injury and accidents. Previous studies have trained machine learning 
algorithms on Heart Rate Variability (HRV) data to detect fatigue in order to prevent its consequences. 
However, the results of these studies cannot be generalised because of various methodological issues 
including the use of only one type of cognitive task to induce fatigue which makes any predictions 
task-specific. In this study, we combined the datasets of three experiments each of which applied 
different cognitive tasks for fatigue induction and trained algorithms that detect fatigue and predict 
its severity. We also tested different time window lengths and compared algorithms trained on 
resting and task related data. We found that classification performance was best when the support 
vector classifier was trained on task related HRV calculated for a 5-min time window (AUC = 0.843, 
accuracy = 0.761). For the prediction of fatigue severity, CatBoost regression showed the best 
performance when trained on 3-min HRV data and self-reported measures  (R2 = 0.248, RMSE = 17.058). 
These results indicate that both the detection and prediction of fatigue based on HRV are effective 
when machine learning models are trained on heterogeneous, multi-task datasets.

Mental fatigue (henceforward, fatigue) is a psychobiological state caused by engaging in cognitively demanding 
activities for extended  period1,2. The literature shows that the main characteristic of fatigue is the feeling of resist-
ance against further (cognitive) effort, which is sometimes—but certainly not always—followed by a decline in 
 performance2–4. In general, fatigue is considered a multifaceted state that involves complex interactions between 
brain activity (e.g., norepinephrine and dopaminergic systems)5–8, subjective feelings (e.g., lack of energy) and 
cognitive  performance3,9,10. Because fatigue tends to influence cognitive performance, it is known to be a topic 
that is highly relevant to human safety. For example, the risk of work-related and road accidents is substantially 
higher when people are  fatigued11,12. Accordingly, the prevention as well as the detection of fatigue is  imperative13. 
In line with this, research on the biomarkers of fatigue has become increasingly important and suggests that 
fatigue can be estimated on the basis of markers that reflect the activity of the cerebral cortex (e.g., theta activity 
obtained by means of neuroimaging techniques) or the autonomous nervous system (e.g. Heart Rate Variability 
[HRV]) to prevent its negative  consequences14.

Machine learning is a relatively novel way of utilising biomarkers to detect fatigue and this approach has 
captured the attention of science and practice  alike15–18. A few studies have used biological signals obtained with 
electroencephalography (EEG) to train machine learning models that are capable of effectively detecting mental 
fatigue (i.e., classification models that successfully distinguish between fatigued and non-fatigued states; for a 
review, see Ref.19). Even though the high accuracy (> 80–90%) of these models is impressive, EEG has several 
limitations, such as the difficult and time-consuming procedure of setting up the electrodes and its sensitivity to 
external electromagnetic  fields20. Because of these limitations, and the fact that fatigue has also been associated 
with changes in the autonomic nervous  system21, other studies have investigated whether fatigue detection is 
possible based on biological signals obtained by peripheral measures, for example,  electrooculography22 or elec-
trocardiography (ECG)23. Most of the fatigue studies that have used ECG calculated the variation of consecutive 
R-wave peaks denoted in the literature as  HRV24. HRV reflects the activity of the autonomic nervous system and 
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is indeed a potential reliable biomarker of fatigue because many previous studies have confirmed the association 
between HRV and  fatigue21,25–28.

Machine learning studies have shown that models trained exclusively on HRV are capable of effectively 
detecting fatigue with the best accuracy scores ranging between 75 and 91%23,29–31. Laurent et al. (2013), for 
example, showed that the support vector machine (SVM) algorithm trained on HRV data recorded during the 
performance of a fatiguing switching task (i.e., algorithm trained on task related HRV data) was able to detect 
fatigue with an accuracy up to approximately 80%. In contrast to this study, which used task related data, another 
study tested the algorithms based on resting HRV  data30. In this study, the resting period preceding prolonged 
task performance was labelled the non-fatigue state, and the resting period after task performance was labelled the 
fatigue state. The authors found that the k-nearest neighbors (KNN) algorithm was capable of detecting fatigue 
with an accuracy of approximately 75% based on four HRV indices.

The differences in predictive accuracy reported in these studies was probably caused by various factors. The 
most important factors might be the methodological differences across the studies such as variations in the 
cognitive tasks used to induce fatigue, the time window used for HRV calculation, sample size differences (Ns 
ranged between 13 and 45) or even in whether the ECG was recorded during rest or active task performance. 
In contrast to time window and sample size factors, the effects of which have been extensively studied in the 
machine learning  literature32,33, no studies so far have used multiple cognitive tasks to induce fatigue or have 
directly compared the predictive performance of models trained on resting and task related HRV data even 
though this would have significant implications for both practice and research. Therefore, in the present study, 
we extend the literature in this field by analysing a multi-task dataset and comparing models trained on task 
related as well as resting HRV data.

In addition to predictive performance, the models are also supposed to demonstrate comprehensive generalis-
ability, that is, to make accurate predictions on previously unseen  samples34,35. To increase the generalisability of 
machine learning models, it is best using a reasonably large dataset, avoid information leakage (e.g. by perform-
ing feature selection only on the training dataset), conduct cross-validation and test the models on previously 
unseen  data36,37. In addition, one might argue that using more than one cognitive task to induce fatigue might 
strengthen the generalisability because the different tasks affect different cognitive and affective  systems38 and 
the models trained on such heterogeneous data may be less sensitive to noise and task-specific  characteristics39. 
In other words, models that accurately detect fatigue irrespective of the type of task at hand are considered to 
be of greater value because they could be effectively utilised in a variety of situations, which reflects both higher 
reliability and more usefulness in practice.

