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Impact of depressed state 
on attention and language 
processing during news broadcasts: 
EEG analysis and machine learning 
approach
Kohei Fuseda 1,2,4, Hiroki Watanabe 1,4*, Atsushi Matsumoto 1,3, Junpei Saito 1, 
Yasushi Naruse 1 & Aya S. Ihara 1*

While information enriches daily life, it can also sometimes have a negative impact, depending on an 
individual’s mental state. We recorded electroencephalogram (EEG) signals from depressed and non-
depressed individuals classified based on the Beck Depression Inventory-II score while they listened 
to news to clarify differences in their attention to affective information and the impact of attentional 
bias on language processing. Results showed that depressed individuals are characterized by delayed 
attention to positive news and require a more increased load on language processing. The feasibility of 
detecting a depressed state using these EEG characteristics was evaluated by classifying individuals as 
depressed and non-depressed individuals. The area under the curve in the models trained by the EEG 
features used was 0.73. This result shows that individuals’ mental states may be assessed based on 
EEG measured during daily activities like listening to news.

In the current era of information overload, individuals receive an excessive amount of information daily, regard-
less of their wish to receive such news. While information enriches daily life, it can also have a negative impact 
such as development of stress and eventually mental illness, depending on an individual’s mental state. Negative 
information can influence human mental health  negatively1,2. For example, online surveys for college students 
revealed that more exposure to information on COVID-19 was associated with more significant self-reported 
 depression3 and  anxiety4. To promote the comfortable and healthy use of information for everyone, it is important 
to assess the individual’s mental state objectively when they are receiving information. In this study, we focused 
on brain activity measured during the receipt of information while participants were in a depressed state. Sup-
posing the individuals’ states of depression may be predicted from their brain activities, this work could lead 
to an application based on EEG that encourages behavioral change; for example, reducing the amount of time 
spent on exposing oneself to negative information via the Internet or social media.

Focusing on how individuals attend to the negative information may contribute to our purpose. Attentional 
bias for negative information (also called negativity bias)5–11 has been considered to contribute to the cause and 
maintenance of  depression12–15. Furthermore, such attentional bias has been found in people who are at high risk 
of depression such as subclinically depressed  individuals16,17, people with remitted  depression18, and children 
with depressed  mothers19. Pronounced attentional bias for negative information is due to the mood congruency 
 effect14,20 which entails enhanced information processing when the affective valence of input information is 
congruent with the information receiver’s  mood21. Conversely, some reports show that patients with  depression22 
and subclinically depressed  individuals17,23 reduce the allocation of attentional resources to positive informa-
tion, whereas other studies found no attentional bias for negative information in patients with  depression24–26.

It cannot be ruled out that the inconsistent results of attentional bias for negative information may stem 
from the short duration of exposure to negative information. Previous studies that focus on attentional bias 
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used traditional psychological paradigms with visual stimuli such as the emotional Stroop  task24,27–30, Posner 
 task16,17, and dot-probe  task22,25,31–33, and examined attention to affective stimuli over a short duration (i.e., a few 
hundred milliseconds to a few  seconds17,23). Koster et al.17 showed that negative bias occurred in the dysphoric 
individuals when the stimulus duration was 500 ms and 1500 ms, not when it was 250 ms. Based on these results, 
in this study, we aimed to investigate the attentional biases of people who have not been diagnosed with mental 
diseases when exposed to affective natural speech. The task of listening to natural speech enables participants 
to be exposed to affective stimuli for a longer duration than the traditional paradigms. Furthermore, it allows 
us to examine information processing in situations that are as close to everyday life as possible, rather than in 
paradigms designed for experiments. Thus, research using affective natural speech may further shed light on 
attentional biases for negative information.

In addition, our research focused on the effects of depression on language comprehension processing as 
depression is reported to cause difficulties in the non-affective processing of information with negative valence. 
For example, the reaction time to the lexical judgment of negative words was longer for depressed individu-
als than it was for non-depressed  individuals34. This is interpreted by the affective interference theory, which 
states that prioritizing the processing of negative information causes non-affective processing to function 
 improperly27,34–36. Despite this, whether depression affects the language comprehension process—especially 
semantic processing—remains unclear.

Therefore, we adopted positive, neutral, or negative radio news broadcasted in Japan (Fig. 1, Supplementary 
Table S1) as stimuli and investigated whether the attention to affective information differed between depressed 
and non-depressed individuals who have not been diagnosed with mental diseases. In addition, how attentional 
bias influences language processing, especially semantic processing, was also elucidated. In this study, partici-
pants were divided into depressed individuals and non-depressed individuals based on the Japanese version of 
the Beck Depression Inventory (BDI)-II37 (Table 1). Based on the above-mentioned items, we formulated the 
following two hypotheses. First, the attentional bias for negative information is stronger in depressed individuals 
than it is in non-depressed individuals with exposure to the affective news content. Subsequently, the depressed 
individuals allocate more attentional resources to negative news than to positive news. Second, due to affective 
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Figure 1.  Summary of news contents played to participants during the EEG experiment and acquired data. 
Outlines of 15 news items (five for each positive, neutral, and negative news condition) selected are summarized 
at the top. In the experiment, EEG was measured while the participants were listening to the news. Immediately 
after, they evaluated the content on a 5-point scale: affective valence, arousal, interest, and comprehensibility.
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interference, the depressed individuals will require more load on language comprehension (semantic processing 
on words) while listening to negative news than non-depressed individuals.

