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Exactly solving the Kitaev 
chain and generating 
Majorana‑zero‑modes out of noisy 
qubits
Marko J. Rančić

Majorana‑zero‑modes (MZMs) were predicted to exist as edge states of a physical system called 
the Kitaev chain. MZMs should host particles that are their own antiparticles and could be used as 
a basis for a qubit which is robust‑to‑noise. However, all attempts to prove their existence gave 
inconclusive results. Here, the Kitaev chain is exactly solved with a quantum computing methodology 
and properties of MZMs are probed by generating eigenstates of the Kitev Hamiltonian on 3 noisy 
qubits of a publicly available quantum computer. After an ontological elaboration I show that two 
eigenstates of the Kitaev Hamiltonian exhibit eight signatures attributed to MZMs. The results 
presented here are a most comprehensive set of validations of MZMs ever conducted in an actual 
physical system. Furthermore, the findings of this manuscript are easily reproducible for any user of 
publicly available quantum computers, solving another important problem of research with MZMs—
the result reproducibility crisis.

A Majorana fermion is its own antiparticle. This concept originally proposed in the context of particle physics 
more than 80 years ago experienced a rebirth with the work of Alexei Kitaev in early  2000s1. Kitaev proposed 
a toy model composed out of a chain of spinless fermions which are coupled by tunnelling t in the presence of 
p-wave superconducting pairing � and tunable chemical potential µ . A Kitaev chain has an exceptional feature 
that at low chemical potential and when tunnelling is comparable to the superconducting pairing exact zero 
energy solutions localised at the edges exist. Such states are immune to any small changes in local parameters 
and could potentially serve as a basis for a topological  qubit1–6.

Thus far, two common ways of getting a theoretical insight into the physics of Kitaev Hamiltonians in a broad 
range of parameters existed: numerical diagonalization of the many-body Hamiltonian and single-particle picture 
theories, such as diagonalizing the non-interacting Bogoliubov–de Gennes Hamiltonian. Numerical diagonaliza-
tion of the many-body Hamiltonian is practically unfeasible for longer chains as the Hilbert space has 2n states, 
where n is the number of sites in the chain. On the other hand, the Bogoliubov–de Gennes Hamiltonian oper-
ates on a Hilbert space of 2n states and has two zero energy solutions in the topological regime at low chemical 
potential. However, this Hamiltonian is a single-particle one and solves the Kitaev chain in a mean-field flavour. 
The reader should also be referred to studies with Matrix-product  states7 and Quantum Monte  Carlo8.

Many theoretical proposals and experimental validations showing Majorana-like features followed after 
Kitaev’s  work9–22. Some of the works received broad attention from the scientific community such as the spin-
orbit nanowire in the presence of an external magnetic field and proximitized  superconductivity23 and deposited 
iron atoms on top of a  superconductor24. Nevertheless, all of these experimental validations were followed by 
theory or experiments of topologically trivial phenomena mimicking those of Majorana zero  modes25–39. To date, 
the verification of of MZMs remains one of the most debated on topics in physics.

Noisy quantum computers of today represent versatile platforms for probing quantum properties of chemi-
cal  systems40, QED  systems41 and even exotic, previously not-realized, condensed matter states such as time 
 crystals42, just to name a few. This manuscript aims to connect the world of MZMs with quantum computers. 
Here, I will present a method of solving the Kitaev chain Hamiltonian exactly with a quantum computing 
methodology and use a quantum computer to prepare exact eigenstates of such a Hamiltonian in what is com-
monly refereed to as a topologically non-trivial regime. The Kitaev chain in this study is composed out of noisy 
qubits. One key question which the reader of this study might have is: are the Majorana-zero-modes (MZMs) 
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“artificiality” created on a quantum computer within this study actual MZMs or a mere representation of MZMs 
on a quantum computer? Given that quantum computers prepare actual quantum–mechanical wavefunctions 
this question might be paraphrased as: if two wavefunctions are exactly the same do they describe the same 
physical reality? The question of the meaning of the wavefunction is almost as old of quantum mechanics itself 
as it was initially posed by Max Born Ref.43. Until recently the meaning of the wavefunction remained a some-
what disputed question with works of Refs.44,45 providing the most complete answer to-date. The author of this 
manuscript is closest to the view of Colbeck and Renner that a 1-to-1 mapping between the wavefunction and 
reality exist with a prior assumption that measurement settings could be freely chosen Ref.45. To put it simply: 
the MZMs generated on a quantum computer would be as real as they would be in any realisation in a condensed 
matter setting under the assumption of a non-super-deterministic universe.

