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Hybrid classical‑quantum machine 
learning based on dissipative 
two‑qubit channels
E. Ghasemian* & M. K. Tavassoly

Although the environmental effects, i.e., dissipation and decoherence seem to be the strongest 
adversaries in the quantum information realm, here, we address how dissipation can be harnessed for 
quantum state preparation and universal quantum computation. In this line, we propose a realistic 
scheme for hybrid classical-quantum neural networks based on dissipative two-qubit channels. In 
particular, we design a variational quantum circuit consisting of a set of universal quantum gates. 
We encode classical information in the initial states of a two-qubit system interacting with a global 
environment. This composite system plays the role of a dissipative quantum channel (DQC). A pooling 
layer concatenates the output states of the DQCs resulting in the outcome of the circuit. Both the 
DCQs and the pooling layer provide superposition and entanglement which are the key ingredients of 
any universal quantum computation protocol. Finally, we investigate the capability and adaptability 
of this model by doing some machine learning tasks. It is reasonable to postulate that a quantum 
computer based on DQCs may outperform a classical computer because, in contrast to the latter, the 
former is capable of producing atypical patterns through non-classical phenomena.

The major challenge in the implementation of a quantum computer lies in the difficulty to maintain coherence 
to simulate unitary dynamics. Naturally, real physical systems interact with their environments and undergo the 
effects of dissipation (loss in the population of quantum states) and decoherence (destruction of quantum state 
correlations)1. Dissipation and decoherence are the strongest adversaries in quantum information science that 
destroy and wash out the quantum resources that improve the power of quantum computation, cryptography 
and quantum simulation2–4. Although this issue seems to be true for many physical situations, nevertheless it 
has been shown that dissipation can also behave exactly in the opposite manner, i.e., it may facile universal 
quantum computation. Indeed, dissipation can be exploited to drive a system to a desired steady state where 
the outcome of the computation is encoded5,6. The idea of dissipative quantum computing is of fundamental 
interest for quantum neural network (QNN) research, since it facilitates quantum computation based on the 
dynamic attractors and steady states. The authors in5 showed that dissipative quantum computation is robust in 
the sense that, the system is driven towards its steady state independent of the initial state and hence of eventual 
perturbations along the way.

On the other hand, quantum computing has demonstrated its superiority to deal with the problems intractable 
on classical computers, such as factorization of large numbers and searching in an unstructured database3,7–9. 
Meanwhile, quantum computation with large circuit depth encounters essential challenges due to the noise asso-
ciated with the quantum gates and lack of quantum error correction on the noisy intermediate-scale quantum 
devices10. Hence, it would be of fundamental interest to develop quantum algorithms that are resilient to noise 
with moderate circuit depth. Nowadays, variational quantum algorithms have rapidly been developed in many 
fields11. In particular, quantum machine learning based on variational quantum circuits demonstrates great 
potential in surpassing the performance of classical machine learning models12–14. One of the major advantages 
of variational quantum models compared to their classical counterparts is the drastic reduction in the number of 
model’s parameters. Hence, variational quantum models potentially mitigate the overfitting problems associated 
with classical machine learning. Moreover, they may learn faster or achieve higher testing accuracies compared 
to their classical counterparts under certain conditions15. A modern quantum machine learning architecture 
typically includes both classical and quantum parts wherein the variational quantum model plays a crucial role 
as the quantum component with the circuit parameters updated via a classical computer16.

In this paper, we propose a hybrid classical-quantum framework for machine learning based on dissipative 
quantum channels (DQCs). Indeed, we exploit the dissipation to prepare the steady state of a two-qubit system 
which depends on its initial state. Such a system can be used to establish dissipative quantum computation and 
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quantum information processing. We encode the classical information into the initial states of DQCs that consti-
tute a variational quantum circuit. We show how such a dissipative hybrid classical-quantum model can be used 
for universal quantum computation. Unlike some quantum machine learning schemes that require a pre-trained 
process, our proposed architecture is trained as a whole. We demonstrate how to reproduce the classical neural 
networks (CNNs) with a quantum circuit, making the scheme highly adaptable, particularly, for feed forward 
NNs. Finally, we apply the scheme for solving binary classifcation probelem, however, it can be used for dealing 
with more difficult tasks such as ternary classification tasks and in gereral multi-class problems.

This paper is organized as follows. At first, we introduce our strategy for the implementation of dissipative 
hybrid classical-quantum NNs. Then, we study the dynamics of a two-qubit system under the influence of a global 
environment. In the continuation, we discuss how such a system can be used for the modeling of dissipative 
NNs and universal quantum computing. Finally, we show the capability and adaptability of our hybrid model 
by solving some classification problems.

Machine learning via DQC
Machine learning is a developing branch of computational algorithms that are introduced to emulate human 
intelligence by learning from the surrounding environment. Machine learning, as a subfield of artificial intel-
ligence, enables systems to learn and improve from experience without being explicitly programmed17. The 
ability of machine learning algorithms to learn from the current context and generalize into unseen tasks would 
allow improvements in diverse fields ranging from pattern recognition, computer vision, spacecraft engineering, 
finance, entertainment, and computational biology to biomedical and medical applications18–21.

A machine learning algorithm is a computational process that uses input data to extract a particular outcome 
or perform a desired task without being literally programmed, i.e., “hard coded”. Such computational algorithms 
are known as “soft coded” in the sense that they automatically alter or adapt their architecture through repetition 
(i.e., experience) so that they become better and better to deal with the desired tasks. The adaptation process is 
called training, in which samples of input data are provided along with desired outcomes17.

A machine learning algorithm can adapt itself in response to the training process. This training is the “learn-
ing” part of machine learning. The input data can be selected and weighted to provide the most decisive outcomes. 
The algorithm can possess variable numerical parameters that are adjusted through iterative optimization. Also, 
it can provide probability distributions from the input data and use them to predict outcomes. A detailed intro-
duction to machine learning and its applications can be found in the literature17,22.

“Quantum machine learning” refers to the integration of quantum algorithms within machine learning 
programs13,23. Indeed, quantum machine learning is a subdiscipline of quantum information processing research, 
that intends to develop quantum algorithms that learn from data in order to improve traditional methods in 
machine learning.