One method of investigating the attentional biases and semantic processing on words is to observe event-
related potential (ERP) components time-locked to stimuli onset by measuring electroencephalograms (EEG). 
For example, the N1 and P2 reflect perceptual  processing38 and are negative and positive components that peak at 
approximately 100 and 200 ms after the onset of the auditory stimuli, respectively. Both responses are exogenous 
components elicited by the presentation of a physical stimulus. Their amplitudes are affected by the change of 
attentional resources allocation to the  stimuli38–40. Thus, the changes in these responses can be used to examine 
the perceptual processing characteristics of depression. In contrast to these exogenous components, one of 
the endogenous components is N400 which is negativity that peaks at approximately 400 ms after the onset of 
meaningful stimuli. This component reflects semantic  processing41–43, with amplitudes that vary based on the 
ease of accessing information from long-term memory and integrating semantic representations into preceding 
 contexts44. Therefore, by using N1, P2, and N400 as indices, differences in perceptual and semantic processing 
between depressed and non-depressed individuals can be considered.

Despite the effectiveness of measuring ERP for our research purpose, it is generally difficult to observe ERP 
response time-locked to word onset included in natural speech like news broadcasts. Such natural speech contains 
only a small interval between words and, thus, EEG responses to each word are overlapped. Calculating temporal 
response function (TRF)  weights45 to word onset is one solution to address this issue. TRF describes the linear 
mapping between ongoing stimuli (i.e., words within the news in case of news stimuli) and ongoing EEG data. 
Since TRF allows the separation of overlapping responses due to different stimuli close in time, this method is 
suitable for the analysis of EEG signals to words in natural speech. Our previous study demonstrated that the 
TRF weights time-locked to word onset included in natural speech showed components corresponding to N1, 
P2, and  N40046. Thus, measuring these TRF components corresponding to ERP components possibly allows for 
quantifying the attentional resource allocation or load on semantic processing on words. To clarify the effect of 
depression and/or news contents on attentional bias or the load on semantic processing, we investigated group 
effects (depressed individuals and non-depressed individuals) and news effects (negative, neutral, and positive) 
on the latency and amplitude of each component.

Another advantage of using the news broadcast as stimuli over those used in the traditional paradigms was 
that listening to a news broadcast is a daily activity. If a depression differentiates the attentional biases or language 
processing, the depressed states can be predicted by simply listening to natural speech stimuli in an environ-
ment that is close to their reality. Thus, in addition to clarifying the characteristics of depressed individuals’ EEG 
responses to natural speech stimuli, we verified the usefulness of these responses’ applications. To this end, we 
evaluated the performance of classifying individuals into depression and non-depression, using EEG features 
and linear support vector machine (SVM), to investigate the feasibility of detecting depressed individuals.

Results
Subjective evaluation of news. In the EEG experiment, participants performed subjective evaluations 
on each news item immediately after listening to it, based on the following items: affective valence, arousal, 
interest, and comprehensibility. We investigated the effect of Group (depressed and non-depressed individuals) 
and News (positive, neutral, and negative news) on these evaluations using a two-way mixed-design analysis of 
variance (ANOVA). Concordant with the preliminary survey results (Table 2; see “Materials” for details), news 
contents influenced affective valence, arousal, interest, and comprehensibility. First, a significant main effect 
of News on affective valence (F (2, 266) = 554.73, ε = 0.92, p = 9.50 ×  10–88, ηp

2 = 0.807) was found (Fig. 2a). The 
affective valence increased in the following order: positive, neutral, and negative news—that for positive news 
was significantly higher than that for neutral (p = 6.18 ×  10–33) and negative news (p = 1.74 ×  10–59), and that for 
neutral news was significantly higher than that for negative news (p = 4.41 ×  10–40).

Second, the main effect of News on arousal was significant (F (2, 266) = 27.02, ε = 0.95, p = 6.57 ×  10–11, 
ηp

2 = 0.169) (Fig. 2b), indicating that the negative and positive news showed significantly higher arousal than the 
neutral ones did (p = 2.35 ×  10–10 and p = 1.97 ×  10–8, respectively). Importantly, for our experiment that focused 
on the attentional bias regarding negative information, no significant difference was noted between the positive 

Table 1.  Characteristics of the depressed and non-depressed individuals. The values following ± indicate the 
standard deviations. LQ, laterality quotient; BDI-II, Beck Depression Inventory-II.

Characteristics Depressed Non-depressed

Mean age 31.3 ± 10.5 33.8 ± 10.0

Sex (n)
Female 17 52

Male 15 51

Mean LQ 70.1 ± 55.6 82.8 ± 40.2

Academic history (n)

Junior high school graduate 0 1

High school graduate 4 14

Junior college/vocational school student or graduate 8 11

University student or graduate 19 66

Graduate school student or master’s/doctoral degree holders 1 11

Mean BDI-II score 21.1 ± 8.6 6.6 ± 3.3
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and negative news (p = 0.697). In addition, a significant main effect of Group was found (F (1, 133) = 7.79, 
p = 0.006, ηp

2 = 0.055): arousal in the non-depressed individuals was significantly higher than that in depressed 
individuals. The subjective evaluation results showed that negative news was evaluated as negative content and 
positive news as positive content, confirming the validity of the news conditions used in this study. In addition, 

Table 2.  Characteristics of news selected based on the preliminary survey (N = 160). Mean ± the standard 
deviations.