Recent studies with quantum computers have focused on a single trait of MZMs (predominantly braiding) at 
µ = 0 and t = � with approximate methods to prepare the ground state such as the imaginary time evolution. 
Historically the idea to probe braiding of MZMs with quantum computers was originally proposed in the context 
of superconducting qubits in Ref.46 and was realised with a photonic system in Ref.47 and a superconducting 
 system48. Novel works with qubits also focus on teleportation of  MZMs49 and entanglement  entropy50.

In contrast to the above-mentioned works here I will present a general methodology to exactly obtain the 
eigenstates of the Kitaev Hamiltonian on a quantum computer in a broad range of parameters µ , t and � . Instead 
on focusing solely on a handful of features indicative of MZMs, my robust framework allows me to simultane-
ously test a record number of prediction about MZMs in an actual physical system. Two eigenstates of a 3-site 
Kitaev chain will show eight distinct features of MZMs: (1) a robust to noise degeneracy with their ground states 
at low chemical potential, an important feature of MZMs as discussed in Ref.51; (2) upon visually comparing the 
measured spectrum with a classically obtained Bogoliubov-de-Gennes (BdG) single-particle spectrum of MZMs 
a striking similarity is observed, like predicted in Kitaev’s original  proposal1. This similarity is quantified by 
calculating a mean absolute error of the measured data with respect to the BdG predictions; (3) the states under 
study have a well defined parity as discussed in Ref.3, with (4) parity switches at specific values of the chemical 
potential in striking accordance with single-particle theories of MZMs—a feature originally predicted in Ref.52; 
(5) A non-conserved particle number of MZMs states as elaborated in Ref.53; (6) a Majorana-edge correlation 
function which decays with the chemical potential. Although this feature was quantitatively predicted in the 
thermodynamic limit here due to a finite chain size I display only qualitative  matching7; (7) a display that MZMs 
favour exclusively Majorana-edge pairing at low chemical potential and (8) nearest-neighbour pairing at large 
values of the chemical potential another feature predicted in Kitaev’s original  proposal1.

The goal of this study is to go beyond showing a handful of indications of MZMs and present a large number 
(eight) of corroborating evidence in a single reproducible experiment. Furthermore, the findings of this manu-
script are easily reproducible for any user of publicly available quantum computers, solving another important 
issue with MZMs—the reproducibility  crisis54. This study focuses on a 3-site Kitaev chain for doing experiments 
on actual quantum computers and 4-site chains for simulating the results of noiseless quantum computers with 
Qiskit. The chain length in this study was limited by noise levels of quantum computers. Experiments with longer 
chains of up to 7 qubits were a focus of a followup  study55 performed together with researchers from IBM where 
error mitigation had to be applied to get results for longer chains because of the noise levels in contemporary 
quantum computers.

Methodology
Throughout this paper, I will display results obtained by executing code developed for a combination of IBM’s 
Qiskit and Google’s quantum AI Cirq. The key ingredient of the code is a method for exactly preparing eigenstates 
of quadratic Hamiltonians. Preparing eigenstates of quadratic Hamiltonians is equivalent to preparing Slater 
determinants. Such states are called fermionic Gaussian states, as explained in Ref.56 and are implemented with 
Google Quantum AI’s Cirq  OpenFermion57. Fermionic Gaussian states cannot describe excited states of exactly 
degenerate  Hamiltonians58. Such wavefunctions are denoted as |ψ� . As extensive numerical testing of the Kitaev 
chain showed multiple degeneracies at µ = 0 , I come as close to zero as µ = 10−8|t|.