Currently, one of the preferred tools for quantum machine learning algorithms are the variational (or para-
metrized) circuits that allow training the quantum devices in the same way as a CNN. Besides, they are able to 
deal with some machine learning problems that cannot be solved by classical computers in an efficient way24. 
Nowadays, the term QNN is increasingly put forward in the quantum machine learning context. It refers to 
parametrized quantum and hybrid algorithms that can be optimized or trained by a classical processor25,26. QNNs 
include models, systems or devices that combine features of quantum theory with the properties of NNs. Since 
two-level systems (qubits) constitute the basic unit of quantum computing, so they can give an interconnection 
between NN models and quantum theory. Consequently, quantum neurons as the building blocks of QNN may 
be constructed from two-level quantum systems. Accordingly, the majority of QNN models have been proposed 
based on the idea of the qubit neuron (quron)1.

Furthermore, the idea of open QNN has been put forward based on the theory of open quantum systems27,28 
and the promising field of dissipative quantum computing5. Open QNN models exploit dissipation in order to 
investigate dynamical properties similar to NNs1.

The so-called dissipative quantum computing model is established based on the theory of open quantum 
systems wherein quantum systems interact with a large environment. The total system consisting of the princi-
pal system plus its environment still undergoes a unitary evolution, but the principal system alone propagates 
nonunitarly and experiences decoherence5.

Hence, we are motivated to propose a hybrid classical-quantum machine learning model based on a dissipa-
tive two-qubit system under the influence of a global environment. In particular, we design a variational quantum 
circuit that consists of some DQCs and modulators. One can treat a QNN as a black box and control a set of 
free parameters corresponding to the designed quantum circuit and train the network. Training could then be 
performed using numerical techniques, i.e., optimizing the circuit parameters with respect to a cost function.

Generally, quantum computing consists of the preparation, evolution and measurement of qubits. In dis-
sipative quantum computing, the qubits are not only manipulated by unitary quantum gates, but also interact 
with their environment1.

Let us focus on the role of the DQC in our quantum machine learning approach. A two-qubit system under 
the influence of a global environment, namely a DQC, can be viewed as a quantum gate that can perform different 
tasks. Firstly, it can prepare the steady state for encoding classical data via the dissipation process. Secondly, it 
can provide a quantum superposition of the input signals of a single-neuron network. We discuss these features 
in the following. Besides, a global dissipative environment can establish stationary entanglement. Interestingly, 
this happens even without any direct interaction between the two qubits29–33. Briefly, we can state that our dis-
sipative model is established based on the fact that dissipation can be exploited to drive a system to a desired 
steady state, where the outcome of the computation is encoded. The authors in5 showed how dissipation can be 
used to engineer a large variety of strongly correlated states in steady state, including all stabilizer codes, matrix 
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product states and their generalization to higher dimensions. Also, it should be noted that, the unique quantum 
mechanical features such as superposition and entanglement can be used to solve hard computational tasks with 
quantum computers significantly faster compared to the best known classical algorithms8,34. Hence, it would be 
fruitful to explore the role of fundamental quantum physics concepts such as superposition, entanglement and 
dissipation in quantum machine learning more deeply.

Method
Here, we develop a variational QNN model based on DQCs to be implemented as a supervised classifier. In this 
line, we design a quantum circuit consisting of an input layer, an intermediate layer (including some electro-
optical modulators and DQCs, and SUM gates), and an output layer as schematically depicted in Fig. 1.

At first, the data are encoded into the quantum state with the help of the displacement operations followed by 
some electro-optical modulators and then enter their corresponding DQCs to be entangled. The output signals 
of the DQCs pass through a pooling layer including a number of SUM gates to be concatenated, resulting in a 
superposition of the initial states of DQCs. Finally, the output signal of the NN may be obtained by tracing out 
the unwanted modes or measurement processes.

Indeed, the data are encoded in the initial states of n two-qubits coupled to their global environments. It 
should be noted that the coupling to the global environments, which is dissipative in nature, drives the two-
qubit systems to their steady states. Therefore, the inputs and outputs of DQCs are the initial and final states of 
the two-qubit systems.

As in the case of the traditional NN, a pooling layer is required to concatenate the input of the network. There 
exist several pooling approaches in machine learning contexts. For instance, the pooling layers may be inserted 
between convolutional layers for feature abstraction and dimension reduction. Also, the progressive reduction 
of the number of qubits in hierarchical QNNs is analogous to the pooling operation in convolutional NNs35. 
The pooling operation can be presented by a controlled unitary transformation or by quantum nondemolition 
techniques36. Here, we consider a pooling layer to concatenate the outcomes of DQCs and provide a weighted 
sum from the input signals using a quantum nondemolition sum gate analogous to the controlled-NOT (C-NOT) 
gate for qubits but without the cyclic condition. This so-called sum gate provides a two-mode entangling gate 
for universal quantum computation in the regime of continuous variables36. Finally, the outcome of the circuit 
which can be obtained by the homodyne measurement is used for training the NN and controlling the circuit’s 
parameters. Indeed, a classical computer can be used to compute the new set of parameters, therefore, the 
parameterized quantum circuit is updated accordingly for the subsequent round.

Using the designed circuit and the known quantum concepts, we show how such unwanted environmental 
effects such as dissipation can be harnessed for the implementation of universal quantum computation via dis-
sipative two-qubit systems.

Dissipative two‑qubits
The theory of open quantum systems plays an important role in many different applications in the field of dynam-
ical quantum systems27,28. Indeed, it is often not possible to isolate the systems or to control the environmental 
degrees of freedom. Hence, open quantum system techniques are vital for the study of real quantum systems. 
Indeed, closed quantum systems are just an idealization of real systems. In practical problems, the interac-
tion of the system of interest with the environment cannot be avoided, and one requires an approach in which 
the environment can be effectively removed from the equations of motion. In other words, in open quantum 