Items

News conditions

Significant differences (Bonferroni corrected p-value)Negative Neutral Positive

Affective valence 1.8 ± 0.6 3.2 ± 0.5 3.9 ± 0.7
Negative < Neutral (p = 1.01 ×  10–44)
Neutral < Positive (p = 4.09 ×  10–55)
Negative < Positive (p = 2.13 ×  10–27)

Arousal 3.1 ± 0.7 2.8 ± 0.6 3.0 ± 0.7 Neutral < Negative (p = 2.17 ×  10–11)
Neutral < Positive (p = 4.89 ×  10–10)

Interest 3.1 ± 0.8 2.7 ± 0.7 2.8 ± 0.8
Neutral < Negative (p = 3.28 ×  10–12)
Positive < Negative (p = 1.02 ×  10–4)
Neutral < Positive (p = 0.039)

Comprehensibility 3.7 ± 0.8 3.4 ± 0.7 3.9 ± 0.7
Neutral < Negative (p = 1.18 ×  10–8)
Negative < Positive (p = 1.87 ×  10–7)
Neutral < Positive (p = 1.02 ×  10–20)
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Figure 2.  Differences in subjective evaluation between groups and between news. (a) Affective valence was 
higher for positive news than for neutral and negative news, and that for neutral news was significantly higher 
than that for negative news. (b) Arousal was higher for the negative and positive news than for the neutral news. 
There was no significant difference between the positive and negative news. In addition, the non-depressed 
individuals showed higher arousal than the depressed individuals. (c) Interest for the negative news was higher 
than that for the positive and neutral ones did, and that interest for the positive news was higher than neutral 
one. (d) Comprehensibility for the positive news was higher than those for the negative and neutral news, and 
comprehensibility for the negative news was higher than that for the neutral news. In addition, the news was 
more comprehensible for non-depressed individuals than for depressed individuals. Each circle and error bar 
represent the mean and standard error, respectively. *p < 0.05, **p < 0.01, and ***p < 0.005).
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as no difference in arousal between positive and negative news was noted, it was ensured that the difference in 
EEG responses when listening to positive and negative news was not due to arousal.

Moreover, a significant main effect of News on interest (F (2, 266) = 22.91, p = 6.64 ×  10–10, ηp
2 = 0.147) 

was found (Fig. 2c), revealing that the negative news showed significantly higher interest than the positive 
(p = 3.83 ×  10–4) and neutral ones did (p = 2.12 ×  10–10) and that the positive news was more interesting than 
neutral news was (p = 0.021).

Finally, a significant main effect of News on comprehensibility (F (2, 266) = 114.63, p = 1.25 ×  10–36, ηp
2 = 0.463) 

was found (Fig. 2d), revealing that the positive news was significantly more comprehensible than the negative 
(p = 7.29 ×  10–10) and neutral (p = 3.14 ×  10–28) items and the negative news was more comprehensible than the 
neutral news (p = 7.37 ×  10–15). In addition, a significant main effect of Group (F (1, 133) = 20.86, p = 1.11 ×  10–4, 
ηp

2 = 0.136) was found: news was more comprehensible to the non-depressed individuals than to the depressed 
individuals. There was no interaction between News and Group for affective valence (p = 0.105), arousal 
(p = 0.758), interest (p = 0.258), or comprehensibility (p = 0.075).

EEG responses while listening to news. To investigate brain activity in response to each piece of news, 
we calculated TRF weights that describe the linear mapping between ongoing stimuli (words within news) and 
ongoing EEG data. The grand-averaged TRF waveforms clearly showed three components, corresponding to 
N1, P2, and N400 as reported in ERP studies (Fig. 3a). To clarify the effect of the group and/or news contents on 
these types of processing, we performed the two-way mixed-design ANOVA, using the between factor of Group 
and within factor of News, on the latency and amplitude of each component.

Peak latencies. Significant interactions, Group × News, were found for the peak latencies of N1 (F (2, 
266) = 3.38, p = 0.036, ηp

2 = 0.025) and P2 (F (2, 266) = 4.78, p = 0.009, ηp
2 = 0.035) at the Fpz (Fig.  3b). This 

revealed that, compared with the non-depressed individuals, the depressed individuals had averages of 21 ms 
and 27 ms longer latencies of N1 (p = 0.034) and P2 (p = 5.79 ×  10–3), respectively, in the positive news. In addi-
tion, the peak latency for N400 at the Cz showed a significant main effect of News (F (2, 266) = 4.42, p = 0.013, 
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Figure 3.  Differences in EEG between groups and between news contents. (a) The grand-averaged TRF 
waveforms in the depressed (pink) and non-depressed individuals (cyan) by channel and news are shown. The 
highlighted time windows were used to calculate the mean amplitudes of the components corresponding to N1, 
P2, and N400, respectively. (b) The depressed individuals had longer peak latencies of N1 and P2 at Fpz for the 
positive news than the non-depressed individuals. (c) The non-depressed individuals showed more negative 
deflection than the depressed individuals did in the N1 amplitude at Pz. (d) The depressed individuals showed 
more negative deflection in the N400 amplitude at Pz than the non-depressed individuals did while listening to 
the negative news. In addition, the negative news caused smaller negative deflection than the positive news, only 
in the non-depressed individuals. Each circle and error bar of (b)–(d) represent the mean and standard error, 
respectively. The depressed and non-depressed individuals are colored in pink and cyan, respectively. *p < 0.05 
and **p < 0.01.
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ηp
2 = 0.032) (Fig. 4b), which revealed that the latency for negative news was on average 33.3 ms shorter than that 

for positive news (p = 0.002).