The full n-site Kitaev chain Hamiltonian is given by

Here, µk denotes the chemical potential at kth site, tkj denotes the tunnel hopping between sites k and j, �kj the 
superconducting pairing, ck annihilates an electron at site k while c†k creates the electron at the same site, and H.c. 
stands for an Hermitian conjugation. Majorana zero modes exist as solutions of the Kitaev Hamiltonian around 
µ = 0 and � = −t . This can be seen when substituting c†k = (γ2k−1 + iγ2k)/2 and ck = (γ2k−1 − iγ2k)/2 into 
Eq. (1), where γk is kth Majorana operator with the property γk = γ

†
k  . Throughout this paper, I will assume no 

local variations of these variables on different sites, hence µk , tkj and �kj become µ , t and �.
I will calculate and measure expectation values of a number of observables, the expectation value of energy 

E = �ψ |H|ψ� , Majorana edge correlation function �ψ |iγ1γ2n|ψ�7 (where n denotes the number of sites and i 
denotes a complex number), Majorana site correlation function �ψ |iγ1γk|ψ� , Majorana parity operator 
�P� = �ψ |

∏n
k=1

(

1− 2c†kck

)

|ψ� and particle number operator �N� = �ψ |
∑

k=1,n c
†
kck|ψ� . All of these quantities 

are expressed via fermionic creation and annihilation operators and transformed into a qubit representation via 
a Jordan-Wigner  transformation59.

(1)H =
∑

k=1,n

µkc
†
kck −

∑

�kj�

(

tkjc
†
kcj −�kjc

†
kc

†
j +H .c.

)

.
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According to Eq. (17) in Ref.52, a topological state is supposed to exhibit parity switches at a chemical potential

where p = 1, . . . , n/2 for an even number of sites in the Kitaev chain n and p = 1, . . . , (n− 1)/2 for an odd n.
In Fig. 1 I display a quantum computer circuit for generating a ground state of a 3-site Kitaev Hamiltonian at 

t = −1 , � = 1 and µ = 0+ = 10−8 , denoted by [ ] . This circuit is composed from nearest-neighbour two-qubit 
gates defined by RYXXY(α) = exp (−i(X ⊗ Y − Y ⊗ X)α/2) , and RZ(β) gates (rotations of the qubit around 
the z-axis of the Bloch sphere for an angle β ) and X gate rotates a qubit around the x-axis of the Bloch sphere for 
an angle of π . All excited energy eigenstates of the 3−site Kitaev Hamiltonian at the given parameter regime are 
built by first applying X gates to appropriate qubits and then executing the circuit in Fig. 1. For instance the first 
excited state is obtained by applying an X gate to qubit q0 followed by the execution of the circuit in Fig. 1 and 
is denoted as [0]. The highest energy state is obtained by applying X gates to qubits q0, q1, q2 followed by the 
execution of the circuit in Fig. 1, and is denoted as [0, 1, 2]. Google Quantum AI’s Cirq calculates the optimal 
angles α and β based on the input of µ , � and t. A more detailed discussion on how such circuits are generated 
is given in Supplementary Material Section S1.

(2)µPS = ±2
√

t2 −�2 cos

(

πp

n+ 1

)

,

Figure 1.  The circuit which generates a ground state of a 3 site Kitaev Hamiltonian at t = −1 , � = 1 and 
µ = 10

−8 . A general procedure for obtaining quantum computing circuits which represent the ground state of 
arbitrary quadratic Hamiltonians is given in Supplementary material Section S1.

Figure 2.  Quantities of the Kitaev Hamiltonian at t = −1 and � = 1 as a function of the chemical potential 
µ in units of absolute value of tunnelling [t]. (a–e) Black “x” symbols represent a result of a numerical 
diagonalization on a classical computer. Red “x” symbols (full lines) values obtained on a quantum computer 
(ideal simulator of quantum computers) with �P(µ = 0

+)� = 1 . Blue “x” symbols (full lines) values obtained 
on a quantum computer (ideal simulator of quantum computers) with �P(µ = 0

+)� = −1 . The black arrows 
in (a,b) denote the position of the possible topological degeneracy. The “M” in (b,c,d,f) denotes the alleged 
MZM state. (a,b) The full spectrum of the Kitaev Hamiltonian obtained with Gaussian states compared to a 
numerical diagonalization (a) and IBMQ Santiago (b). (c) The single-particle picture BdG spectrum (full line) 
compared to the BdG spectrum on IBMQ Santiago. Shaded blue and red regions represent a root-mean-squared 
deviation of a given state with respect to a theoretical prediction of the BdG spectrum on QPUs in presence of 
pure-dephasing (see Supplementary section S3 for more details about the noise model). (d) Majorana edge-
correlation function, an ideal simulation compared to the actual 3-site Kitaev chain composed out of qubits. 
(e) Parity—an ideal simulation compared to the actual 3-site Kitaev chain composed out of qubits. (f) Particle 
number on an ideal simulator (full lines) and actual 3-site Kitaev chain composed out of qubits (x-shaped 
coloured symbols).