Figure 1.   A quantum circuit is composed of an input layer (for encoding data), an intermediate layer (for 
processing data), and an output layer (for providing output signal). The classical data can be encoded into 
quantum states by the action of the displacement operator on the vacuum state D(x)|0� = |x� . Indeed, the i-th 
signal �xi = (x1, x2, x3) is encoded in the initial state of the i-th DQC. The processing unit constitutes some 
quantum operations such as adjustable electro-optical modulators, DQCs, and a pooling layer. The output signal 
of the intermediate layer is fed into the output layer. This quantum circuit serves as a NN.
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theory, the goal is to infer the equations of motions of the reduced systems from the equation of motion of the 
total system. A particular and interesting case is a system connected to several baths, modeled by a Markovian 
interaction. In this case, the most general quantum dynamics is generated by the Lindblad equation (also called 
Gorini-Kossakowski-Sudarshan-Lindblad equation)37

where ρs(t) and Ĥ are the density operator and Hamiltonian of the system, respectively. Also, L is a linear (super) 
operator acting on the space of linear operators. Commonly, the Hamiltonian Ĥ represents the unitary dynam-
ics of the system in the absence of the environment, while the operator L describes the non-unitary part of the 
evolution of the system. Hence, the latter is often called the dissipator environment. The general form of the 
so-called Lindblad master equation reads as38

where ρs is the reduced density matrix characterized by the system which can be gained by taking the partial 
trace over the degrees of freedom of the environment on the combined (total) system, i.e, ρs = TrEρT where ρT 
is defined as the total density operator. Besides, Ak s denote the Lindblad operators weighted with the so-called 
decoherence parameters γk and d is the dimension of Hilbert space. An important phenomenon regarding open 
quantum systems is the dissipation of energy into the environment. Quite generally, one can deal with the envi-
ronment as a distribution of the uncorrelated thermal equilibrium mixture of states. The dissipative dynamics 
of a two-qubit system interacting with its environment is described by a master equation of Lindblad form. 
The Lindblad operators are described in terms of the lowering and raising operators σi , σ †

i  , respectively, where 
σi = |g�i�e|i and |g� and |e� denote the ground and excited states of the ith qubit. As is clear, these operators act 
locally on the two qubits so that they can be used to describe the dynamics of local dissipation. The continuous 
miniaturization of physical devices makes them closely spaced, therefore, a two-qubit system also experiences 
the global dissipation in such a way that the two qubits can interact with a common thermal environment, 
simultaneously. In order to describe the global dissipation, additional Lindblad operators can be defined in terms 
of collective operators σ1 + σ2 and σ †

1 + σ
†
2  . Thus, the following master equation governs the dynamics of the 

density operator ρ of a two-qubit system under the influences of the global and local environments

where the Lindblad operators are given as

where n̄g and n̄l denote the number of thermal excitations in the global and local environments, respectively. It 
should be noted that the parameter γ ∈ [0, 1] describes the interplay between purely local dissipation ( γ = 0 ) 
and purely global dissipation ( γ = 1).

The global environment can supply a kind of interaction in composite systems that establishes entanglement. 
Dissipation plays a remarkable role in the open quantum system context because it allows the stabilization 
of the quantum resources and engineering a large variety of strongly correlated states in the steady state30,39. 
Hence, it provides some key advantages over unitary quantum-state manipulation40. Both theoretically41 and 
experimentally42, it has been shown that a global dissipative environment can establish stationary entanglement. 
This notion is a key concept in quantum information and quantum computation sciences. Surprisingly, this may 
happen even without any direct interaction among subsystems43. The simplest model where such a situation can 
be realized is the case in which two qubits dissipating into a common environment. Here, we are interested in 
following the dynamics of a two-qubit system under the influence of a global environment. Hence, we set γ = 1 
and remove the subscribe of n̄g for the sake of simplicity. Therefore, the dynamics of the two-qubit system will 
be governed by the following master equation

To study the dynamics of a two-qubit system, we can formally expand its density operator in the basis,

(1)
d

dt
ρs(t) =− i[Ĥ , ρs(t)] + Lρs(t),

(2)
d

dt
ρs(t) = −i

[

Ĥ , ρs(t)
]

−

d2−1
∑

k=1

γk

(

A†
kAkρs(t)+ ρs(t)A

†
kAk − 2Akρs(t)A

†
k

)

,

(3)

d

dt
ρ(t) =γ

2
∑

k=1

[

2Akρ(t)Ak
† −AkAk

†ρ(t)−Ak
†
Akρ(t)

]

+ (1− γ )

6
∑

k=3

[

2Akρ(t)Ak
† −AkAk

†ρ(t)−Ak
†
Akρ(t)

]

,

(4)

A1 =
√

n̄g + 1(σ1 + σ2), A2 =
√

n̄g (σ
†
1 + σ

†
2 ),

A3 =
√

n̄l + 1σ1, A4 =
√

n̄l + 1σ2,

A5 =
√

n̄lσ
†
1 , A6 =

√

n̄lσ
†
2 ,

(5)

d

dt
ρ(t) =Lρ(t)

=n̄
[

2(σ1 + σ2)ρ(σ1 + σ2)
† − (σ1 + σ2)

†(σ1 + σ2)ρ − ρ(σ1 + σ2)
†(σ1 + σ2)

]

+ (n̄+ 1)
[

2(σ1 + σ2)
†ρ(σ1 + σ2)− (σ1 + σ2)(σ1 + σ2)

†ρ − ρ(σ1 + σ2)(σ1 + σ2)
†
]

,
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so we arrive at

where ρj,k(t) are unknown time-dependent coefficients. Upon the insertion of (6) into (5), the dynamical evolu-
tion of the density operator can be described by a set of linear differential equations for the unknown coefficients 
ρj,k(t) that can be compactly expressed as

where

and M is a 16× 16 matrix of constant coefficients. Since the general time-dependent solution of this master 
equation is too cumbersome and as we are interested in the steady state solution, hence its time-dependent 
solution is not presented.

