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Affordable, portable 
and self‑administrable electrical 
impedance tomography enables 
global and regional lung function 
assessment
Fedi Zouari  1, Wei Yi Oon  1,5, Dipyaman Modak  1, Wing Hang Lee 1, 
Wang Chun Kwok  2,3, Peng Cao  4, Wei‑Ning Lee  5, Terence Chi Chun Tam  2,3, 
Eddie C. Wong  1 & Russell W. Chan  1*

Accessibility of diagnostic screening and treatment monitoring devices for respiratory diseases 
is critical in promoting healthcare and reducing sudden complications and mortality. Spirometry 
is the standard for diagnosing and monitoring several lung diseases. However, it lacks regional 
assessment capabilities necessary for detecting subtle regional changes in certain diseases. It also 
requires challenging breathing maneuvers difficult for elderlies, children, and diseased patients. 
Here, we actualized an affordable, portable, and self‑administrable electrical impedance tomography 
(EIT) system for home‑based lung function assessment and telemedicine. Through simultaneous 
EIT‑spirometry trials on healthy subjects, we demonstrated that our device can predict spirometry 
indicators over a wide range and can provide regional mapping of these indicators. We further 
developed a close‑to‑effortless breathing paradigm and tested it by longitudinally monitoring a 
COVID‑19 discharged subject and two healthy controls with results suggesting the paradigm can 
detect initial deterioration followed by recovery. Overall, the EIT system can be widely applicable for 
lung function screening and monitoring both at homes and clinics.

Main
Respiratory diseases encompass five of the thirty most common causes of severe illness and death  worldwide1. 
Diagnostic screening and continuous monitoring of these diseases are critical for improving patients’ healthcare, 
and reducing sudden complications and mortality. While home-based screening and monitoring is a practical 
and cost-effective way to alleviate the burden associated with these  disease2–4, its effectiveness is often challenged 
because of the lack of self-administrable, home-based and standard medical  tools5,6.

To date,  spirometry7 is the standard lung function assessment to evaluate overall aerodynamics, identify and 
monitor different conditions including COVID-198. However, spirometry lacks the capability for regional assess-
ment which is necessary for detecting, assessing and monitoring regional changes in certain lung diseases, such 
as chronic obstructive pulmonary disease (COPD)9 and potentially long COVID-1910. For instance, spirometry 
missed 10.4% of patients with COPD who have significant  emphysema9. Furthermore, only 9% of COVID-19 
discharged patients had no residual lung computed tomography (CT)  abnormalities10 months after discharge, 
even though spirometry indices were all  normal10. These studies signify the need for regional assessment of 
pulmonary functions.

Regional lung function is typically assessed through CT, hyperpolarized magnetic resonance imaging (MRI) 
or nuclear imaging  methods11. However, these techniques are typically costly and have poor temporal resolution, 
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which may not be ideal for lung function monitoring. Electrical impedance  tomography12,13 (EIT) is an increas-
ingly used radiation-free and non-invasive biomedical imaging technique for monitoring lung function, particu-
larly infants in intensive care  units14,15. Although EIT has low spatial resolution, its high temporal resolution is 
suitable for lung function testing. As such, recent research efforts were allocated to establish a relation between 
EIT and standard lung function measures to facilitate the interpretability of EIT results. For instance, a previous 
study developed a parametric model of the relationship between lung volume change, EIT conductivity change 
and anthropometric  information16. However, they did not apply standard spirometry breathing maneuvers, as 
such whether EIT can directly reflect spirometry indicators remains inconclusive. More recently, this relationship 
has been  investigated17, yet subject-wise calibration is required to enable the prediction of spirometry indicators 
from EIT. Overall, the use of EIT as a standalone method to predict standard lung function spirometry indica-
tors is yet to be demonstrated.