Amplitudes. The significant main effect of Group was found in the amplitudes of N1 at the Pz (F (1, 
133) = 6.45, p = 0.012, ηp

2 = 0.046): the non-depressed individuals showed more negative deflection than the 
depressed individuals did (Fig. 3c). A significant main effect of News on the P2 amplitude (F (2, 266) = 7.62, 
p = 0.001, ηp

2 = 0.054) was found at the Fpz (Fig. 4a). This revealed that the negative news elicited a larger P2 than 
the positive news (p = 2.95 ×  10–4).

Regarding amplitudes of N400, the significant interaction Group × News was found at Pz (F (2, 266) = 4.05, 
ε = 0.95, p = 0.020, ηp

2 = 0.030) (Fig. 3d). This revealed that the depressed individuals showed more negative 
deflection in the N400 amplitude than the non-depressed individuals did while listening to the negative news 
(p = 0.034). In addition, the negative news caused smaller negative deflection than the positive news, only in the 
non-depressed individuals (p = 0.017).

Classification of depressed or non-depressed individuals. We evaluated the performances to clas-
sify depressed or non-depressed individuals, based on our subjective evaluation and EEG measures. Between the 
EEG and subjective evaluation data, for which the main effect of Group or the interaction of Group × News was 
significant in the ANOVA, we prepared three feature sets. These included subjective evaluation-only features (six 
features: arousal and comprehensibility for each news condition), EEG-only features (12 features: peak latencies 
of N1 and P2 at Fpz and mean amplitudes of N1 and N400 at Pz, for each news condition), and the Combina-
tion features of EEG and subjective evaluation (18 features). For classification, linear SVM was trained and 
evaluated using the leave-one-out cross-validation (LOOCV). The EEG-only and the Combination features were 
selected using the recursive-feature elimination method, and six features were used. To determine whether the 
performances of the classifiers trained using each feature were by chance, the permutation test was performed by 
randomizing the labels 1000 times, and the empirical p-values were calculated for each  feature47.

The area under the receiver operating characteristic curves (AUCs) of the Subjective evaluation-only, EEG-
only, and Combination features achieved 0.735, 0.730, and 0.832, respectively (Fig. 5a), indicating that all sets 
of the features can successfully discriminate depressed individuals. The permutation tests revealed that these 
performances of the classifiers were all significant (all ps = 0.001). The true positive rate (TPR), which is the 
rate of the depressed individuals, classified as the depressed individuals for the Subjective evaluation-only and 
EEG-only features was 0.719 (23/32 individuals) and 0.656 (21/32), respectively (Fig. 5b and c). The true nega-
tive rate (TNR), which is the rate of the non-depressed individuals, classified as the non-depressed individuals, 
was 0.592 (61/103) for the Subjective evaluation-only features and 0.660 (68/103) for the EEG-only feature. In 
the classification based on the Combination features, the TPR and TNR were 0.781 (25/32) and 0.718 (74/103), 
respectively (Fig. 5d). Figure 5e shows the number of depressed and non-depressed individuals per predicted 
label when using the Combination features.

The features’ contribution to the classification was analyzed by calculating the mean absolute values of the 
coefficients for the EEG-only features across all trained models (Fig. 5f), and the following six features were 
mainly selected: N1 amplitudes for negative, neutral, and positive news; P2 peak latencies for negative and posi-
tive news; and N400 amplitude for negative news. The feature with the highest coefficient values was the mean 
amplitude of N400 for negative news.

Discussion
We tested two hypotheses to clarify whether attention to affective information differed between depressed and 
non-depressed individuals, and how attentional bias influences language processing. The first hypothesis states 
that negativity bias is stronger for depressed individuals than for non-depressed individuals. So far, previous 
behavioral studies’ results are inconsistent, with some studies confirming a greater attentional engagement to 
negative information than to positive  information33,48 and difficulty in attentional disengagement from nega-
tive  information9,16,17, while in individuals with subclinical  depression16,17; others did not demonstrate such 
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 effects24,25. In the present study, we focused on the N1 and P2 components to test the hypothesis. We found that 
news contents had a significant effect on the amplitude of P2, but not N1, with its amplitude being significantly 
larger for negative news than for positive news. Given that the P2 amplitude is enhanced by  attention49, which 
was confirmed especially when using affective  stimulus50–52 in visual studies, our result shows more attentional 
resources were allocated to negative information than to positive information, while participants were listening 
to the news. The P2 amplitude did not show a significant main effect of Group, which suggests that contrary to 
the hypothesis, negativity biases were observed regardless of the depressed state. Furthermore, from the results 
that the peak latency of N400, which reflects semantic  processing41,42,44, was shorter for negative news than for 
positive news in both groups, more attentional resources allocated to negative information could accelerate the 
subsequent semantic processing, regardless of the depressed state. To the best of our knowledge, this is a novel 
study on the effect of the attentional bias for negative information on the peak latency of semantic processing.