Stationary states of the two‑qubit system passing through a DQC.  Let us start with the following 
initial state for the system

where we set ρij(0) = ρij and find the solution of the master Eq. (5). As mentioned, the general analytical solution 
of this master equation is too cumbersome. However, for n̄ = 0 , the analytical solution can be obtained as below

As time goes to infinity, the system approaches its steady state. So, by taking limt→∞ ρ(t) , we arrive at

where

{|1� := |e1�|e2�; |2� := |e1�|g2�; |3� := |g1�|e2�; |4� := |g1�|g2�},

(6)ρ(t) =

4
∑

j,k=1

ρj,k(t)|j��k|,

(7)v̇(t) = Mv(t),

v(t) = (ρ11(t), ρ12(t), . . . , ρ43(t), ρ44(t))
⊤,

(8)ρ(0) =







ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44






,

(9)ρ(t) =







ρ11(t) ρ12(t) ρ13(t) ρ14(t)
ρ21(t) ρ22(t) ρ23(t) ρ24(t)
ρ31(t) ρ32(t) ρ33(t) ρ34(t)
ρ41(t) ρ42(t) ρ43(t) ρ44(t)






,

(10)

ρ11(t) =ρ11e
−4t

,

ρ12(t) =ρ∗
21(t) =

1

2
(ρ12 + ρ13)e

−4t +
1

2
(ρ12 − ρ13)e

−2t
,

ρ13(t) =ρ∗
31(t) =

1

2
(ρ12 + ρ13)e

−4t −
1

2
(ρ12 − ρ13)e

−2t

ρ14(t) =ρ∗
41(t) = ρ14e

−2t
,

ρ22(t) =ρ33(t) =

(

3

2
+ 2t

)

ρ11e
−4t +

1

8
(−12ρ11 + 2ρ22 + 2ρ23 + 2ρ32)e

−4t −
1

2
(−ρ22 + ρ33)e

−2t

+
1

4
(ρ22 + ρ33 − ρ23 − ρ32),

ρ23(t) =ρ∗
32(t) =

(

3

2
+ 2t

)

ρ11e
−4t +

1

8
(−12ρ11 + 2ρ22 + 2ρ23 + 2ρ32)e

−4t −
1

2
(−ρ22 + ρ33)e

−2t

+
1

4
(−ρ22 − ρ33 + ρ23 + ρ32),

ρ24(t) =ρ∗
42(t) = (ρ12 − ρ13)(e

−4t − 2e
−2t)+

1

2
(6ρ12 − 2ρ13 + ρ24 + ρ34)e

−2t +
1

2
(ρ24 − ρ34),

ρ34(t) =ρ∗
43(t) = (ρ12 − ρ13)(e

−4t − 2e
−2t)+

1

2
(6ρ12 − 2ρ13 + ρ24 + ρ34)e

−2t −
1

2
(ρ24 − ρ34),

ρ44(t) =1− [ρ11(t)+ 2ρ22(t)].

(11)ρ(∞) =







0 0 0 0
0 P1 − P1 P2
0 − P1 P1 − P2
0 P∗2 − P∗2 P3






,
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Equations (9)–(12) imply that the system is driven toward its steady state under the action of the global envi-
ronment. As can be found, this steady state solution depends on the initial state of the system, hence it would 
be fruitful dissipative quantum computation. Note that, the steady state of the system for a generic n̄ has been 
presented in Appendix A.

Here, it is worth noticing to mention that the evolution of an open system is usually described by the Kraus 
representation44. Therefore, the steady state density matrix (11) is recast as the following Kraus representation

where the corresponding Kraus operators Kj can be obtained as

Such transformations are frequently used in quantum computation contexts. Also, it is possible to design a 
quantum circuit to perform such transformations3. Figure 2 schematically shows how the DQC can be exploited 
for machine learning tasks.

As can be found from (13), the DQC acts as a quantum map that transforms the initial state of the system 
into its steady state. In this work, we use this feature for quantum machine learning. Indeed, we encode the input 
signals of the NN into the initial state of the two-qubit channel. The input signals are processed by the DQC, i.e., 
it can provide a superposition of the input signals. Besides, the initial state (input signals) becomes entangled due 
to the action of the dissipative two-qubit channel. Both properties i.e., quantum superposition and entanglement 
are necessary for quantum machine learning.

Now, let us find the stationary solution of the master Eq. (7) by considering a general parameterized initial 
state for the two qubits as

where r, s ∈ R
3 such that �r� ≤ 1 , �s� ≤ 1 , and σ = (σ1, σ2, σ3) is the vector of Pauli operators. Furthermore, T  

is a 3× 3 real matrix where its element denote by tm,n . In general, this state is described by 15 real parameters.
It can be shown that the steady state of this dissipative two-qubit system is not unique and depends on its 

initial state. The stationary solution can be rewritten in terms of the two-qubit parameters (the details can be 
found in Appendix A). For example, for n̄ = 1 we arrive at

where the following quantities are obtained by the solution of the master equation at steady state regime

with Q1 + 2Q2 + Q4 = 1 due to the unit trace constraint on the density matrix. The presence of off-diagonal 
elements in this density matrix is the signature of a quantum mechanical superposition45. As can be found, 
the steady state density matrix of the two-qubit has three independent stationary states due to the fact that 
Q4 = 1− Q1 − 2Q2.

(12)

P1 =
1

4
(ρ22 + ρ33 − ρ23 − ρ32),

P2 =
1

2
(ρ24 − ρ34),

P3 =1− 2P1.

(13)ρ(∞) =

4
∑

j=1

Kjρ(0)K
†
j ,

(14)

K1 =
1

2







0 0 0 0
0 1 − 1 0
0 − 1 1 0
0 0 0 2






, K2 =







0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0






,

K3 =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






, K4 =

1
√
2







0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0






.

(15)ρin = ρ(0) =
1

4

(

I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3
∑

m,n=1

tm,nσm ⊗ σn

)

,

(16)ρout = ρ(∞) =







Q1 0 0 0
0 Q2 Q3 0
0 Q3 Q2 0
0 0 0 Q4






,

(17)

Q1 =
1

28
(3+ t11 + t22 + t33),

Q2 =
1

56
[13− 5(t11 + t22 + t33)],

Q3 =
1

56
[−1+ 9(t11 + t22 + t33)],

Q4 =
1

7
(3+ t11 + t22 + t33),
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Taking a deep look at Eq.  (17) shows that one arrive at these expressions Q2 = 0.5(1− 5Q1) , 
Q2 = 0.5(−1+ 9Q1) and Q4 = 4Q1 . Therefore, the general steady state of a two-qubit system interacting with a 
global environment can be expressed by the following quantity

where A and B can be controlled by the number of thermal excitations n̄ . Also, tii ( i = 1, 2, 3 ) are the free param-
eters corresponding to the initial state of the two-qubit that can be used to encode quantum information. It 
is worth noting that the above relation holds for a generic number of thermal excitation n̄ �= 0 , i.e., non-zero 
temperatures. Hence, it may facile the implementation of quantum computation at cryogenic temperatures46.