In this study, we aimed to train machine learning models to achieve comprehensive generalisability and 
to become robust to task-specific characteristics. To achieve this goal, we first combined the datasets of three 
fatigue-related experiments that applied different cognitive tasks requiring different cognitive operations. Thus, 
the fatigue induction was variable. Second, for the same reason, we were able to conduct analyses on a relatively 
larger dataset (n = 85) than previous studies (highest n = 45)29. Third, to avoid information leakage, the data were 
pre-processed after the separation of training and test sets. Fourth, we trained the models using cross-validation 
on the training data set, but the final evaluation was based on a previously unseen data set so we could observe 
how well the models generalise to new data. This analytic approach differs from that of the previous  studies23,29–31, 
which used cross-validation only and did not test the models on unseen holdout data.

In addition to fatigue detection, the prediction of the level of fatigue caused by prolonged cognitive perfor-
mance is an important question that can be addressed by machine learning. In line with this, a few attempts 
have been made to train machine learning models on biomarkers and other variables such as demographics or 
psychometric data to predict the level of fatigue caused by engaging in cognitively demanding  tasks40–42. Highly 
relevant to our study is Mun and Geng’s65, which used machine learning to predict the level of post-experiment 
subjective fatigue based on various types of self-reported and biological data including resting HRV. The most 
predictive features were self-reported measures (e.g., pre-experiment fatigue, anxiety) but other indices reflecting 
cardiac activity such as blood pressure and the low frequency HRV component also contributed to the prediction 
of post-experiment fatigue. Similar to studies that have used machine learning to detect fatigue, Mun and Geng 
induced fatigue by means of a single task. Thus, the question of whether post-experiment fatigue induced by 
different cognitive tasks can be predicted by models trained on pre-experiment variables remains unanswered.

In sum, the present study had three main goals. First, we trained classification algorithms to detect fatigue 
and regression algorithms to predict the severity of post-experiment subjective fatigue induced by prolonged 
cognitive performance based on a heterogeneous data set in terms of fatigue induction. Second, we compared 
the predictive performance of classification models trained on resting and task related HRV data. To our knowl-
edge, no previous studies have made such a comparison. Third and last, we explored the effects of time window 
length to find the shortest time windows that still result in accurate predictions because the use of shorter ECG 
recordings would be beneficial for research as well as practice.

Materials and methods
Data base. For the analysis, we combined the datasets of three fatigue experiments that used similar pro-
cedures. The final dataset consisted of data from 85 healthy university students (33 males; M age = 21.71 years, 
SD = 2.53). All the participants provided written informed consent and the experiments were approved by the 
local ethical committee (nr. 7698). All experiments were carried out in accordance with the Code of Ethics of the 
World Medical Association (Declaration of Helsinki). Part of the findings of the first fatigue experiment were 
published in a previous  article26, but the original dataset (n = 23) was extended by adding the data of 15 more 
participants, which thus far have not been published. Part of the findings of the second experiment (n = 20) were 
also  published27. It is important to note that these previous studies had different goals and completely different 
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analyses compared with the present study. The findings of the third experiment (n = 27) have not been published 
before.

Fatigue induction. Figure  1 schematises the sequence of trials in each experiment. In the first experi-
ment (i.e., the task switching experiment), fatigue induction was achieved by a modality-switching  task26,43, that 
required participants to make temporal judgements about either an auditory or a visual stimulus. In the second 
experiment (i.e., 2-back experiment)27, we used a bimodal 2-back task with a game-like character that presents 
auditory and visual stimuli simultaneously; participants were required to compare the actual stimuli with the 
ones presented two trials  earlier44. Finally, the task used in the third experiment (i.e., the Stroop experiment) was 
a bimodal Stroop task that required participants to make sematic categorisations of written or spoken words. 
The tasks lasted approx. 1.2–1.5 h. For a detailed description of the tasks used for fatigue induction, see the Sup-
plementary Materials.

Before performing the prolonged task, participants practiced the task at hand and a few subjective measure-
ments were administered (see below). ECG signals were recorded (with three chest electrodes; Lead II.) for 5 min 
before (pre-task resting) and after (post-task resting) the task and were continuously recorded during the whole 
course of the task. In terms of the duration of resting ECG recording, however, the 2-back experiment differed 
from the other two experiments, because both the pre-task-, and post-task resting periods lasted only 4 min.

Subjective measures. Subjective fatigue was assessed with visual analogue scales (VAS). Participants 
indicated their actual experience of fatigue on a 100-mm horizontal line with “No fatigue at all” and “Very 
severe fatigue” printed on the left and right end of the line, respectively. The VAS was administered two times: 
before and after the prolonged task performance. To further characterise the tasks used in the experiments, we 
applied the NASA Task Load Inventory  (NASATLX)45. The  NASATLX is a self-reported measure that assess differ-
ent aspects of perceived workload. It consists of six subscales with 21 gradations each: mental demand, physical 
demand, temporal demand, overall performance level, effort, and frustration level.