Other than negativity bias, delayed attention to positive information could be a characteristic of natural 
speech processing in depressed individuals: compared with the non-depressed individuals, the depressed indi-
viduals showed longer latencies in N1 and P2 to words within the positive news content. A previous ERP study 
using visual oddball paradigm reported a longer latency of early components (P1) to positive stimulus than 
to negative stimulus in individuals with major  depression53. Compared with the controls, behavioral data also 
showed delayed attention to positive stimulus in patients with major  depression22 and in individuals with sub-
clinical depression and  anxiety17. Consistent with these results, the present result suggests that the attention to 
inputs is delayed in depressed individuals more than in non-depressed individuals, while they listen to positive 
information.

The second hypothesis states that owing to the affective interference, the depressed individuals require more 
load on language comprehension (semantic processing on words) while listening to negative news, than the non-
depressed individuals. The result supports that the depressed individuals showed a negatively larger amplitude 
of N400 during the negative news than the non-depressed individuals. This result is consistent with a previous 
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ERP study that used the emotional Stroop paradigm, indicating that negative words produced a negatively larger 
amplitude of N400-like component in participants with major depression and remitted depression than in healthy 
 participants54. These results support the affective interference  theory34: owing to the allocation of attentional 
resources to negative information, depressed individuals required a greater load on non-affective processing (i.e., 
semantic processing). Our series of results suggest that depressed individuals are characterized by a spillover of 
the effects of attentional bias for negative information to other types of processing.

To detect depressed individuals, the EEG-only features reached an AUC of 0.730, which is a metric in which 
the closer a number is to 1, the better the performance (0.5 = random classification). Combining the subjective 
evaluation features with the EEG features improved performance, and the highest performance of 0.832 in AUC 
was achieved. These classification performances highlight the effectiveness of EEG measures in successfully 
detecting depressed individuals. Previous studies on EEG-based depression patient detection have focused on 
resting-state data, using features such as power values and functional connectivity metrics across  channels55,56. 
In contrast, the current study focused on detecting depressed individuals based on their daily activities, and, for 
the first time, it demonstrates the feasibility of the EEG measured while listening to news.

The detection method used in this study was advantageous in that the cognitive function of the EEG features 
used was more clearly interpretable based on a huge number of previous ERP studies. The coefficient values of 
the EEG-only features indicated that the N400 amplitude to words within negative news contributed the most 
to the classification performance, suggesting that EEG features related to the semantic processing of natural 
speech are involved in the detection of depressed individuals. The contribution of EEG features in processing 
negative information is consistent with previous results that, the best classification performance for detecting 
individuals with mild depression in a non-clinical population was obtained when EEG features were used dur-
ing the presentation of negative face  stimuli57. In addition, the N1 amplitude and P2 peak latency—modulated 
by attention to the  stimuli38—mainly for affective news contents (N1 amplitude: negative, neutral, and positive 
news, P2 peak latency: negative and positive news, cf. Fig. 5f) were also contributed to classification performance. 
These results suggest that individuals who increase the allocation of attentional resources and semantic processing 
load to affective speech stimuli are likely to be classified as having depression. In recent years, technologies to 
monitor cognitive or mental states such as cognitive  load58 and  motivation59 using brain activities under real-
world conditions or situations close to the real have been widely studied. Consistent with this trend, we envision 
an application based on EEG that notifies individuals of their depressed state as predicted by their EEG so that 
it could lead to changing their behavior for using information, such as spending less time exposed to negative 
information on the Internet and social media. The promising classification performances in this study using 
natural speech as stimuli would lead to the development of such an application based on EEG and encourage 
individuals to change the way they use information according to their state of depression. In reality, the feasibility 
of such an application is high because a depressed state can be detected simply by listening to news auditory clips. 
In the future, it will be necessary to test whether providing feedback on the depressed state actually promotes 
such behavioral changes in individuals.

As a limitation, since the study ultimately aimed to develop an application based on EEG that provides feed-
back about individuals’ states of depression in daily life rather than to detect or diagnose clinical depression, we 
recruited people who had not been diagnosed with any mental disease in the study; depressed and non-depressed 
individuals were determined based solely on their BDI-II scores. Therefore, the depressed individuals in this 
study may have included those with clinical depression. It cannot be denied that there are differences in EEG 
responses between individuals with clinical depression and those who have not been diagnosed with depression, 
which may affect results obtained in this study. Future research will address this issue.

Conclusion
This study found that depressed individuals are characterized by the delayed attention to positive news and a 
higher semantic processing load for negative news. The classification model trained by these EEG features suc-
cessfully classified depressed and non-depressed individuals, suggesting that EEG measures during daily life 
activities, such as listening to news items, provide a way to ascertain the depressed state.