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19882  | https://doi.org/10.1038/s41598-022-24341-z

www.nature.com/scientificreports/

A comparison between theory and experiment
In Fig. 2a I display the spectrum of a 3-site Kitaev chain Hamiltonian having 2n = 8 eigenstates. Here, a com-
parison is given between a full diagonalization of the Kitaev Hamiltonian (black “x” symbols) and a solution 
obtained by implementing Gaussian states on an ideal quantum computer simulator (red and blue full lines). 
The red (blue) colour denotes states for which �P(µ = 0+)� = +1(−1) . Upon visual comparison these solu-
tions show excellent agreement. The spectrum in subfigure (a) has a lowest energy state (highest energy state) 
with a next higher (lower) energy state degenerate to it around µ = 0 , and such degeneracies are marked with 
arrows. It should be noticed that there is a striking matching between a full numerical diagonalization and the 
fermionic Gaussian states.

In subfigure (b) I compare Gaussian states on an ideal simulator of quantum computers with their realisation 
on IBMQ Santiago. The circuit of the quantum eigenstate of the Kitaev chain is composed out of 6 two-qubit 
gates (RYXXY is implemented with two CNOT + single-qubit gates) and 9–13 single-qubit gates. The experi-
ment is conducted for 8192 shots, with CNOT errors of 0.74% and readout errors of 1.5% . Single-qubit errors 
are not specified, however the average single-qubit frequency is 4.7 GHz with a pure dephasing time T2 = 70 
µ s and qubit relaxation time T1 = 83 µ s. Consequently, single-qubit gate errors influence the results much less 
than readout and two-qubit gate infidelity. Although all eigenstates move towards zero energy due to quantum 
noise, the degeneracy between states [ ] and [0] is not lifted by quantum noise. Similarly to that, the degeneracy 
between states [1, 2] and [0, 1, 2] follows the same pattern. One possible explanation for this degeneracy would 
be that it is topological in nature which would be the case if states [0] and [1, 2] are indeed Majorana zero modes.

The BdG Hamiltonian solves the problem of the Kitaev chain in a single-particle picture. It features electrons 
and holes and their energy splitting from their ground state (that of electrons and that of holes). Even though the 
Kitaev chain is rather short, the BdG Hamiltonian (subfigure (c)) is indicating the presence of two zero energy 
eigenstates (zero in the context of how far away are they from their respective groundstate) which split in energy 
as the chemical potential µ is varied. This robust feature exist both in theory and on a noisy quantum computer. 
The BdG Hamiltonian has 2n = 6 eigenstates for a 3-site Kitaev chain. For the alleged MZM states, the BdG 
energy is in remarkable visual accordance with the measured output of the quantum device. One can quantify 
this by defining a mean absolute error as ME =

(
∑

i |xi − yi|
)

/m , where m is the total number of measurements/
predictions, xi is the ith measurement of energy from the quantum device and yi is the ith prediction of the BdG 
Hamiltonian. I find a ME = 0.129 for −1.87 ≤ yi ≤ 1.87 . To further corroborate the correlation between the 
model and the data I have performed an estimation of the R2 parameter with scipy.stats.linregress and obtained 
0.95 [0, 1, 2] − [1, 2] and 0.75 for [] − [0] indicating a strong correlation between the model and measured data, 
even in the presence of quantum noise.