Dissipative quantum neural network
Dissipative quantum computing is established based on the theory of open quantum systems, i.e., the systems 
interacting with a large environment5. Although the total system, including a principal system plus its environ-
ment, still undergoes the unitary evolution, however, the principal system alone propagates nonunitary and 
experiences environmental effects. Dissipative quantum computing is of fundamental interest in QNN context 
because it provides new quantum computing algorithms based on dynamic attractors and steady states. Here, we 
want to analyze our hybrid NN model and the recipe for the construction of a quantum perceptron via a DQC. 
In this line, we start with a single-neuron (Fig. 3) as a building block of a NN.

Already, we showed that the steady state of a two-qubit system plunged in a thermal reservoir has three free 
parameters ( t11,t22 and t33 ). Accordingly, we consider a single-neuron with three input signals. At first, the signals 
enter an electro-optical modulator to be adjusted. Then, they pass through the DQC, so that the adjusted signals 
constitute the free parameters of the dissipative two-qubits system ( ρin ). Using Eq. (18), i.e., the steady state of 
the two-qubit ( ρout ), the output signal of this single-neuron reads as

which is the weighted sum of the neuron, where b and wi denote the bias and weight of the i-th input signal. Note 
that the bias and weights can be adjusted by controlling the number of thermal excitations in the environment 
and also via an electro-optical modulator. The above expression recalls the weighted sum of a traditional NN, 
however, it should be noted that the output state of a DQC is a combination of the initial states of a two-qubit 
system that possesses some non-classical features such as superposition and entanglement.

Pooling layer.  The pooling layer can apply some quantum gates to a multi-mode quantum state and traces 
out unwanted modes to provide state reduction and also entanglement. At first, assume a NN composed of only 
two single-neurons as shown in Fig. 4. The pooling layer applies a SUM gate to the steady states of two DQCs 
and traces out one of them. The action of the pooling layer can be modeled by the following unitary operator47

Therefore, the concatenated actions of all sum operations may be expresssed as

(18)q = B+ A(t11 + t22 + t33),

(19)|q� =

∣

∣

∣

∣

∣

b+

3
∑

i=1

wixi

〉

,

(20)S(2)|q1, q2� = |q1, q1 + q2�.

Figure 2.   Schematic of the DQC. The channel constitutes a two-qubit system plunged into a global thermal 
reservoir. Since the steady state of the DQC depends on its initial state, hence it can be used for quantum 
machine learning. Note that, the input data are encoded into the initial density matrix of the two-qubit 
system. The channel maps the input data onto the steady state of the two-qubit system via the transformation, 
ρ(0) −→ ρ(∞).
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Also, we can consider the bias b of the NN by the action of a displacement operator on the N-th quantum 
mode which results in b+

∑n
j=1 qj as the output of the circuit. Therefore, the weighted sum corresponding to 

the circuit shown in Fig. 1 can be written as

where n denotes the number of two-qubits exploited as single-neurons. Note that the unwanted modes can be 
removed by tracing out them or via measurement process, i.e., Tr1(|q1, q1 + q2��q1, q1 + q2|) = |q1 + q2��q1 + q2| . 
Here, we encode the outcome of the NN on the steady state of the last DQC. Also, the outcome of the circuit 
(network) can be obtained by the homodyne measurement.

Nonlinear transformation.  Modeling of dissipative QNN confronts a fundamental challenge that appears 
in the integration of the nonlinear, dissipative dynamics of NNs and the linear, unitary nature of quantum theory. 
The problem becomes more intangible if we have a look at the perceptron setup. In a NN, the incoming signals of 
one neuron get mapped to the output by a nonlinear function such as a step function or a sigmoid function. Such 
a nonlinearity results in the attractor-like dynamics that would need to contain at least two stable states that are 
obtained through dynamics highly dependent on the initial conditions. In the realm of quantum mechanics, we 
encounter the firing probabilities instead of deterministic values. Nevertheless, mapping firing probabilities onto 
one another by a nonlinear transformation contradicts the basic principle of the linear evolution in quantum 
theory1. The basic idea of CNNs can be generalized into the quantum domain, by replacing the McCulloch-Pitts 
neuron x = {−1, 1} with a quron |x� of the two-dimensional Hilbert space H2 with basis |0� and |1� . Accordingly, 
the state |�� of a network with N qurons can be introduced by a multiparticle quantum state of a 2N-dimensional 
Hilbert space H2N = H

2 ⊗H
2 ⊗ · · · ⊗H

2 with basis {|0, 0, · · · , 0�1, · · · , |1, 1, · · · , 1�N } may be written as

(21)S(n)|q1, q2, · · · , qn� =

∣

∣

∣

∣

∣

∣

q1, q1 + q2, q1 + q2 + q3, · · · ,

n
∑

j=1

qj

〉

.

(22)|Q� =

∣

∣

∣

∣

∣

b+

n
∑

i=1

qi

〉

=

∣

∣

∣

∣

∣

b+

3n
∑

i=1

wixi

〉

,

Figure 4.   The pooling layer constitutes a SUM gate ( S ) analogous to the C-NOT gates for qubits but without 
the cyclic condition. The sum gate is a canonical two-mode gate for universal quantum computation based 
on continuous-variable quantum states. The continuous-variable gate can be realized with the quantum 
nondemolition technique36. The outcome can be obtained by the homodyne measurement.

Figure 3.   A quantum single-neuron with three input signals composed of three electro-optical modulators, 
a DQC, and an output signal. The initial signals are adjusted by modulators and then enter the DQC to be 
processed. The input and output of DQC are the initial and steady state of a two-qubit system. The output of the 
quantum neuron can be obtained by measuring the outcome of the DQC. The bottom part shows a compact 
schematic of the single neuron which constitutes the NN.
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where ai , i ∈ {1, 2, · · · , 2N } , denote to the complex amplitudes assigned to the respective network basis states. 
Zak and Williams tried to establish a quantum formalism that captures the two main properties of Hopfield 
networks, dissipation and nonlinearity, by replacing the step- or sigmoid-activation function with a quantum 
measurement48. They did not consider single neurons as quantum objects, but proposed a unitary walk between 
the quantum network basis states {|0, 0, · · · , 0�1, · · · , |1, 1, · · · , 1�N } . The evolution of the network introduced 
by Eq. (23) can be characterized by the following unitary transformation