Methods
Participants. Participants in the EEG experiment included 162 adult native Japanese speakers (88 women 
and 74 men, Mage = 34.2, SDage = 10.1,  rangeage = 20–49). All participants had normal hearing and normal or cor-
rected-to-normal vision. They had no history of neurological or psychiatric diseases. The data sets for partici-
pants whose EEG data contained large artifacts were excluded from the analysis; finally, data for 135 participants 
were used (69 women and 66 men, Mage = 33.2, SDage = 10.1,  rangeage = 20–49). The participants’ handedness was 
estimated based on the laterality quotient (LQ) of the Edinburgh Handedness  Inventory60. Of the participants, 
124 were classified as right-handed (MLQ = 92.5, SDLQ = 12.1), four as ambidextrous (MLQ = − 18.2, SDLQ = 24.6), 
and 7 as left-handed (MLQ = − 83.0, SDLQ = 18.0).

The participants’ depressed state was assessed using the BDI-II for  Japanese37 before data collection. The 
questionnaire comprised 21 questions regarding the participants’ depressed state in the past two weeks, includ-
ing the day of the experiment. There was no significant gender difference in the BDI-II scores between women 
(M = 10.13, SD = 7.77) and men (M = 9.98, SD = 8.28) by an independent samples t-test (t (133) = 0.12, p = 0.908, 
Cohen’s d = 0.020). The BDI-II guidelines state that scoring 14 or higher is the threshold at which individuals are 
classified as having depression. As such, 32 participants were classified in the depressed individuals (Mage = 31.3, 
SDage = 10.5,  rangeage = 20–49, MLQ = 70.1, SDLQ = 55.6) and 103 in the non-depressed individuals (Mage = 33.8, 
SDage = 10.0,  rangeage = 20–49, MLQ = 82.8, SDLQ = 40.2) based on their BDI-II scores. The participants’ character-
istics are summarized in Table 1.
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The participants’ academic history was as follows: 1 junior high school graduate, 18 high school graduates, 
19 junior college or vocational school students or graduates, 85 university students or graduates, and 12 gradu-
ate students, master’s, or doctoral degree holders. To confirm the relationship between academic history and 
the participants’ group (depressed or non-depressed), a chi-square test of independence was performed. No 
significant difference was confirmed ( χ2(4) = 5.54, p = 0.246, Cramer’s V = 0.203).

This study was approved by the Ethics Committee for Human and Animal Research of the National Institute 
of Information and Communications Technology and was carried out in accordance with The Code of Ethics of 
the World Medical Association (Declaration of Helsinki). Written informed consent to participate in this study 
was obtained from all participants.

Materials. We prepared 30 news items from Japanese radio news programs (NHK Radio News; https:// www. 
nhk. or. jp/ radio news/) broadcasted by the Japan Broadcasting Corporation (NHK) in February 2019. Approxi-
mately one minute of the audio from the beginning of each news item was cut out for use as stimuli (ranged 
from 45 to 83 s).

To select positive, neutral, or negative news to be used in the EEG analysis from those 30 news items, we 
conducted a preliminary survey through subjective evaluations of 160 native Japanese speakers (82 women and 
78 men, Mage = 35.9, SDage = 8.4,  rangeage = 20–49) who did not participate in the EEG experiment. We selected 
each of five news items with (1) significant differences in affective valence among negative, neutral, and positive 
news items and (2) no significant differences in arousal among positive and negative news items. This was done 
as follows: participants read each news item and then subjectively evaluated the affective valence (1: negative–5: 
positive), arousal (1: low arousal–5: high arousal), interest (1: not interest at all–5: high interest), and compre-
hensibility (1: very difficult–5: very easy) on a 5-point scale. Based on this evaluation, we selected five news items 
with high (3.6 or more), moderate (3.0–3.4), and low (2.2 or less) affective valence, to be used as positive, neutral, 
and negative news conditions. The topics of the selected news are shown in Fig. 1.

To confirm whether the subjective evaluation in the preliminary survey differed across news conditions, the 
subjective evaluation ratings were subjected to one-way repeated measures ANOVA. As the subjective evalu-
ation values ranged from 1 to 5 and were non-normally distributed, an aligned rank transformation of the 
subjective evaluation values was performed using the  ARTool61,62. To control for familywise error rates in mul-
tiple comparisons, p-values were adjusted based on the Bonferroni correction. The ANOVA results showed 
significant differences across news conditions in all items: the affective valence (F (1, 318) = 447.17, ε = 0.81, 
p = 7.87 ×  10–76, ηp

2 = 0.738), arousal (F (1, 318) = 31.34, ε = 0.93, p = 2.11 ×  10–12, ηp
2 = 0.165), interest (F (1, 

318) = 25.95, p = 3.62 ×  10–11, ηp
2 = 0.140), and comprehensibility (F (1, 318) = 66.91, p = 5.60 ×  10–25, ηp

2 = 0.296). 
The affective valence of positive news was significantly higher than that of neutral and negative ones, and the 
affective valence of neutral news was significantly higher than that of negative news. Arousal due to both nega-
tive and positive news was significantly higher than that due to neutral news. The interest in negative news 
was significantly higher than that in neutral and positive ones, and positive news was significantly more than a 
neutral one. The comprehensibility of positive news was significantly higher than that of neutral and negative 
ones, and negative news was significantly more than that of a neutral one. All post-hoc test results for each item 
are summarized in Table 2. The differences in the ratings between the preliminary survey and EEG experiment 
are presented in Supplementary Table S2.

The EEG responses, time-locked to each word onset included in each news item, were analyzed. A Japanese 
native speaker identified the time of onset of each content word in each news item by listening to the audio and 
visually inspecting the sound waveform and spectrograms using WaveSurfer (https:// sourc eforge. net/ proje cts/ 
waves urfer/), an open-source speech and acoustic analysis tool.