Despite the recent advances in electronics which enabled the development of portable EIT  devices18,19, com-
mercial EIT systems remain costly, bulky and require clinicians to operate and  interpret13. Hence, the wide 
usability of EIT systems on diagnostic screening of lung diseases and telemedicine applications of monitoring 
pulmonary functions is still hindered for both home-based or clinical settings. Here, we designed and imple-
mented an affordable, portable, and self-administrable EIT system and established its association with standard 
spirometry. Our portable EIT system not only can be used as a standalone device to predict global spirometry 
indicators without subject-wise calibration (an advantage over existing EIT systems), but also provides regional 
mapping of these indicators (an advantage over spirometry). Furthermore, since spirometry requires subjects 
to perform a series of maneuvers correctly, which is difficult for elderly, children, and patients with severe lung 
impairments, we developed a novel close-to-effortless guided breathing paradigm for home-based lung function 
assessment. We demonstrated that this paradigm could reflect global and regional lung functions over healthy 
subjects. We further assessed the paradigm by longitudinally monitoring a COVID-19 discharged subject and 
two controls, with results suggesting initial deterioration followed by recovery for the COVID-19 discharged 
subject. It should be noted that the proposed close-to-effortless breathing paradigm is not intended to replace 
spirometry paradigm. Instead, it can be used as an alternative for screening and monitoring, which should 
be easier compared to the gold standard spirometry paradigm since it requires subjects to perform a series of 
manoeuvres correctly.

Results
Design of home‑based lung function assessment system for telemedicine. To support home-
based screening and monitoring, we designed the EIT system taking into consideration the portability, self-
administrability and cost-effectiveness. We developed a palm-size and light-weight console with dimensions of 
15.2 × 11.0 × 4.4  cm3 and < 300 g (Fig. 1A). The portable console functions together with a reusable and disinfect-
able 16-channel electrode belt (Fig. 1A), mobile app interface, and cloud-based processing pipeline. The port-
ability function is supported through the integration of a power and battery management module enabling the 
complete system to operate with a constant power supply of 3.3 V, thus it can function either through a power 
socket or a Li-ion battery. Note that several EIT  systems20–22 require a higher power supply ranging from ± 5 V 
(total of 10 V) to ± 15 V (total of 30 V). To enable the portability of these systems, it is necessary to use multiple 
batteries which is more costly and impose additional challenges in cooling the system and fulfilling the Interna-
tional Electrotechnical Commission (IEC) regulations. The developed system also ensures users’ safety by limit-
ing the generated current amplitude up to 1 mApp in accordance with regulatory guidelines of medical devices 
issued by the IEC (console details see Supplementary Figure S1 and online methods). The developed system can 
achieve flexible frame rate up to 50 frames per second through a triple interleaved ADC method (fps), enabling 
the detection of high frequency conductivity changes such as the ones during forced exhalation in spirometry 
tests (more details in online methods). The electrode belt consists of an elastic silicon band with sixteen equally 
spaced disposable carbon gel electrodes and come in sizes ranging from 65 to 120 cm in length with extendable 
range of 10% of its original length to accommodate chest circumference variance between populations and dif-
ferent breathing maneuvers. It is recommended to replace the gel electrodes every time after each use to ensure 
the best performance. The self-administrability function is supported through a mobile app which guides users 
to connect the console (see Supplementary Guide to connect to the console) and wear the electrode belt (see 
Supplementary Guide to wear the lung belt) and instructs users to perform breathing paradigms (Supplemen-
tary Guide to perform the lung test and Supplementary Figure S2). The acquired data can be either processed in 
a cloud-based processing pipeline or through a desktop application. The acquired raw data is denoised, then the 
time-difference EIT images are reconstructed and processed to generate functional maps, where the EIT-derived 
indicators are further extracted (Supplementary Figure S3). Streamlined data processing through a desktop or a 
cloud-based application enables both online and offline usability of the device while minimizing the additional 
cost for optimizing computational power of the console.

Device characterization and performance validation. To enable our EIT system to benefit from the 
extensive spirometry literature, we aimed to establish the relation between the change in conductivity measured 
by EIT and the change in volume measured by spirometers. For this purpose, we applied EIT and spirometry 
(MIR Spirobank) simultaneously to fourteen healthy subjects of different age, height, weight, and ethnicity and 
predicted FVC (demographic and anthropometric details are in Supplementary Table S1). The predicted FVC 
of the selected subjects ranges from from 3.25 to 5.5 L with a mean 4.5L and a standard deviation of 0.8 L, as 
computed from the National Health and Nutrition Survey (NHANES)  III23. All subjects in this work, unless 
otherwise stated, performed the tests in standing position and placed the belt at the thorax around the T4 and T5 
vertebrae, that is right below the nipples for men and right below the breast for women. Each subject performed 
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at least five repetitions of four customized breathing paradigms shown in Fig. 1B denoted (1) full inhale and fast 
exhale, (2) full inhale and slow exhale, (3) mid inhale and fast exhale; and (4) mid inhale and slow exhale. Note 
the first paradigm, i.e., full inhale and fast exhale, is the standard spirometry breathing paradigm. These para-
digms were chosen in order to simulate a wide range of flow-rate and volume changes from different subjects 
(details see online methods).