This unitary transformation followed by a projective measurement may result in the collapse of the superposi-
tion (23) onto the i-th network basis state

with probability |ai|2 . This map is a nonlinear, dissipative and irreversible transformation, and it can play the role 
of a natural quantum sigmoid function48. Indeed, the measurement process is an apparent exception, which can 
be understood as a probabilistic step-function. For instance a measurement collapses the superposition of a 
quron state ( |quron� = α|0� + β|1� ) onto one of the basis vectors {|0�, |1�} with probability |α|2 and |β|2 , respec-
tively. The establishment of the activation process via quantum measurement has extensively been performed48,49. 
It seems to be an elegant approach for unifying the diverse dynamics of NNs and quantum theory. In analogy 
with the nonlinear activation process based on projective measurement, we can obtain the outcome of the DQCs 
by measuring their steady states with respect to the basis vectors of two-qubit system {|1�, |2�, |3�, |4�} or any 
superposition of them, namely, Bell states as {|1′� := 1√

2
(|1� + |4�); |2′� := 1√

2
(|1� − |4�); |3′� := 1√

2
(|2� + |3�);

|4′� := 1√
2
(|2� − |3�)}.

Superposition encapsulates the idea that the system is in all its possible states simultaneously. Only when a 
measurement is performed, the system collapses in one of the candidate states. Quantum measurements may be 
performed by a collection {Mm} of measurement operators3. These operators act on the state space of the system 
being measured, where the index m refers to the measurement outcomes that may occur in the experiment. In 
our case, the state of the system, immediately before the measurement, is ρ(∞) , then the probability that outcome 
m occurs can be obtained as

where Mm = |m��m| such that 
∑

m M†
mMm = Î . Considering the steady state of the DQC of the two-qubit, 

i.e., based on Eqs. (16)–(18) and using the two-qubit basis, one can easily find that the measurement outcomes 
reads as

which is equal to Eq. (18). The above relation (27) implies that such a DQC is robust in the sense that it drives 
the two-qubit system towards a class of steady states with a unique form that depends on the initial state of the 
system. Moreover, the steady states can be controlled by adjusting the number of thermal excitations (via chang-
ing the temperature of the global environment).

Here, it should be mentioned that unitary dynamics imply that the evolution of quantum states is described 
by unitary operators. Physically, this means that there is no source of dissipation. This is important because 
inherently quantum phenomena are required for quantum computation, e.g., entanglement and quantum super-
position are only maintained for a long period in the absence of dissipation or other kinds of noise. Usually, such 
environmental effects and thermal noises wash away these quantum effects. The idea to avoid as much as possible 
interactions with the environment was dominant for a long time. Nowadays, the usefulness of the environment 
has been put forward and also demonstrated experimentally. For instance, if a system is exposed to the thermal 
noise, one expects that it goes into random states. In contrast, we show that it is possible to manipulate a two-
qubit system towards some certain steady states in the presence of thermal noise. Such controllable states are the 
key constituents of a realistic quantum computation model.

Universal quantum computation.  To design a real quantum computer, one must know how to decom-
pose any valid quantum computation protocol into a sequence of elementary single and double quantum gates 
that can be exploited in physical systems. Such a set of quantum gates is required to be universal, i.e., capable 
of performing any valid quantum operation for a general computational task. Traditionally, the set of all single-
qubit quantum gates in conjunction with a two-qubit gate called C-NOT constitutes a universal gate set. So 
far, several equally good universal gate sets have been proposed for universal quantum computation. The well-
known operations, i.e., rotations, displacements, squeezing and beam-splitter transformations, combined with 
any nonlinear gate constitute a universal gate set24. Meanwhile, a two-qubit operation that exchanges the inter-
action between two qubits is as powerful as the C-NOT gate as far as computational universality is concerned. 
Such an operation may be realized in realistic two-qubit systems with the help of the dissipation process. Above, 
we showed that a DQC can be thought of as a two-qubit gate due to the fact that the global environment con-

(23)|�� =

2N
∑

i=1

ai|x1, x2, · · · , xN �,

(24)b = Ua, a = {a1, . . . , a2N }, b = {b1, . . . , b2N }.

(25){a1, . . . , ai , . . . , a2N } −→ {01, . . . , 1i , . . . , 02N },

(26)P(m) = Tr(ρ(∞)M†
mMm),

(27)P(m) = �m|ρ(∞)|m� = q, m = 1, · · · , 4,
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nects two qubits in the absence of any direct interaction between them and provides quantum superposition and 
entanglement even in the steady state regime. Moreover, the outcome of the DQCs may be concatenated via the 
action of sum gates as described in the previous section. In conclusion, the proposed hybrid model established 
based on the DQCs and sum gates facilitates the implementation of dissipative universal quantum computation.

Hybrid classical‑quantum neural network as a classifier
In this section, we intend to use the considered circuit as a classifier. First of all, we need to prepare the initial 
signals of the circuit by encoding the classical data into an N-dimensional state vector

which may be performed by the action of a displacement operator on the the vacuum state, i.e., D(x)|0� = |x� . 
Then, the signals can be adjusted using an N-port linear optical interferometer as Û |x� = |wx� , where w is an 
orthogonal matrix corresponding to the action of linear interferometers on their entries24. These adjusted signals 
feed the DQCs, i.e. they constitute the initial states of two-qubits. The DQCs map them onto the steady state of 
two-qubit systems and the pooling layer concatenates the output signals of all DQCs. The resulted state can be 
obtained as |w1x1,w1x1 + w2x2, . . . ,

∑N
i=1 wixi� . Then, another displacement operator can add a general bias 

b = {bi}
N
i=1 , bi ∈ R . After tracing out the unwanted modes, the output of circuit encoded in the last mode reads 

as |
∑N

i=1 wixi + bN � . Note that the bias can be considered only for the last mode of the output state wherein 
the outcome of the circuit is encoded. Putting these ingredients together, one arrives at the following affine 
transformation

in analogy with the traditional NNs. It is interesting to remark that a CNN can be embedded into quantum for-
malism. In fact, such a hybrid quantum-classical model can be used to run the traditional NNs, if the former does 
not generate nonclassical characteristics. The key difference between our hybrid classical-quantum model and the 
traditional model is that the DQCs provide superposition and entanglement among their entries, i.e., the steady 
state of each DQC is an entangled state composed of a superposition of the initial states of a two-qubit system.