Heart rate variability analysis. ECG data were sampled at a rate of 1 kHz by using a CED 1401 Micro II 
analogue–digital converter device (Cambridge Electronic Design, Cambridge, UK). After we obtained the ECG 

Figure 1.  Schematised sequence of trials in the experiments. (A) In the task switching experiment, participants 
were required to decide the duration of the stimulus in the cued modality, while they had to ignore the stimulus 
presented in the other modality. (B) In the 2-back experiment, participants were asked to compare the auditory 
and visual stimuli in the actual trial to the stimuli presented two trials earlier and decide whether any of the two 
stimuli was identical to the one presented two trials earlier. (C) The Stroop experiment required participants 
to decide whether the word presented in the cued modality belonged to the semantic category of mammals or 
birds, while the word presented in the other modality had to be ignored.
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signal, it was further processed in Spike2 software (Cambridge Electronic Design, Cambridge, UK). First, the 
data were visually inspected, and artifacts were removed. Then, the inter-beat-intervals (i.e., RR-intervals) were 
extracted and analysed further with Kubios HRV analysis  software46. The “very low” option for artifact correc-
tion was chosen and ectopic intervals were replaced using cubic spline interpolation. Time-domain, frequency-
domain (using the Fast Fourier Transform routine), and non-linear analyses were applied to quantify HRV. In 
the time domain, we extracted the mean and the standard deviation of normal-to-normal NN intervals (mean 
RR and SDNN, respectively), minimum and maximum heart rate, root mean square of successive differences 
(RMSSD), the percentage of successive RR intervals that have a difference of more than 50 ms (pNN50) and the 
triangular index. The frequency-domain variables included the natural logarithms of the total power (TP) and 
the main frequency components such as very low frequency (VLF; 0–0.04 Hz), low frequency (LF; 0.04–0.15 Hz) 
and high frequency (HF; 0.15–0.4 Hz). The ratio of LF and HF (LF/HF) was also calculated. Finally, the obtained 
non-linear indices were the width (SD1) and length (SD2) of the Poincaré plot; their ratio (SD1/SD2); approxi-
mate entropy; sample entropy; correlation dimension (D2) and the detrended fluctuation analysis measures, 
DFA1 and DFA2.

In sum, we used 20 HRV indices for the analysis. These indices were calculated separately for the two rest-
ing periods (pre-task and post-task resting) and for two task-related periods (the beginning and the end of the 
task). To investigate the effects of time window length on the performance of the machine learning models, we 
calculated the HRV indices for different time windows ranging from 1 to 5 min.

Classification algorithms. All programming was implemented in Python using the scikit-learn (Version 
0.23.2.)47 and CatBoost (CB, Version 1.1.)  packages48. For detailed mathematical background applied for model 
building, see the following  studies48–53. The aim of classification was to develop models that are able to accurately 
distinguish between fatigue and non-fatigue states. We addressed this binary classification problem by training 
algorithms on resting HRV data and task related HRV data separately. For the algorithms trained on resting data, 
the pre-experiment resting HRV data were labelled the “non-fatigue” state and the post-experiment resting HRV 
data were labelled the “fatigue” state. For the algorithms trained on task-related data, the beginning period (i.e., 
the first 1–5 min depending on the time window) of task performance was labelled the “Non-fatigue” state, and 
the end of the task (i.e., the last 1–5 min depending on the time window) was labelled the “Fatigue” state. Fatigue 
was operationalised as an increase in subjective fatigue (measured by VAS) (for similar operationalizations, see 
e.g. Refs.8,21,54–56). Hence, the data of three participants who did not have a higher post-experiment subjective 
fatigue score compared with their pre-experiment score were excluded from the classification analyses. Thus, for 
the classification problems, the sample size was reduced to 82 participants. For each person, HRV was calculated 
for two intervals (one with the “fatigue” label and another with the “non-fatigue” label). The final data set that the 
algorithms used for each classification problem consisted of 164 data points for each HRV variable.

The data set was split into training (~ 70%) and test sets (~ 30%). Feature selection via recursive feature elimi-
nation with five-fold cross-validation (5-CV) was performed on the training set. Four classification algorithms 
were used: SVM, KNN, random forest, and CB classifier. Before the training, the data were standardised by 
z-transformation (except for the training of random forest and CB classifier). Hyperparameters for each clas-
sifier were optimised through grid search with 5-CV (for an elaborated description of hyperparameters tuning 
and feature selection, see the Supplementary Materials). Both the internal validation and the evaluation of the 
classification performance on the test set were done using the area under the receiver operating characteristic 
curve (area under the curve [AUC]). We also calculated accuracy, sensitivity and specificity were to evaluate the 
performance indicated by the testing data set. To test whether the fatigue detection performances were higher 
than chance level, permutation tests with 1000 iterations were carried  out57 (for further details, see the Sup-
plementary materials).

Regression models. Similar to the classification problems, we carried out regression modelling with the 
scikit-learn47 and CB  packages48. Because the data set used for regression modelling was smaller (because only 
the pre-experiment resting HRV was used), the ratio used for dividing the dataset into training and testing sets 
was 80%/20% so we would have a sufficiently large dataset for training. In the regression models, the outcome 
measure was the level of subjective fatigue after prolonged task performance measured on a VAS. Potential pre-
dictor variables included the 20 pre-experiment resting HRV indices, participants’ sex, age, self-reported sleep 
duration, pre-experiment subjective fatigue and task duration. We used the least absolute shrinkage and selec-
tion operator (LASSO) method to select the most important  features53. As with the classification models, feature 
selection was performed separately for each time window.