The global conductivity waveforms measured with EIT and the volume-time waveforms measured with 
spirometer during the middle exhale section are extracted and shown in Fig. 1C. The volume and conductiv-
ity curves change in similar fashion for all breathing modes qualitatively. The Pearson’s correlation coefficient 
(PCC) computed between volume and conductivity on volume segments 0–1 L (L), 1–2 L, 2–3 L, and 3–4 L for 
each individual test is larger than 0.8 (p < 0.001, Fig. 1C), confirming that EIT can capture conductivity changes 
synchronously with volume changes.

The scatter plots between the conductivity and volume changes for different subjects are presented in 
Fig. 2A. The relationship between conductivity and volume is linear with an average PCC equal to 0.89 ± 0.02 
(p < 0.001) for all subjects. A simple linear regression is performed to obtain the best fit line that predicts the 
volume from conductivity on different subjects. Note the slopes of the best fit lines are different for each subject 
(Fig. 2B), implying the volume change cannot be purely explained with conductivity change for different sub-
jects (PCC = 0.52). The correlation between the slope and intercept, and subjects’ anthropometrics such as age, 
gender, height, weight, weight-height ratio ( W/H ) and chest circumference (Chest) are evaluated and shown 
in Fig. 2C and Supplementary Figure S4, which shows that the slope has a strong correlation with the weight, 
weight-height ratio and chest circumference (PCC > 0.8; p < 0.001). This implies that subjects with larger weight/

Figure 1.  The portable EIT system and its data processing pipelines extracts conductivity-time curves that 
are highly correlated with the volume-time curves under different breathing paradigms. (A) The EIT system 
consists of a portable console, electrode belt, mobile app interface, and cloud-based processing pipeline. 
Raw EIT data is first acquired followed by denoising, time-difference EIT image reconstruction, and global 
conductivity waveform extraction. (B) Simultaneous EIT and spirometry were applied with four different 
breathing paradigms, including a combination of full or mid capacity inhale, and fast or slow exhale. (C) The 
mean (± standard error) of the extracted global conductivity-time curve and the volume-time curve agree as 
shown by the bar plots of the Pearson’s correlation coefficient (PCC; ± standard error) computed on the volume 
segments 0-1L, 1-2L, 2-3L, and 3-4L. The drawings of the electrode belt and the portable EIT console were made 
using Dassault Systemes Solidworks 2020, Luxion Keyshot 9 and Adobe Photoshop CC 2019. The drawings of 
the dummy person and spirometer were made using Adobe Illustrator 2021.
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height and/or chest circumference has larger slope and hence for those subjects a smaller change in conductiv-
ity is related to a larger change in volume. Since both weight/height and chest circumference are proportional 
to the volume of the conductive medium, the larger these quantities, the larger the resistance and the slower 
the change in conductivity. Hence, the weight/height and the chest circumference are used in addition to the 
conductivity to train a regression model for predicting the volume. The sought model should have a W/H and 
chest-dependent slope. This is equivalent to a linear regression model with dependent variables which include 
product terms of anthropometric parameters and conductivity. Since the W/H ratio is strongly correlated with 
the weight (PCC > 0.98; p < 0.001), weight was not included to avoid multi-collinearity.