EEG experimental procedure. The participants sat in chairs, in front of a monitor display and numeric 
keypad. In the EEG experiment, they listened to 30 news items (15 selected news in total; the remaining 15 news 
were included in the stimuli set and were used for other research purposes) and evaluated them subjectively. In 
each trial, the participants started a trial by pressing a key “1” on the numeric keypad, and immediately after, 
they listened to an audio clip of one news item binaurally using earphones (RHA Technologies Ltd., United 
Kingdom). To suppress their eye movements, participants were instructed to gaze at a fixation point (+) pre-
sented at the center of the display while listening to the news. After each news item, participants were asked 
to subjectively evaluate the affective valence, arousal, interest, and comprehensibility of the news, based on a 
5-point scale. The procedure for the subjective evaluation was the same as in the preliminary survey. Participants 
performed a total of six blocks (five trials/block). The data collection lasted approximately 1 h.

EEG and electrooculogram (EOG) signals were continuously measured throughout all blocks using an eight-
channel wireless EEG device and measurement software (Polymate Mini AP108 and Mobile Acquisition Monitor 
2.02, Miyuki Giken Co. Ltd., Japan). Because this study envisioned an application based on EEG that could be 
used in real-world environments, we focused on a few electrodes that were relatively easy to place rather than 
a high-density electrode system. Since N1/P2 and N400 to the auditory stimuli are dominantly observed in the 
fronto-central  regions63 and centro-parietal  regions64, respectively, active electrodes were placed on Fpz, Cz, and 
Pz locations, according to the International 10–10 system for EEG measurement. The Fpz location was chosen 
instead of Fz because it is easier to place the electrode on the forehead, where interference by hair can be avoided. 
Previous research has demonstrated that the Fpz electrode can successfully observe the N1 and P2 components 
to auditory  stimuli65. Two electrodes were placed on the lateral of the left outer canthus and above the left eye 
to measure horizontal and vertical EOGs, respectively. All signals were sampled at 500 Hz using reference and 
ground electrodes placed at the right and left earlobes, respectively.

https://www.nhk.or.jp/radionews/
https://www.nhk.or.jp/radionews/
https://sourceforge.net/projects/wavesurfer/
https://sourceforge.net/projects/wavesurfer/
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EEG analysis. MATLAB (MathWorks Inc., USA) and EEGLAB  toolbox66 were used to preprocess EEG sig-
nals. A band-pass finite impulse response (FIR) filter between 1 and 50 Hz (3300th order) was applied to the 
signals, and it was resampled at 200 Hz. The transient, large-amplitude artifacts were removed by the artifact 
subspace  reconstruction67,68. Artifacts of eye blink and eye movements were excluded from the data using an 
independent component analysis. Finally, a further band-pass FIR filter of 1–8 Hz (1320th order) was applied to 
the signals to improve the signal-to-noise ratio.

To estimate the TRFs that describe the linear mapping between a stimulus and the preprocessed EEG data 
for each channel, we prepared a stimulus matrix at the same sampling rate as the preprocessed EEG data for 
each news item. The stimulus matrix comprised time-aligned impulses with a value of 1 at the content word 
onset time points and 0 at other time points. We used the mTRF toolbox in  MATLAB45 for the estimation. The 
continuous EEG response rch(t) at a time point t was assumed to comprise convolutions of the stimulus vector 
s(t) and TRF weights wch(τ ) at ch-th channel:

where εch(t) is the residual response in the ch-th channel. Ridge regression, with a regularization parameter λ, 
was used to estimate the TRF weights over a range of time lag τ from − 100 to 800 ms, relative to each stimulus 
onset. Using the mTRFcrossval  function45, we estimated the optimal regularization parameters for each partici-
pant based on the LOOCV, in which one trial is evaluated as test data and the remaining trials as training data, 
and the evaluation is repeated until all trials are used as test data. In this procedure, the following steps were 
applied to each participant’s channel data: (1) the TRF weights were estimated for each single-trial data, (2) the 
single-trial weights were averaged over the training data, and (3) the mean squared errors (MSEs) between the 
actual responses and the responses predicted using the averaged weights were computed using the test data. In 
the range  [21–221], for each participant, we determined the optimal regularization parameter λ that resulted in 
the smallest MSEs, averaged over the test data and the channel. Finally, the regularization parameter, λ =  213, 
which was the most frequent value in the distribution of regularization parameters estimated by each participant 
(N = 42), was adopted for all participants. Finally, the single-trial TRF weights for each participant, estimated 
using the regularization parameter, were averaged by news condition per channel.

For each channel, the mean amplitude per component of a single participant’s TRF weight for each news 
condition was calculated using time windows of [100, 160 ms], [170, 230 ms], and [300, 600 ms] for N1, P2, and 
N400, respectively. These time windows were determined through the visual inspection of grand-averaged TRF 
weights. The peak latency of each component was also detected per channel in each news condition. To detect 
peak latencies, we used a dynamic time warping (DTW) algorithm, which is a technique used to non-linearly 
map two temporal sequences that vary in time or  speed69. DTW has been used to automatically detect peak 
latencies of ERP  components70,71. First, we calculated the grand-averaged TRF waveforms for all participants 
and each news condition for each channel, from which we detected the peak latencies for the three components. 
Thereafter, for each channel, the TRF for each participant and the grand-averaged TRF were mapped onto a 
common time axis using DTW, as such, the time point corresponding to the peak latency obtained from the 
grand-averaged TRF was automatically identified.