LASSO and elastic net regression as well as the CB regressor algorithm were applied. The hyperparameter 
alpha was tuned for the LASSO and elastic net models, while the number of estimators, depth and the l2 leaf 
regularisation parameter were tuned for the CB regressor on the training set with 5-CV. The data used for LASSO 
and elastic net models were standardised with z-transformation. After parameter optimisation, the models pre-
dicted the level of subjective fatigue in the previously unseen testing dataset. To evaluate the performance, two 
metrics, the root mean square error (RMSE) and the R2, were calculated. Permutation tests with 1,000 iterations 
were carried out to assess the significance of the R2 values.

Finally, to reduce the effect of statistical fluctuations and potential biases due to the random splitting of the 
data, the entire procedure (i.e., random allocation of participants into training and test sets, feature selection, 
model training, parameter tuning, and evaluation) was repeated 100 times with different randomisation seeds for 
each of the classification and regression problems. The means and standard deviations of all evaluation metrics 
across the 100 iterations were used to assess the predictive performance and to obtain the 95% confidence interval 
(CI). However, for regression, the distributions of model performances were found to be skewed and therefore, 
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we used the median to describe the centre of the distribution, and the Q1 and Q3 to describe the dispersion of 
the distribution. In addition, to help the interpretability of the results and to support the potential practical use, 
we also inspected the most average models (i.e., the ones with an AUC/R2 score closest to the mean) to gain 
insight into the optimal parameters.

Ethical approval. The procedure of the experiments were reviewed and approved by the Ethics Committee 
of the Medical School, University of Pécs (nr. 7698).

Results
Fatigue induction and workload. In each experiment, subjective fatigue was significantly higher after 
the experiment than before (task-switching experiment: t(37) = 9.34, p < 0.001, Mdiff = 32.41; 2-back experiment: 
t(19) = 6.81, p < 0.001, Mdiff = 25.4; Stroop experiment 3: t(26) = 8.27, p < 0.001, Mdiff = 27.37). This indicates that 
the fatigue manipulation was successful regardless of the cognitive task the participants performed. A uni-
variate analysis of variance showed that the three experiments did not significantly differ in subjective fatigue 
before the task started (F(2,82) = 2.605, p = 0.08, ηp

2 = 0.06). The analysis of  NASATLX scores, however, revealed 
that the tasks in the three experiments differed in terms of perceived workload. Univariate analyses of vari-
ance yielded significant Experiment main effects for mental demand (F(2,82) = 4.247, p < 0.05, ηp

2 = 0.09), physi-
cal demand (F(2,82) = 3.471, p < 0.05, ηp

2 = 0.08), temporal demand (F(2,82) = 3.482, p < 0.05, ηp
2 = 0.08), effort 

(F(2,82) = 5.991, p < 0.01, ηp
2 = 0.13), and frustration (F(2,82) = 3.836, p < 0.05, ηp

2 = 0.09). Bonferroni-corrected 
pairwise comparisons showed that the Stroop task was perceived to be less mentally demanding (M = 14.63, 
SD = 3.91) and required a lower level of effort (M = 12.96, SD = 3.78) than the switching task (mental demand: 
M = 16.71, SD = 3.35; effort: M = 15.87, SD = 3.96) and the 2-back task (mental demand: M = 17.10, SD = 2.02; 
effort: M = 15.16, SD = 3.18). The Stroop task was also perceived to be less temporally demanding (M = 9.59, 
SD = 4.92) and less frustrating (M = 7.96, SD = 5.42) compared with the switching task (temporal demand: 
M = 12.53, SD = 4.64; frustration: M = 11.63, SD = 5.84). All corrected p-values were < 0.05.

Classification. Using the HRV data, we trained classification models to successfully differentiate fatigue and 
non-fatigue states. Figure 2 presents the most important features for each classification problem. The results of 
cross-validation in the training set are reported in the Supplementary Materials (see Supplementary Table S1). 
Predictive performance of the classifiers trained on task related and resting HRV data for the test set are sum-
marised in Tables 1 and 2, respectively. Below, we report the most important findings. Permutation tests dem-
onstrated that the classification performance of all classifiers in all classification problems differed significantly 
from the permutated null distributions. The performance of the SVM, KNN, RF, and CB classifiers produced 
similar results in each classification problem. However, on average across all classification problems, the SVM 
slightly outperformed the other three classifiers. Irrespective of the classifier and time window used, we observed 
that, compared with the resting HRV data, the algorithms were more accurate in predicting fatigue states in the 
task related HRV data (see Fig. 3). In addition, as expected, the length of the time window had an effect on model 
performance because in most of the cases the training on longer time windows resulted in better performances 
compared with shorter time windows.