To ensure that the regression model is capable of generalizing to unseen data from subjects with different 
anthropometrics and to fairly evaluate the model performance, the data is split into training- and testing-samples. 
The test-samples are obtained by randomly excluding all data from two subjects and another 10% of the data from 

Figure 2.  With anthropometric correction, the developed EIT system can be used as a standalone device to 
predict lung volume change over time. (A) Global EIT conductivity-time curves are significantly correlated 
with volume-time curves for individual subjects. These indicate that the relation between conductivity and 
volume are quasi-linear and subject-dependent. (B) The relation between conductivity-time curves and 
volume-time curves is subject dependent. (C) The correlation matrix between the slope, intercept and subjects’ 
anthropometrics shows that the slope is highly correlated with the weight-height ratio (W/H) and the chest 
circumference (Chest). (D) The predicted volume-time curves using EIT and subjects’ anthropometrics 
are highly correlated with the measured volume-time curves. The train and test samples are shown in 
Supplementary Figure S5 (E) The mean (± standard error) of the predicted volume-time curves is in agreement 
with the mean (± standard error) of the measured volume-time curves for all breathing efforts as shown by the 
bar plots of the Pearson’s correlation coefficient (PCC; ± standard error) computed on the volume segments 
0-1L, 1-2L, 2-3L, and 3-4L.
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the remaining subjects. The training-samples are the remaining data. Note the proportion of the testing-samples is 
24% from the total samples. The predicted volume and the measured volume are significantly correlated (Fig. 2D, 
Supplementary Figure S5) for both training (PCC = 0.89; p < 0.001) and testing-samples (PCC = 0.8; p < 0.001). 
The normalized root mean squared error (NRMSE) of the predicted volume is 10.4% and 13.4% for the training- 
and testing-samples, respectively. These errors are of the same order of magnitude as in previous  studies16. This 
shows that the developed regression model can predict the volume from the conductivity and anthropometrics 
for a wide dynamic range and for different subjects of different anthropometrics. The predicted volume over time 
for different effort level agree with the measured volume (Fig. 2E, PCC > 0.8; p < 0.001 for all volume segments).

Spirometry indicators predicted using EIT. From diagnosis point-of-view, spirometry indicators are 
considered the gold standard, and is the most widely used diagnostic test for asthma, chronic obstructive pulmo-
nary disease (COPD) and other obstructive or restrictive lung  diseases24. The most widely used spirometry indi-
cators are forced vital capacity (FVC), forced expiration volume in 1 s (FEV1), FEV1/FVC ratio, peak expiratory 
flow (PEF) and forced expiratory flow at 25–75% of forced vital capacity (FEF25–75%). It is therefore important 
to ensure our EIT device can predict these indicators. Since not all customized breathing paradigms involve 
full-effort forced exhalation, these indicators are referred as maximal volume engaged (MVE), exhaled volume 
in 1 s (EV1), EV1/MVE ratio, maximum expiratory flow (MEF), and expiratory flow at 25–75% of maximum 
volume engaged (EF25-75%), corresponding to FVC, FEV1, FEV1/FVC, PEF, FEF25-75% respectively. These 
EIT-derived indicators are calculated as follows (Fig. 3A). MVE is obtained by the difference between the maxi-
mum and minimum predicted volume changes; EV1 is the change in predicted volume within the first second 
from the onset of exhalation; EV1/MVE is the ratio of EV1 and MVE; MEF is the maximum value of the time 
derivative of the predicted volume curve; and EF25-75% is the average of the time derivative of the predicted 
volume during the expiration from 25% of MVE to 75% of MVE. The scatter plots in Fig. 3B show the spirometry 
indicators predicted from our EIT device versus the measured spirometry indicators. All indicators predicted 
using our device are significantly correlated with the spirometry indicators (PCC > 0.7; p < 0.001; online meth-
ods, Supplementary Table S2).

Regional spirometry indicators are consistent with corresponding breathing paradigms. The 
same indicators MVE, EV1, EV1/MVE, MEF and EF25-75% are also computed at a voxel-level (functional 
maps). Indicators at voxels having a low correlation with the global waveform and small amplitude are set to zero 
to reduce the noise in the functional maps (Fig. 4A). The left and right lung clusters are further partitioned into 
posterior and anterior partitions (i.e., anterior left (AL), posterior left (PL), anterior right (AR) and posterior 