When t = −� an n-site Kitaev chain remains in the topological regime up to µ = 2t(1− 1/n) . In the case of 
n = 3 the system is in the topological regime up to µ = 4/3—first 9 points in the subfigure (c) are topological. 
For an in-depth discussion on how this condition is calculated the reader is refereed to Supplementary Material 
Section S2. States which are split from zero energy at low µ are often referred to as topologically trivial states 
in literature. It should be noted that although Majorana zero modes remained at zero energy, the topologically 
trivial states are further shifted towards zero as compared to theory due to quantum noise at low µ . For a more 
quantitative analysis of the noise present in the system I revert the reader to Supplementary Material S3.

To further corroborate the Majorana zero mode nature of eigenstates of the Kitaev Hamiltonian I performed 
experiments and calculated the Majorana edge correlation function, 〈iγ1γ6〉 , where 1 and 6 are indices of the 
Majoranas on the edge of the Kitaev chain. If this number is +1(−1) this would mean that the Majoranas on 
the edges are correlated(anti-correlated) and if this number is 0 there is no Majorana pairing in the system. In 
subfigure (d) we see that the states [0] and [1, 2] behave exactly as predicted by mean-field theory, as the chemi-
cal potential is varied the Majorana states at the edges of the chain become less (anti)-correlated. However, the 
experimental value does not reach ±1 due to quantum noise. For a more quantitative analysis of the Majorana 
edge correlation function I revert the reader to Supplementary Material S4.

As further consistency checks, I performed measurements and simulations of the parity of the eigenstates 
of the Kitaev Hamiltonian, and these results are displayed in subfigure (e). The eigenstates are clearly separated 
in terms of parity ±1 in case of theory, and positive and negative in case of experiment. A naive expectation for 
MZMs is that they do conserve parity as pairs of particles can be freely generated from the superconducting 
condensate. Similarly to energy measurements, the discrepancy between the theoretical and the experimental 
values is due to quantum noise. It should be noted that the eigenstates undergo a topological phase transition 
in which the parity of all eigenstates switches between the first two points ( µ1 = 10−8 and µ2 = 0.155 ). This 
topological phase transition is predicted to occur within the single-particle picture at µ = 0 and will be discussed 
in detail later in this section.

Lastly in subfigure (f) I plot the total particle number of particles for different eigenstates. A naive expectation 
for MZMs is that they do not conserve particle number as a function of chemical potential, at least in a picture 
where the topological region is observed separately from the bare  superconductor53,60. This is due to the fact that 
in the picture of a separated topological and non-topological condensate pairs of particles can be freely gener-
ated from the superconducting  condensate53, and states [0] and [1, 2] behave in the expected manner. If particle 
number was conserved (a good quantum number) this would mean that as the parameters of the Hamiltonian 
and respective eigenstate are changed, the expectation value of the particle number operator would remain the 
same. For states [0] and [1, 2] the particle number is not conserved at small µ and then saturates to a value 1 or 
2 at large values of µ.

In Fig. 3 I test the single-particle prediction that parity switches occur according to Eq. (2). Tunnelling is kept 
constant at t = −1 , � = 0.25, 0.5, 0.75, 1, 1.25 and µ is varied between 10−8 and 3.1 in 20 increments of 0.155. 
The points where parity switches represent a topological phase transition. Squared markers are added to ideal 
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quantum simulator data. The grey line represents a region where the parity switching is likely to occur and it 
exists due to a limited resolution in µ in which the experiment is performed. The white line is the exact expected 
position of such a transition as predicted by the single-particle picture. Such parity switches could be understood 
as points in which two MZM eigenstates cross the zero of energy.

The results show that the behaviour of the exact solutions and the experiment is much in line with the predic-
tion: parity switches occur exactly where they are predicted with Eq. (2). Here, I find the only minor discrepancy 
between the single-particle picture and the full solution—parity switches occur in a narrow parameter region in 
µ (see subfigure (e)) and not in a single point. However, this region in parameter space of µ is quite narrow—on 
the order of 4× 10−8 that I conclude that it is quite in line with predictions. A comparison between the simulated 
results (squares) and outputs of the quantum computers (“x” markers) show that this feature is quite robust to 
quantum noise. Although the value of the parity decreases on quantum computers as compared to ideal simula-
tions, the point where parity switches is robust to any relaxation and pure dephasing. This an indication that this 
parity switches represent a topological phase transition.