The overall best performance was achieved by SVM trained on task related HRV data with a time window 
length of 5 min. The model (AUC = 0.843, accuracy = 74%) that best represented the distribution of SVM clas-
sifiers in this particular classification problem used the non-linear features DFA2 and approximate entropy, as 
well as two frequency-domain indices, VLF and LF/HF ratio, whereas the optimal hyperparameters were  101 
for C and  10–2 for γ with the radial basis function. This model had a sensitivity of 72% and a specificity of 76%. 
Regarding the other main classification problem (i.e., training the models on resting HRV data), the best per-
formance was observed (AUC = 0.751, accuracy = 74%) when we used KNN (k = 18) as the classifier with a time 
window of 4 min (i.e., the longest time window available for the complete dataset in case of training on resting 
HRV data). This model used the features D2, DFA2, VLF, and SD2. The sensitivity and specificity of the model 
were 68% and 80%, respectively.

Regression. Regression algorithms were trained to predict the level of subjective fatigue measured after 
prolonged cognitive task performance. The most frequently selected features for regression modeling are pre-
sented in Fig. 4. The results of cross-validation are reported in the Supplementary Materials (see Supplementary 
Table S2). The performances of the LASSO and elastic net regression models, and CB models are summarised 
in Table 3. All models differed significantly from the permuted null-distribution, except for the models trained 
on HRV data calculated for 5-min time window, most probably because of missing data in the 2-back experi-
ment. The CB regressor model trained on 3-min HRV data showed the overall best performance. The model 
(R2 = 0.248, RMSE = 17.21, number of estimators = 200, depth = 3, l2 leaf regularisation = 4) that best represents 
the distribution used the following features: pre-experiment VAS, sex, experiment duration, maximum heart 
rate, HRV triangular index, SD2, and the SD1/SD2 ratio. The correlation between predicted and true values was 
moderate (r = 0.628).

Among the linear models, the best performance was achieved by elastic net regression trained on 4-min HRV 
data. The elastic net regression (R2 = 0.219, RMSE = 16.231, α = 0.08) model that best represent the distribution 
used the following features: pre-experiment VAS, sex, the duration of the experiment and two HRV indices: 
SD1/SD2 ratio and the total power. All predictors were positive, indicating that higher levels of pre-experiment 
subjective fatigue, HRV and longer experiment duration predicted higher levels of post-experiment subjective 
fatigue. In addition, female participants were predicted to experience more severe post-experiment subjective 
fatigue compared with males. The correlation between predicted and true values was moderate (r = 0.559).
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Discussion
The main objective of this study was to determine the extent to which classification models and regression 
models trained on HRV data can detect a fatigue state and predict the level of subjective fatigue that results from 
prolonged performances of different cognitively demanding tasks, respectively. By combining the datasets of 
three different experiments that applied different cognitive tasks, we investigated the predictive power of these 
models when trained on heterogeneous data in terms of fatigue induction. These tasks had different parameters 
in terms of stimuli, duration, goals and so on, and the perceived levels of workload also differed. Therefore, we 
argue that the models trained on the combined dataset of these experiments are robust meaning that they are 
not limited to special task characteristics and show higher levels of generalisability.

Compared with previous studies that used only a single task for fatigue induction, the fatigue classification 
algorithms in the present study performed at a similar  level23,29–31; the AUC scores and balanced accuracies in 
this study ranged from 0.685 to 0.841 and from 68 to 76%, respectively. The predictive power mainly depended 
on two factors: (1) the time of ECG recording, and (2) the time window used for HRV calculation. One of our 
major findings was that the predictive power was higher when the models were trained on task-related data 
compared with resting HRV data. This unique observation suggests that HRV features extracted from a resting 
ECG recording might be more prone to individual differences making it more complicated for the algorithms 
to effectively learn. The comparison of sensitivity and specificity scores indicated that although both metrics 
were lower for models trained on resting data compared with task-related data, specificity (i.e., the classification 
accuracy for the “non-fatigue” label) decreased to a greater extent than sensitivity. This might be due to higher 
individual differences in the pre-experiment resting period that could derive from different levels of pre-task 
anxiety or differences in mood prior to task performance that can be reflected by cardiac  activity58,59. Another 
potential explanation could be that the variance was lower in the task-related dataset obtained at the beginning 
of task performance (i.e., the data with the “non-fatigue” label) leading to more effective model training and 
better detection of the non-fatigued state.

This finding of better performance of classification based on task related HRV has important practical impli-
cations. When designing monitoring systems that detect fatigue and warn people about their fatigued state in 

Figure 2.  The top 3 most frequently selected features for classification. Error bars represent 1 standard 
deviation. ApEn approximate entropy, D2 correlation dimension, DFA1 short-term fluctuation obtained by 
detrended fluctuation analysis, DFA2 long-term fluctuation obtained by detrended fluctuation analysis, LF/HF 
ratio of the low and high-frequency components, SampEn sample entropy, VLF natural logarithm of the very 
low frequency component.
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Table 1.  Results of the classifiers trained on task related HRV. AUC  area under the receiver operating 
characteristic curve, CB CatBoost classifier, CI confidence interval, KNN k-nearest neighbors, p permutation 
test p-value, RF random forest, SVM support vector machine.