Figure 3.  The spirometry indicators predicted with the EIT device are significantly correlated with the 
indicators from a standard spirometer, demonstrating the capability of the developed EIT system to infer 
standard lung function indicators. (A) Illustration of the method used for calculating the spirometry  indicators7 
(B) EIT-derived indicators are significantly correlated with spirometry indicators across a wide dynamic range 
for both training and testing samples, demonstrating that the device has standard spirometry capabilities. 
Abbreviations: Maximal volume engaged (MVE), exhaled volume in 1 s (EV1), maximum expiratory flow 
(MEF), expiratory flow at 25–75% of maximum volume engaged (EF25-75%).
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right (PR)) in which the indicators are evaluated. The averaged functional maps of each EIT-derived indicator 
from all the breathing paradigms are shown in Fig. 4B. All EIT-derived indicators extracted from four ROIs 
(Fig. 4C) shared a similar trend as the global, i.e., the MVE is higher in paradigms involving full capacity inhale 
(p < 0.001), the EV1 is highest in full capacity inhale with fast exhale (p < 0.001) and is lowest in half capacity 
inhale with slow exhale (p < 0.001), the EV1/MVE ratio is higher in paradigms involving fast exhale (p < 0.001), 
the MEF is highest in full capacity inhale with fast exhale (p < 0.001) and is lowest in half capacity inhale with 
slow exhale (p < 0.001), and the EF25-75% is highest in full capacity inhale with fast exhale (p < 0.001) and is 
lowest in slow exhale (p < 0.001).

Novel close‑to‑effortless guided breathing paradigm. We further developed a novel guided breath-
ing paradigm which consists of a periodic inhalation and exhalation at 12 breaths per minute (bpm) (Fig. 5A), 
and its corresponding processing pipeline (see online methods). The choice of a relatively slow breathing rate 
(typical range: 12–20  bpm25) is to impose a certain degree of breathing challenge. That is a normal subject would 
tend to breathe a larger amount of air at each cycle during this exercise. A total of nine subjects of different 
age, height, weight, ethnicity and predicted FVC performed more than four repetitions of guided breathing 
(demographic and anthropometric details are in Supplementary Table S3). Subjects were instructed to perform 
both deep and shallow breathing modes to characterize the functional differences. From each subject and each 
repetition, we computed the amplitude maps, total amplitude, conductivity-time curve, and frequency spectra 
(see online methods). All the results were normalized by the largest subject-dependent participant to strictly 
compare the two breathing modes (see online methods). As expected, the deep breathing mode exhibited higher 

Figure 4.  EIT-derived functional maps and regional EIT-derived indicators were consistent with the four 
corresponding breathing paradigms which is the combination of full or mid capacity inhale and fast or slow 
exhale. (A) Functional maps are obtained by evaluating the EIT indicators from the voxel-wise waveforms from 
which the regions of interest (ROIs) are inferred, including anterior left (AL), posterior left (PL), anterior right 
(AR) and posterior right (PR). (B) Averaged functional maps were calculated, allowing regional lung function 
assessment. (C) All regional indicators followed a similar trend, i.e., the MVE is higher in paradigms involving 
full capacity inhale, the EV1 is highest in full capacity inhale with fast exhale and is lowest in half capacity 
inhale with slow exhale, the EV1/MVE ratio is higher in paradigms involving fast exhale, the MEF is highest 
in full capacity inhale with fast exhale and is lowest in half capacity inhale with slow exhale, and the EF25-75% 
is highest in full capacity inhale with fast exhale and is lowest in slow exhale. *p < 0.05, **p < 0.01, ***p < 0.001. 
Error bars indicate ± standard error of mean. Abbreviations: Maximal volume engaged (MVE), exhaled volume 
in 1 s (EV1), maximum expiratory flow (MEF), expiratory flow at 25–75% of maximum volume engaged (EF25-
75%).
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amplitude as compared to shallow breathing (p < 0.001, Fig. 5B and Supplementary Figure S6). Note the acti-
vated voxels are nearly the same for both breathing depths, the total amplitude was higher during deep breathing 
(p < 0.001). However, the right lung has significantly more activated voxels (p < 0.001) and significantly higher 
total amplitude (p < 0.001) compared to the left in both shallow and deep breathing modes, likely due to the 
positioning of the heart within the left thorax. The normalized average conductivity in the right and left lung 
lobes are shown in Fig. 5B both in the time and frequency domains. The results show that the conductivity vari-
ations for both lungs and breathing modes follow a periodic oscillation of twelve periods per minute with lower 
amplitude for shallow breathing. These results demonstrated that this novel close-to-effortless guided breathing 
paradigm can reflect both global and regional lung function changes.