Also, a nonlinear transformation is required to complete the NN model. Such a nonlinearity is introduced as 
�̂|x� = |φ(x)� where φ : R → R is some nonlinear function. Consequently, by applying a sequence of quantum 
operations described above, one arrives at the following transformation

which recalls a single-layer perceptron. Since the steady state of each DQC has three free parameters, therefore, 
the total number of data encoded into the initial states of n single-neurons is N = 3n.

Finally, it should be noted that training such a variational QNN can be done using two different approaches: 
through classical simulation or directly on quantum hardware. The classical simulation consists of evaluating the 
cost (loss) functions and the gradients with respect to the parameters of each layer. However, by growing the size 
of the network, the training process becomes less tractable. Hence, the direct evaluation on quantum hardware 
will likely be necessary for large-scale networks.

Python libraries provide useful tools for training hybrid quantum-classical machine learning models, using 
both simulators and real-world quantum hardware. In particular, the logistic regression algorithm can be 
exploited to train the model and find the optimized parameters of the NN such as weights and bias.

Now, we proceed to solve some binary classification problems with our proposed model. Logistic regression 
can be utilized to deal with supervised NN and classification tasks with discrete possible results. It is a generaliza-
tion of the linear regression, with adjustment to the classification tasks. In both regression methods, one should 
calculate the weighted sum of the input features variables and a bias. The difference between these two models is 
that in the former, this weighted sum is also the output of the model (i.e., the result of homodyne measurement), 
while in the latter the weighted sum subjects to the logistic (sigmoid) function as follows

where we have set w0 = b . Indeed, one can consider the bias of the network as an additional input equal to unity, 
i.e., x0 = 1 . By considering a proper decision threshold, we can predict the outcome of the model. For instance, 
the outcome will be y = 1 if σ(wT.x) ≥ 0.5 , otherwise the outcome will be y = 0 . In some cases, a different 
decision threshold may be warranted. In order to make the circuit learn the structure of our input data, it is 
necessary to define a cost (loss) function which quantifies the difference between the expected output and the 
predicted one. To do so, we use the following cost function

(28)x → |x� = |x1� ⊗ |x2� · · · ⊗ |xN �,

(29)|x� →
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This cost function provides high probabilities for positive outcomes (yi = 1) and low probabilities for negative 
outcomes (yi = 0) . The set of circuit parameters is updated at each training iteration in order to approach the 
minimum of the cost function. Also, the final choice of circuit parameters (updated weights) provides a set of 
labels (or probabilities) which is hopefully as close as possible to the real ones. The details of training the logistic 
regression model can be found in Appendix B. Here, we focus on solving the classification problems. To do so, we 
are interested to utilize our hybrid NN model as a classical-quantum classifier to solve some classification prob-
lems. Indeed, a CNN is trained by a classical computer to obtain the optimized weights and bias corresponding 
to the classification problem. In practice, the free parameters of the variational quantum circuit are obtained by 
training the proposed hybrid classical-quantum model using the logistic regression method. At first, we consider 
a binary classification problem with two features. Using two-dimensional normal distribution, we generate two 
synthetic data sets referred to as class 0 and class 1 introduced by the following features

where µk and �k denote the mean vector and covariance matrix of the k-th class. We consider 1000 sample points 
for each class and train the model with 75% of the total data, while the remaining are assigned to the test set. The 
scatter plot of the data sets with two classes is shown in Fig. 5.

The results of classification on the test data set containing 25% of the samples and the corresponding loss 
function obtained using the logistic regression approach are presented in Fig. 6. As can be found, most of the 
points are correctly classified, i.e., only 7 out of 500 points corresponding to the test dataset are misclassified. 
The misclassified data points are somehow located either near the boundary between both classes or in the area 
of the opposite class. Also, the loss function implies that about 2000 iterations are required for convergence to 
the solution.

Also, we compare the result of our proposed model with the well-known classical machine learning algorithms 
such as Multi-layer Perceptron, k-Nearest Neighbors, kernel Support Vector Machine (SVM), and Soft Voting 
classifiers. Here, we briefly introduce these machine learning algorithms whose details can be found in relevant 
literature50–53. Multi-layer Perceptron classifier optimizes the log-loss function using the Broyden-Fletcher-
Goldfarb-Shanno algorithm or stochastic gradient descent approach. It is a popular algorithm for parameter 
estimation in machine learning50. The k-Nearest Neighbors algorithm is a non-parametric supervised learning 
method that can be used for dealing with classification and regression problems. In this case, the input consists 
of the k closest training examples in a data set. An object is classified by a plurality vote of its neighbors where 
the object being assigned to the class most common among its k nearest neighbors (k is a positive integer)51. 
The kernel SVM is another type of supervised machine learning algorithm. The kernel function takes data as 
input and transforms it into the required form of processing data. The SVM classifiers are capable of performing 
binary and multi-class classification problems, especially useful with high dimensional data sets52. Generally, a 
voting classifier is an estimator that combines models representing different classification algorithms associated 
with individual weights for confidence. The voting classifier comes with multiple voting options such as hard 
and soft voting options53. It is noticeable that, all these classification algorithms can be found in Python libraries 
for machine learning. Also, it is possible to generalize them for desired machine learning tasks. The contour 
plots corresponding to these classifiers are shown in Fig. 7. As can be found there is no considerable difference 
between the results of our hybrid classical-quantum classifier with the best classification algorithms. However, 
the decision boundaries, the lines which separate the two classes, corresponding to our proposed model and 

(33)
µ1 =[−1,−2], �1 =

[

1 − 0.25
−0.25 1

]

,

µ2 =[1, 2], �2 =

[

1 0.25
0.25 1

]

,

Figure 5.   The scatter plot of data set with two classes. The data points are generated with two Guassian 
distributions possess different mean values and covariance matrices.
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Multi-layer Perceptron classifier are linear lines because both of them are established based on logistic regres-
sion, while other classifiers possess non-linear (curved) decision boundaries. Again, we would like to emphasize 
that our model is established based on the advantages of superposition-based quantum computing and parallel-
processed neural computing at the same time. It should be emphasized that, a quantum algorithm can just be 
performed on a quantum computer. Also, in principle, it is possible to run all classical algorithms on the quantum 
computers. However, the term quantum algorithm is applied to those algorithms that exploit at least one of the 
quantum features, i.e., superposition or entanglement, to perform a calculation. These quantum features result 
in some key differences between the performance of classical and quantum computers. In particular, entangle-
ment as a key quantum resource allows us to process and store exponentially more information than a classical 
computer3,54. Hence, the hybrid classical-quantum machine learning algorithms based on DQC may provide the 
potential to revolutionize computing for certain classes of problems that cannot be solved by classical machine 
learning algorithms. The advantage of quantum algorithms is that, they can solve some problems significantly 
faster than classical algorithms55–57.