Time window/
algorithm

Evaluation metrics (test set)

Mean AUC (95% CI) Mean accuracy (95% CI) Mean sensitivity (95% CI) Mean specificity (95% CI) p

5-min

SVM 0.843 (0.833–0.853) 0.761 (0.750–0.772) 0.726 (0.712–0.740) 0.795 (0.782–0.809) 0.009

KNN 0.821 (0.810–0.832) 0.746 (0.735–0.757) 0.706 (0.690–0.721) 0.787 (0.771–0.802) 0.004

RF 0.813 (0.803–0.823) 0.733 (0.724–0.742) 0.741 (0.726–0.755) 0.725 (0.708–0.742) 0.003

CB 0.812 (0.800–0.824) 0.735 (0.723–0.747) 0.748 (0.730–0.766) 0.723 (0.706–0.740) 0.010

4-min

SVM 0.831 (0.819–0.843) 0.743 (0.730–0.756) 0.702 (0.687–0.716) 0.785 (0.768–0.801) 0.013

KNN 0.811 (0.800–0.822) 0.737 (0.726–0.748) 0.666 (0.651–0.682) 0.807 (0.793–0.821) 0.005

RF 0.811 (0.800–0.822) 0.734 (0.722–0.746) 0.720 (0.702–0.739) 0.748 (0.733–0.763) 0.006

CB 0.807 (0.796–0.818) 0.728 (0.716–0.74) 0.708 (0.689–0.727) 0.749 (0.733–0.765) 0.009

3-min

SVM 0.815 (0.803–0.827) 0.735 (0.723–0.747) 0.697 (0.683–0.711) 0.772 (0.756—0.788) 0.015

KNN 0.786 (0.774–0.798) 0.718 (0.706–0.730) 0.646 (0.629–0.664) 0.789 (0.773–0.805) 0.006

RF 0.781 (0.770–0.792) 0.716 (0.705–0.727) 0.706 (0.688–0.724) 0.726 (0.708–0.743) 0.006

CB 0.793 (0.782–0.804) 0.726 (0.715–0.737) 0.708 (0.689–0.727) 0.744 (0.728–0.760) 0.015

2-min

SVM 0.820 (0.808–0.832) 0.744 (0.731–0.757) 0.725 (0.710–0.740) 0.763 (0.748–0.778) 0.005

KNN 0.808 (0.796–0.820) 0.736 (0.724–0.748) 0.685 (0.668–0.702) 0.787 (0.773–0.802) 0.005

RF 0.792 (0.780–0.804) 0.722 (0.709–0.735) 0.726 (0.708–0.744) 0.718 (0.697–0.739) 0.007

CB 0.800 (0.789–0.811) 0.732 (0.720–0.744) 0.725 (0.707–0.743) 0.739 (0.722–0.756) 0.007

1-min

SVM 0.779 (0.765–0.793) 0.717 (0.703–0.731) 0.680 (0.664–0.696) 0.754 (0.736–0.771) 0.018

KNN 0.764 (0.751–0.777) 0.712 (0.700–0.724) 0.656 (0.638–0.674) 0.768 (0.753–0.783) 0.009

RF 0.763 (0.751–0.775) 0.698 (0.686–0.710) 0.690 (0.671–0.709) 0.706 (0.688–0.725) 0.007

CB 0.760 (0.747–0.773) 0.698 (0.686–0.710) 0.675 (0.658–0.692) 0.721 (0.701–0.741) 0.015

Table 2.  Results of the classifiers trained on resting HRV. AUC  area under the receiver operating characteristic 
curve, CB CatBoost classifier, CI confidence interval, KNN k-nearest neighbors, p permutation test p-value, RF 
random forest, SVM support vector machine.

Time window/
algorithm

Evaluation metrics (test set)

Mean AUC (95% CI) Mean accuracy (95% CI) Mean sensitivity (95% CI) Mean specificity (95% CI) p