COVID‑19 case study. To further characterize the system performance with this novel close-to-effortless 
paradigm, a COVID-19 discharged subject was longitudinally monitored with two healthy controls. The COVID 
subject and the two healthy controls were selected such that they are all non-smokers, have no known history 
of heart and/or lung diseases such as COPD, Asthma, non-treated Bronchitis or pneumonia, have the same 
gender (all male), similar predicted FVC (5.6L (COVID), 5.3L, 5.2L), age (33 (COVID), 24, 28), weight (79 kg 
(COVID), 75 kg, 58 kg), and chest circumference (90 cm (COVID), 89 cm, 81 cm) (demographic, anthropomet-
ric and clinical details in Supplementary Table S4). Both COVID discharged subject and the two healthy controls 
performed the tests while standing with the lung belt around the T4 and T5 vertebrae and were instructed to 
follow the breathing paradigm on the screen (Fig. 5A) with no specific instruction on breathing depth. The aver-
aged amplitude map across different trials for the COVID-19 subject and the two controls are shown in Fig. 6A 
together with their associated indicators including activated voxels, total amplitude, and coefficient of variation 
(C.V., see online methods). The coefficient of variation is an indicator of the degree of inhomogeneity at different 
lung regions and was shown to be indicative of lung abnormality in previous  studies26–28. The activated voxels 
and total amplitude for all subjects are consistent with the results from the guided breathing experiment with 
variable depth, i.e., the right lung has significantly more activated voxels and significantly higher total amplitude 
(p < 0.001). On the other hand, the COVID-19 discharged subject had higher C.V. (p < 0.001), suggesting lung 
function deterioration.

To further examine the regional lung functions, time evolutions of the C.V. of the left and right lungs are 
presented in scatter plots and linearly regressed (Fig. 6B). The results suggest that the C.V. significantly decreased 
(p < 0.01) across time in the left lung of the COVID-19 discharged subject (Fig. 6B), suggesting a functional 
deterioration at the beginning followed by a recovery. Whereas no significant trends were observed for the 
controls. The time evolution of the C.V. is further evaluated at the anterior and posterior of the left and right 
ROIs. The results suggest that the potential deterioration and recovery has specifically occurred in the anterior 
left lung (Fig. 6C). Given that this is a single-subject case study, more extensive tests are required to support 
these conclusions.

Discussion
Here, we designed and developed a home-based self-administrable, portable, and cost-effective EIT system, 
implemented a close-to-effortless breathing paradigm, and demonstrated its feasibility to assess global and 
regional lung functions longitudinally.

EIT has standard spirometry capabilities with additional spatial information. We validated the 
developed portable EIT system as a standalone device to predict standard spirometry indicators. Our results 
demonstrated that the volume of airflow through the lung can be predicted using EIT and subject’s anthropo-
metrics without calibration (PCC > 0.8; p < 0.001). We observed a slight difference between EIT conductivity-

Figure 5.  EIT with novel close-to-effortless guided breathing paradigm can quantify global and regional lung 
functional changes. (A) The paradigm is a periodic inhale and exhale pattern at 12 breaths per minute (bpm). 
(B) Shallow and deep breathing modes were applied to assess the sensitivity of this method. Activated voxels 
and total amplitude were extracted from the left and right lungs. The right lung has significantly more activated 
voxels and significantly higher total amplitude compared to the left. The amplitude maps, total amplitude, 
conductivity time curve, and frequency spectra exhibited higher amplitude during deep breathing compared 
to shallow breathing, while activated voxels remained similar. ***p < 0.001. Error bars indicate ± standard error 
of mean. Abbreviations: arbitrary unit (a.u.). The drawings of the electrode belt and the portable EIT console 
were made using Dassault Systemes Solidworks 2020, Luxion Keyshot 9 and Adobe Photoshop CC 2019. The 
drawings of the dummy person was made using Adobe Illustrator 2021.
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time curve and spirometry volume-time curve, potentially due to the fact that the EIT imaging slice cannot 
represent the whole lung (Supplementary Figure S7), which may be elucidated with 3D-EIT10 in the future. We 
also showed that EIT can infer standard spirometry indicators (PCC > 0.7; p < 0.001), making it potentially suit-
able for screening, diagnosis, and monitoring of obstructive and restrictive lung diseases, facilitating its adop-
tion as a standard screening tool for lung function assessment. In addition, we showed that the system provides 
regional functional mapping of spirometry indicators. We hypothesize that such additional spatial information 
would be critical for regional lung functional assessment, which can be essential for detecting and monitoring 
regional changes in lung diseases, such as COPD. Future clinical studies involving diseased patients such as 
COPD, asthma, and interstitial lung disease are warranted.