As the second example, we want to solve a more realistic classification problem, i.e., we deal with the well-
known Sonar dataset. The task is to train our variational hybrid network to discriminate between sonar signals 
bounced off a metal cylinder and those bounced off a roughly cylindrical rock. The dataset contains 208 patterns 
where 111 patterns correspond to metal cylinders and the remaining patterns come from rock cylinders at vari-
ous angles and under various conditions. Each pattern is characterized by 60 numbers in the range of 0.0 to 1.0. 
The label associated with each record contains the letter “R” if the object is a rock and “M” if it is a mine (metal 
cylinder). Indeed, we encounter a binary classification wherein the patterns are classified into two classes, i.e., 
rock and mine. As in the case of the first example, we divide the dataset into two parts for the training and test 
process where 75% of the total patterns are assigned to train the model and optimize the free parameters of the 
NN via the logistic regression algorithm. The confusion matrices corresponding to the training and test datasets 
are shown in Fig. 8. The detailed numerical results can be found in Tables 1, 2.

Not surprisingly, the network’s performance depends on the chosen dataset and the sizes of training and test 
samples. In order to survey the performance of our model, we redo the training process and split the data into 

Figure 6.   The results of the logistic regression for this binary classification problem. As can be found most of 
the points are correctly classified, i.e., only 7 out of 500 points corresponding to the test dataset are misclassified. 
The loss function demonstrates that the convergence may be achieved after 2000 iterations.
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two equal parts so that both training and test datasets possess 104 patterns. In this case, the network’s accuracy 
corresponding to the training and test are 0.97 and 0.78, respectively. The network’s accuracy on the training 
(test) set increases (decreases) somewhat with respect to the imbalanced dataset. The general network’s per-
formance on the training set is better when the training and test sets possess the same number of patterns, i.e, 
the balanced dataset. In contrast, the numerical analysis shows that using the imbalanced dataset may improve 
the performance of the network on the test set. The details of numerical results corresponding to the balanced 
dataset can be found in Tables 3, 4.

Summary and conclusion
Modeling QNN encontours a fundamental challenge appears in the integration of the nonlinear, dissipative 
dynamics of attractor-based NNs and linear, unitary quantum computation. Dissipative quantum computing is 
highly interesting for QNN researches because it promises tractable quantum algorithms based on the dynamic 
attractors and steady states. The paper outlined this challenge and established the requirements for a meaningful 
QNN. In particular, we introduced a hybrid classical-quantum for universal quantum computation based on open 
quantum systems that exploit both the advantages of quantum physics and parallel-processed NN computing, 
simultaneously. In this line, we designed a variational quantum circuit to establish a hybrid classical-quantum 
NN for doing supervised learning tasks. At first, we considered the master equation describing the dynamics of 
a two-qubit system plunged in a global environment and obtained the steady state of the system. Since the steady 
state of two-qubits depends on its initial states, hence, it is of particular interest for QNN modeling. We described 
the fact how to encode the input signals of the network in the initial state of two-qubits. Physically, dissipation 
derives the system towards its steady state and also provides entanglement that facilitates the implementation 
of universal quantum computation.

Figure 7.   The results of different classification algorithms correspond to the whole two-dimensional synthetic 
dataset. All classification algorithms present almost the same accuracy for this special binary classification 
problem. Although there is no considerable difference between the results corresponding to this problem 
based on our hybrid classical-quantum model presented in Fig. 6 and the results of classical algorithms shown 
in this figure, the key point is that our proposed model exploits quantum resources, i.e., entanglement and 
superposition for dealing with machine learning tasks. Hence, it can perform computation significantly faster 
than the best classical algorithms.
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Figure 8.   The confusion matrices correspond to the sonar dataset. The accuracies of logistic regression for 
both train and test datasets are about 0.93 and 0.82, respectively. Note that 187 out of 208 patterns are correctly 
classified which implies a good classifier with an overall accuracy of about 90%.

Table 1.   The classifier’s performance is obtained based on the training data corresponding to the imbalanced 
dataset.

Class Precision Recall f1-score Support

Rock 0.95 0.91 0.93 78

Mine 0.91 0.95 0.93 78

Total/Ave 0.93 0.93 0.93 156

Table 2.   The network’s performance is obtained based on the test data corresponding to the imbalanced 
dataset.

Class Precision Recall f1-score Support

Rock 0.82 0.75 0.78 24

Mine 0.80 0.86 0.83 28

Total/Ave 0.81 0.81 0.81 52

Table 3.   The classifier’s performance is obtained based on the training data corresponding to the balanced 
dataset.

Class Precision Recall f1-score Support

Rock 0.96 0.97 0.97 47

Mine 0.98 0.97 0.97 57

Total/Ave 0.97 0.97 0.97 104

Table 4.   The network’s performance is obtained based on the test data corresponding to the balanced dataset.

Class Precision Recall f1-score Support

Rock 0.69 0.81 0.75 42

Mine 0.85 0.76 0.80 62

Total/Ave 0.79 0.78 0.78 104
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In order to implement a quantum computer, a set of universal quantum gates is required that are capable 
of performing any valid quantum computation protocol. We demonstrated that a sequence of displacement 
operators in conjunction with some DQCs can be used to perform universal quantum computing. Note that we 
provided such a universal gate set with the help of the dissipation process. Finally, we demonstrated the capability 
and adaptability of our proposed model by solving some binary classification problems and also compared its 
results with the best classical algorithms. Although the results show that our hybrid classical-quantum model 
and some classical algorithms offer almost the same accuracy in solving a particular classification problem, 
recall that non-classical phenomena, i.e., superposition and entanglement can lead to quantum speedup resides 
in the ability of quantum computers to do parallel processing, in a way never imagined by classical computers. 
Indeed, the hybrid classical-quantum algorithms outperform their classical counterparts due to the fact that they 
perform a part of a computational task using a quantum machine and the other part via a classical computer.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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