5-min

SVM 0.743 (0.730–0.756) 0.701 (0.689–0.713) 0.709 (0.692–0.726) 0.693 (0.678–0.709) 0.035

KNN 0.738 (0.725–0.751) 0.701 (0.689–0.713) 0.671 (0.650–0.691) 0.731 (0.712–0.750) 0.026

RF 0.731 (0.716–0.746) 0.691 (0.678–0.704) 0.685 (0.663–0.706) 0.696 (0.678–0.715) 0.027

CB 0.731 (0.717–0.745) 0.689 (0.676–0.702) 0.686 (0.665–0.707) 0.693 (0.673–0.713) 0.040

4-min

SVM 0.746 (0.732–0.760) 0.699 (0.686–0.712) 0.719 (0.702–0.736) 0.678 (0.660–0.696) 0.014

KNN 0.750 (0.738–0.762) 0.702 (0.690–0.714) 0.653 (0.634–0.672) 0.751 (0.735–0.768) 0.003

RF 0.730 (0.717–0.743) 0.678 (0.665–0.691) 0.657 (0.639–0.675) 0.698 (0.680–0.717) 0.013

CB 0.733 (0.719–0.747) 0.686 (0.673–0.699) 0.659 (0.641–0.677) 0.712 (0.695–0.729) 0.014

3-min

SVM 0.736 (0.723–0.749) 0.683 (0.670–0.696) 0.665 (0.649–0.682) 0.702 (0.684–0.719) 0.023

KNN 0.738 (0.725–0.751) 0.686 (0.675–0.697) 0.604 (0.587–0.621) 0.768 (0.751–0.786) 0.014

RF 0.718 (0.706–0.730) 0.677 (0.666–0.688) 0.639 (0.620–0.658) 0.714 (0.698–0.731) 0.017

CB 0.727 (0.714–0.740) 0.684 (0.671–0.697) 0.648 (0.627–0.669) 0.720 (0.701–0.739) 0.016

2-min

SVM 0.715 (0.703–0.727) 0.668 (0.656–0.680) 0.640 (0.625–0.655) 0.697 (0.680–0.714) 0.029

KNN 0.700 (0.687–0.713) 0.666 (0.654–0.678) 0.600 (0.582–0.618) 0.732 (0.715–0.749) 0.017

RF 0.705 (0.694–0.716) 0.672 (0.662–0.682) 0.616 (0.599–0.633) 0.728 (0.710–0.745) 0.017

CB 0.718 (0.706–0.730) 0.680 (0.668–0.692) 0.622 (0.604–0.640) 0.738 (0.719–0.757) 0.019

1-min

SVM 0.723 (0.709–0.737) 0.661 (0.650–0.672) 0.588 (0.571–0.605) 0.731 (0.711–0.751) 0.018

KNN 0.699 (0.686–0.712) 0.658 (0.647–0.669) 0.549 (0.529–0.569) 0.763 (0.747–0.779) 0.016

RF 0.685 (0.671–0.699) 0.643 (0.631–0.655) 0.601 (0.579–0.622) 0.683 (0.661–0.705) 0.033

CB 0.708 (0.695–0.721) 0.659 (0.648–0.670) 0.608 (0.588–0.628) 0.707 (0.689–0.725) 0.032
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Figure 3.  Performances of the support vector classifiers in each classification problem. Error bars represent 
the 95% confidence intervals AUC  area under the receiver operating characteristic curve, SVM support vector 
machine.

Figure 4.  Importance values of the most frequently selected features for regression. Error bars represent 
1 standard deviation. Exp duration duration of the experiment, LF/HF ratio of the low and high-frequency 
components, Pre-exp fatigue the level of subjective fatigue prior to the experiment, SD1/SD2 ratio of the width 
and the length of the Poincaré plot, SD2 the length of the Poincaré plot, Triangular HRV triangular index, VLF 
natural logarithm of the very low frequency component.
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order to avoid accidents, one should consider the advantage of task-related data and build a system that moni-
tors and acts during cognitive activity. A system like this would certainly be beneficial in that it would let people 
optimise the timing of breaks during task performance because it could warn a person to take a rest when it 
detects fatigue. However, it is important to note that the observed asset of algorithms trained on task-related 
data might apply only to HRV and may not necessarily generalise to other physiological measures (e.g., brain 
activity measured by EEG).

Another important result of the classification analyses is that the predictive power increased as a function of 
time window length used for HRV. This finding is in line with the findings of previous  studies23,32, and suggests 
that HRV indices obtained from longer periods of recording are more reliable and informative for fatigue detec-
tion. However, because predictive power was still relatively good (i.e., AUC score = 0.82, accuracy = 74.4%) when 
a shorter, 2-min time window was used on task-related data, researchers as well as practitioners may consider 
using a 2-min window when fatigue detection in shorter time periods is required. Although the conventional 
minimum for HRV calculation is 5  min60, recent studies have provided support for the reliability of time windows 
even shorter than 2  min61,62.

In line with the notion that the predictive power depends on the time and length of ECG recording, the best 
performance was achieved by the SVM classifier trained on task-related HRV data calculated for a 5-min time 
window. The AUC score of 0.84 produced by this model indicates high efficacy and is comparable to the results of 
previous  studies30,31. The good performance could be explained by several factors, such as having a large sample 
size or using recursive feature elimination for feature selection, which has not been used in previous studies. In 
addition, the inclusion of non-linear HRV indices is likely to be the source of good performance given the fact 
that most of the selected features (e.g., entropies, DFA1 and DFA2) were obtained by means of non-linear analy-
ses. This latter explanation is further supported by a study that found an association between non-linear HRV 
indices and mental  workload63, a psychological concept strongly related to  fatigue3. More specifically, theoreti-
cal models suggest that the perceived level of mental workload plays a crucial role in the emergence of fatigue. 
Increasing levels of workload is likely to increase feelings of fatigue especially when the perceived benefits of task 
performance decrease or remain  unchanged3,4,64. Beside the high efficacy of models trained on task-related data, 
the models trained on resting data performed relatively well, too. It is interesting that the best AUC score (0.75) 
achieved by these models in our study (with the KNN classifier) was almost identical to the AUC score (0.74) of 
the KNN classifier reported by Huang et al. (2018) who trained the algorithm on resting HRV data. This suggests 
that an AUC score of ~ 0.75 might be the upper limit of predictive power for models trained on resting HRV.

Another aim of this study was to predict the level of subjective fatigue that emerged during prolonged cogni-
tive activity based on pre-experiment resting HRV and other variables. Consistent with previous studies that 
have investigated the predictive power of resting HRV on subjective fatigue in healthy  individuals65 and patients 
with multiple  sclerosis66, we found that resting HRV contributed to the prediction of post-experiment subjective 
fatigue. From a methodological point of view, however, our study differs from these previous studies for four 
reasons. First, the cognitive tasks used for fatigue induction were variable and thus, we found that the predictive 
power of resting HRV is not limited to a specific cognitive task but can be generalised to a variety of tasks. Sec-
ond, we examined several time window lengths, and our findings suggest that shorter periods of ECG recording 
might also be effective for fatigue prediction. Third and finally, in addition to the time- and frequency-domain 
HRV indices, we included non-linear HRV indices as potential predictors. This decision is justified because 

Table 3.  Results of the regression models predicting the level of post-experiment subjective fatigue. CB 
CatBoost regressor, LASSO Least absolute shrinkage and selection operator, p Permutation test p-value, 
RMSE Root mean squared error. a Please, note that the 5-min time window could not be used in the 2-back 
experiment.