Uncertainty of the predicted spirometry indicators due to the variability of the belt position, 
subject posture, and repetition. To assess the uncertainties of the device due to the variability of the belt 
position, subject posture, and repetition, we repeatedly acquired simultaneous EIT and spirometry measure-
ment from two subjects during forced breathing of different efforts. The first subject performed the tests while 
varying the electrodes belt position and his posture. The belt position variability test is conducted while the sub-
ject is standing and the belt is placed at four different positions: (i) around the T4 and T5 vertebrae (instructed 
or “normal” position), (ii) 1 cm above (i.e., around T4), (iii) 2 cm below (i.e., between T5 and T6) and (iv) 5 cm 
below (i.e., between T7 and T8)29. The posture variability test was conducted while the belt is placed at the 
instructed position and the subject is holding three different postures: (i) standing (instructed or “normal” posi-
tion), (ii) sitting, (iii) laying. The variability due to the repetition test is conducted by the second subject on two 
different days (day 1 and day 11) while standing with the lung belt around the T4 and T5 vertebrae. The scatter 
plot comparing the EIT indicators, and the spirometry indicators are shown in Supplementary Figures S8, S9 
and S10. The data acquired from the instructed position or day 1 is used to create a regression model to predict 
the spirometry indicators from the EIT indicators. The regression model is then applied to the data acquired at 
other belt positions or day. The NRMSE induced by varying the belt 1 cm above to 5 cm below are compara-
ble to the ones obtained from the normal position, with the largest errors recorded when the belt is 5 cm the 
instructed position (Supplementary Table S3). The NRMSE induced by varying the subject’s posture from stand-
ing, sitting to laying are comparable with the largest errors recorded when the subject is laying (Supplementary 
Table S3). Finally, the NRMSE induced by repeating the tests on day 11 are comparable to the errors at day 1, 
with the errors at day 11 larger (Supplementary Table S3). Although, the results suggest that the prediction of the 
spirometry indicators is not greatly affected by small errors in the belt position, subject posture, and repetition, it 
should be noted that the errors for these experiments were evaluated on a single subject. Hence, further experi-
ments are needed to accurately estimate the error induced by these variabilities. Finally, it should be noted that 
compensating for the errors induced by the belt position or subject posture is also  possible16. The development 
of such a model requires data to be acquired from multiple subjects, which will be considered for future studies.

Figure 6.  EIT with novel guided breathing paradigm close-to-effortless can detect regional lung deterioration 
followed by a recovery for a COVID-19 discharged subject. COVID-19 discharged subject was longitudinally 
monitored along with two age- and gender-matched controls (A) The COVID-19 discharged subject had higher 
C.V., suggesting lung function deterioration. Note the right lung has significantly more activated voxels and 
significantly higher total amplitude. (B) C.V. significantly decreased across time in the left lung of the COVID-
19 discharged subject, suggesting a functional deterioration at the beginning followed by a recovery. (C) 
Regional analysis further pin-pointed deterioration and recovery in the anterior left lung. *p < 0.05, **p < 0.01, 
and ***p < 0.001. Error bars indicate ± standard error of mean. Abbreviations: arbitrary unit (a.u.); non-
significant (n.s.); coefficient of variation (C.V.).
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Monitor COVID‑19 recovery and other chronic pulmonary diseases. The novel close-to-effortless 
guided breathing paradigm is sensitive to different breathing efforts and provides both global and regional lung 
function evaluations. Furthermore, the longitudinal monitoring of the COVID-19 discharged subject showed 
that the EIT system can potentially detect initial deterioration followed by recovery. While, the recruited subject 
did not undergo ventilation inhomogeneity (VIH) test or CT-scan to compare our results to these standard test, 
other studies suggest that inhomogeneity is detected in more than 40% of COVID-19  subjects30. More extensive 
tests with COVID-19 subjects are required to support these conclusions given this is a case study only. The effec-
tiveness of the guided breathing paradigm is yet to be elucidated through extensive clinical trials. Nevertheless, 
our device can potentially be useful for longitudinal monitoring of COVID-19 recovery. In fact, a complete 
recovery from COVID-19 may take as long as several  months31,32. Long COVID is a term devised by patients 
to describe the lingering symptoms they experience well after an initial bout of COVID-19, with symptoms 
including shortness of breath, lung structural damage, abnormal lung function, etc. Several studies showed that 
more than 70% of discharged patients, with two negative tests issued 24 h apart, were found with abnormali-
ties by high-resolution computed tomography (HRCT) scans and  spirometry33,34. Therefore, the post-treatment 
monitoring of COVID and longitudinal monitoring of long COVID is desirable for capturing any missed or 
hidden lung function abnormalities as to improve patient outcomes. Moreover, several respiratory diseases can 
also be explored by using our EIT approach, including  COPD28,35,  asthma36 and acute lower respiratory tract 
 infections37.