In Fig. 4 we observe the Majorana site correlation function 〈iγ1γk〉 in the topological regime � = −t = 1 as 
a function of the chemical potential µ . First it should be noted that the operator iγ1γk is non-Hermitian at k = 1 
so the site correlation operator is an observable only when k > 1.

At low chemical potential states [0] and [1, 2] are exhibiting a Majorana-like character—a Majorana site 
correlation function localized at edges which is ±1 for the results of an ideal simulation (full lines). The actual 
execution on a quantum computer (colored “x” symbols) follows a similar qualitative trend but does not quanti-
tatively reach ±1 due to quantum noise. As the chemical potential increased, Majorana zero modes start favoring 
correlations between neighboring Majorana fermions more. This is potentially a key differentiation between 
MZMs and trivial zero-energy states such as Andreev bound states, as the latter are not localized at the  edges34.

This figure also allows the determination of the type of quantum noise dominating in the experiment. When 
observing the value of the site-correlation function for states [ ] and [0, 1, 2] at µ = 1 and µ = 2 around k = 2 we 

Figure 3.  (a–d) and (f) Parity switches at t = −1 for different values of � and for 20 values of µ between 10−8 
and 3.1 with a 0.155 increment. (e) Parity switches for 400 values of µ between −5× 10

−8 and 5× 10
−8.

Figure 4.  Site correlation function where k denotes the site at different values of the chemical potential in the 
topological regime � = −t = 1 . Full lines denote values obtained by an ideal simulator of quantum computers 
at points of integer k and “x”-markers are output from IBMQ Santiago. Colour code is explained on the right.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19882  | https://doi.org/10.1038/s41598-022-24341-z

www.nature.com/scientificreports/

see that the state [0, 1, 2] and the state [ ] have the same absolute value in theory. However, in the experimental 
realization the measured value of the site correlation function is much closer to the theoretical value for the state 
[ ] as opposed to the state [0, 1, 2]. The only difference between these two states are the simulations three single 
qubit X gates applied to qubits q0, q1 and q2. It should be noted that single qubit gates by themselves should 
not have such a profound effect on state fidelity due to the fact that they are quite noise robust. This is a strong 
indication that qubit cross-talk is present and the dominating dephasing source in IBMQ Santiago—an effect 
already known and well characterized for other IBMQ processors such as IBMQ  Poughkeepsie61. In Supplemen-
tary Material S5 I give another realization of the same experiment corroborating the same qualitative features. 
In Supplementary material S6 the same results are presented for a 4-site Kitaev chain on simulators of quantum 
computers. Example of a 4-site BdG spectrum is given here just to show that the methodology generalizes to 
longer chains Fig. 5.

Comparison with non-topological phenomena mimicking MZMs A number of topologically trivial phenomena 
mimic the behavior of MZMs in some regards. Caroli-de Gennes-Matricon (CdGM)  states37, Yu-Shiba-Rusinov 
(YSR)  states62 and Andreev bound  states34 are the most common ones refereed to in the literature. CdGM states 
are subgap states close to zero energy when � ≪ µ . In our case the sticking of the energy levels to zero occurs 
in the opposite limit when � ≫ µ . Furthermore, YSR states and Andreev bound states require a non-supercon-
ducting region. A bound state which is created in these two cases is local in  nature34- unlike the case presented 
here no long-range Majorana correlations are present.

Conclusion
To conclude, here I solved the Kitaev chain exactly with quantum computing methods and showed both theoreti-
cally and experimentally that two eigenstates of the Kitaev Hamiltonian have a large number of features that cor-
roborate their Majorana zero mode nature. They are zero energy excitations of their respective groundstate with 
a robust-to-noise degeneracy, they have a Majorana edge-correlation function which decays with the chemical 
potential. Furthermore, Majorana zero modes favour Majorana pairing between edges of the Kitaev chain, do not 
preserve particle number and have parity switches at points in the parameter space as predicted by single-particle 
theories. The results presented here are the most complete set of experimental validations which confirm the 
existence of Majorana zero modes on the edges of a Kitaev chain, as the eigenstates of the Kitaev Hamiltonian 
are tested for eight distinct indications of MZMs in a single, reproducible experiment.

Data availability
Full experimental data and code is available at 10.5281/zenodo.6323467.
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