Time window/
algorithm

Evaluation metrics (test set)

Median  R2 (Q1–Q3) Median RMSE (Q1–Q3) p

5-mina

Elastic net 0.003 (− 0.261 to 0.202) 18.730 (17.218–21.221) 0.116

LASSO − 0.031 (− 0.317 to 0.192) 18.931 (17.289–21.222) 0.292

CB 0.028 (− 0.218 to 0.168) 19.536 (17.067–21.014) 0.142

4-min

Elastic net 0.224 (− 0.021 to 0.321) 17.114 (15.491–18.323) 0.006

LASSO 0.205 (− 0.039 to 0.327) 17.092 (15.719–18.415) 0.012

CB 0.213 (0.024 to 0.324) 17.082 (15.291–18.845) 0.015

3-min

Elastic net 0.209 (0.024 to 0.369) 16.648 (15.505–18.218) 0.006

LASSO 0.206 (0.015 to 0.368) 16.855 (15.510–18.463) 0.011

CB 0.248 (0.058 to 0.335) 17.058 (14.940–18.864) 0.008

2-min

Elastic net 0.216 (− 0.028 to 0.380) 16.613 (15.053–18.450) 0.006

LASSO 0.187 (− 0.049 to 0.364) 16.854 (15.362–18.648) 0.017

CB 0.196 (0.034 to 0.321) 17.294 (15.500–19.244) 0.016

1-min

Elastic net 0.165 (− 0.038 to 0.308) 17.311 (15.528–19.714) 0.014

LASSO 0.141 (− 0.053 to 0.315) 17.444 (15.703–19.782) 0.025

CB 0.195 (− 0.020 to 0.313) 17.407 (15.444–19.252) 0.011
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the most frequently selected HRV feature was the SD2/SD1 ratio, a non-linear index, which had relatively high 
overall importance scores.

In addition to the HRV indices, the regression models included demographic, subjective and other variables 
(e.g., sleep and task duration) as well. As expected, and in line with previous  findings65, the most important 
predictor of post-experiment subjective fatigue was the pre-experiment level of subjective fatigue. This indicates 
that a person is more likely to experience severe fatigue after task performance if their baseline level of fatigue is 
higher relative to those who feel more rested before task performance. This also highlights that systems designed 
for fatigue prevention should take into account the baseline level of fatigue. We also found that sex was a useful 
predictor and that, compared with male participants, female participants reported higher levels of fatigue after 
task performance. Sex differences in task-related fatigue have received little attention so far, and the previous 
studies that have included it found no or only marginal, significant sex  effects65,67 indicating that—consistent with 
our results—females tend to rate their level of subjective fatigue  higher68. Nevertheless, this finding provides sup-
port for the notion that sex explains a relevant proportion of the variance in fatigue sensitivity, possibly through 
complex interactions between sex hormones and the dopaminergic  systems69. The duration of the experiment 
was also found to be an important predictor. This is in line with other fatigue experiments,8,70 suggesting that the 
level of subjective fatigue increases in a monotonic way with increasing time spent on a cognitive task.

Limitations
This study has several limitations. The resting periods in the 2-back experiment were only 4-min long and thus, 
model training on 5-min resting HRV data was conducted on a smaller dataset. This had the strongest effect in 
the case of regression because models trained on 5-min HRV data performed remarkably more poorly compared 
with the other models. In addition, similar to most machine learning studies that aimed at the prediction of 
fatigue, in this study we investigated only within-site generalisability (i.e., how the models generalise when both 
the training and testing sets were obtained in the same laboratory) and thus can provide no information about 
between-site generalisability (i.e., how the models generalise to external data sets obtained by other researchers in 
different locations). Further studies should be conducted in collaboration with independent researchers from dif-
ferent laboratories to gather an external dataset for model testing in order to assess between-site generalisability.

Conclusions
This study shows that detecting fatigue on the basis of HRV data via machine learning is effective even if fatigue 
is induced by different cognitive tasks, leading to more heterogeneous data for both training and testing. This 
indicates that the models are not strongly influenced by the specific task characteristics which implies higher 
levels of generalisability. The classifiers trained on ECG data recorded during task performance outperformed 
those trained on resting data, and we recommend their use in future studies. Finally, regression models predicted 
the severity of post-experiment subjective fatigue with moderate predictive accuracy. These models included 
the predictors pre-experiment fatigue, sex, task duration and HRV indices. Similar to classification, longer time 
windows resulted in better predictions. Both types of machine learning models (i.e., classification and regression 
models) included HRV indices obtained by non-linear analyses (entropies, Poincaré plot, detrended fluctuation 
analyses) and these indices were particularly important predictors of fatigue in the machine learning models.

Data availability
The data and materials for all experiments are available at https:// data. mende ley. com/ datas ets/ kbjgw 4msv5/ 
draft?a= 714e3 730- 325c- 47b3- 856a- 21453 c6ad8 0f.
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