Affordable, portable, and self‑administrable EIT enables its deployment for telemedicine 
applications. One of the major advantages of our developed EIT system is its high accessibility which is 
critical for promoting remote healthcare. Recently, during COVID-19 pandemic, telehealth and telemedicine 
applications are increasingly demanded  worldwide38. Telemedicine applications refers to the uses of telecom-
munication and information technology to provide remote access to health assessment, diagnosis, intervention 
and consultation, as to assist distal clinical consultation and treatment  supervision39. In addition to improving 
access to healthcare, our EIT console and silicon belt serve as self-administrable portable wearable with detailed 
guidance via mobile app and real time cloud-based data processing and storage, enabling remote monitoring 
for medical professionals to virtually evaluate patients’ health and treatment responses. Compared to traditional 
EIT system, our portable EIT system is designed as an affordable telemedicine gadget, which can be widely used 
for remote patients monitoring under both home-based and clinical settings. It is important to note that a large 
portion of the cost of the EIT systems may be due to the business decisions and medical licensing. By making 
the device affordable, portable and self-administrable, larger number of devices can be sold and hence the cost 
of medical licensing per unit device can be reduced. Ultimately, the proposed device can improve the quality of 
healthcare of patients suffering from chronic pulmonary  diseases40,41, reduce both time and cost associated with 
on-site  monitoring4, and potentially reduce the overall mortality rates.

Monitoring chronic diseases of different body parts. Besides pulmonary diseases screening and 
monitoring, the developed portable EIT system also has the potential for home-based diagnostic screening and 
treatment monitoring of chronic diseases at other body parts such as the liver, kidney, breast, and synovial joints. 
In fact, the dielectric properties (e.g., bioimpedance, conductivity, permittivity) could be varied between healthy 
and diseased tissues at different excitation  frequencies42. For instance, the conductivity of human ex vivo liver 
tumor tissues were shown to be  higher43, while lower  conductivity44 and higher  bioimpedance45 were detected 
from liver steatosis tissue on rats in vivo when compared to healthy liver tissue. Also, bioimpedance of human 
renal tumor tissues could be lower when current was applied between 200 kHz and 1 MHz in two recent ex vivo 
kidney  studies46,47. Besides, ex  vivo human breast cancer tissues were shown to have lower  bioimpedance48, 
while in vivo human breast cancer tissues had higher conductivity and  permittivity49. Synovial joints, such as 
wrists and knees, showed lower bioimpedance in carpal tunnel syndrome  patients50 and higher bioimpedance 
in patients with  osteoarthritis51, respectively. Overall, we expect our portable EIT system to be widely applicable 
to home-based diagnostic screening and remote treatment monitoring of multiple chronic diseases at different 
body parts.

Data and code availability
Representative datasets (including raw data, interim steps and final results) and the codes supporting the find-
ings in this manuscript are available at https:// drive. google. com/ drive/ folde rs/ 1eOxV vpp66 FQmWZ TWLYz 
mVsLd V2zjI_ EI? usp= shari ng upon published. Full datasets are available from the corresponding author upon 
reasonable request.
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