Statistical analysis. To analyze subjective evaluation, a two-way mixed-design ANOVA was employed to 
analyze whether subjective evaluation was affected by News (within-subjects factor: negative, neutral, and posi-
tive) and Group (between-subjects factor: depressed individuals and non-depressed individuals). For analysis 
using ANOVA, each subjective evaluation was performed on an aligned rank transformation as well as the 
preliminary survey. To investigate the effect of Group and News on the amplitude or peak latency of each com-
ponent corresponding to N1, P2, and N400, a two-way mixed-design ANOVA was conducted. When the main 
effect of News was statistically significant, multiple comparisons of paired t-tests across news conditions were 
conducted. When significant interaction of Group × News was obtained, multiple comparisons of paired t-tests 
across news conditions were conducted for each group. In addition, to investigate the simple main effects of 
Group, unpaired t-tests between the groups were administered per the new condition.

In all statistical test procedures, the significance level was set at 0.05. If Mauchly’s test showed that homogene-
ity of variance was violated, the degree of freedom was adjusted using the Greenhouse–Geisser procedure. When 
the degree of freedom was adjusted using the procedure, the original degree of freedom and ε were reported. 
We report partial eta squared as an effect size. For all multiple comparisons, p-values were adjusted using the 
Bonferroni procedure.

Classification with a linear SVM. To investigate whether EEG measurements play a role in the detection 
of depressed individuals, we performed a binary classification of depressed and non-depressed individuals based 
on the EEG features and/or subjective evaluation of the news. As features for classification, we used explana-
tory variables showing the significant main effect of Group or interaction of Group × News in the ANOVA: 12 
EEG features (peak latencies of N1 and P2 at Fpz and mean amplitudes of N1 and N400 at Pz, for each news 
item) and 6 subjective evaluation features (arousal and comprehensibility for each news item). To compare the 
results, based on the features used, three sets of features were prepared: 12 features of only EEG, 6 features of 
only subjective evaluation, and 18 features combining EEG and subjective evaluation (hereinafter referred to as 
the EEG-only features, Subjective evaluation-only features, and Combination features, respectively). The feature 
vectors were standardized per feature by subtracting the mean value and then dividing the difference by the 
SD. The mean values and SD were calculated using the training data. For classification, we used a linear SVM, 

(1)rch(t) =
∑

τ

wch(τ )s(t − τ)+ εch(t),
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which is widely used in the Brain-Computer Interface context because of the robustness to outliers, due to the 
regularization and applicability to high-dimensional data  sets72, with the squared hinge loss and the L2 penalty.

The performance of the linear SVM was evaluated using the LOOCV, whereby one participant’s data was 
reserved for a test and the remaining data were used for model training. In the LOOCV, the procedure was 
repeated so that every participant’s data was evaluated as test data once. For the EEG-only features and the 
Combination features, the feature selection procedure involved the recursive-feature elimination method. In 
each LOOCV procedure, six features were selected based on the coefficients of the linear SVM trained on the 
training data, and the selected features were used for model training and evaluation. A cost parameter C, which 
is a hyperparameter that determines the degree of tolerance for classification errors in the training data, was 
optimized using the grid-search. The best performing cost parameter in the stratified threefold cross-validation 
of the training data was selected from [C =  10–3,  10–2,  10–1,  100,  101,  102,  103].

The number of data samples per class was imbalanced (non-depressed individuals: N = 103, depressed indi-
viduals: N = 32). Therefore, the costs of the classification errors were adjusted per class by multiplying the cost 
parameter C by the weights, based on the number of training samples in the class (i.e., the total number of 
samples/(the number of classes × the number of samples in the class)). Another widely used approach to handle 
imbalanced data is resampling, which artificially balances the class distribution of the training data by over- 
(i.e., increasing the number of samples belonging to the minority class) and/or under-sampling (i.e., removing 
samples belonging to the majority class). The classification performance was evaluated using AUC and those 
using the approach are provided in Supplementary Fig. S1. The permutation test was conducted to determine 
whether the classification performances using each future were by chance. In the test, a null distribution was 
constructed under the null hypothesis that there was no dependence between the features and the labels on each 
other by randomizing the labels, an then calculating an empirical p-value of the obtained AUC against that null 
distribution, which is the proportion of the randomized labels that performs as well or better than the original 
 label47. The total number of randomizations was set to 1000.

To clarify which features contributed to the classification performances, among the features that showed 
differences in EEG responses to affective news depending on individuals’ depressed state, we computed the 
absolute values of the coefficients assigned to each feature of the models trained by the EEG-only features. As 
LOOCV repeats the training and evaluation of the same number of data samples, the values of the coefficients 
were averaged over all models trained in LOOCV. If a feature was not selected in the feature selection procedure 
applied to the EEG-only features, its coefficient was treated as having zero value in this analysis. The scikit-learn 
library for Python was used for the classification  procedures73.

Data availability
The data set presented in this research is partially available upon request to the corresponding author, limited to 
the data that the participant has agreed to make publicly available.
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