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The intracerebroventricularly (icv) injected streptozotocin (STZ) induced brain state is a widely used 
model of sporadic Alzheimer-disease (AD). However, data have been generated in young, naive albino 
rats. We postulate that the translationally most relevant animal population of an AD model should be 
that of aged rats with substantial learning history. The objective of the study was thus to probe the 
model in old rats with knowledge in various cognitive domains. Long-Evans rats of 23 and 10 months 
age with acquired knowledge in five-choice serial reaction time task (5-CSRTT), a cooperation task, 
Morris water-maze (MWM) and “pot-jumping” exercise were treated with 3 × 1.5 mg/kg icv. STZ and 
their performance were followed for 3 months in the above and additional behavioral assays. Both 
STZ-treated age groups showed significant impairment in the MWM (spatial learning) and novel 
object recognition test (recognition memory) but not in passive avoidance and fear conditioning 
paradigms (fear memory). In young STZ treated rats, significant differences were also found in the 
5CSRTT (attention) and pot jumping test (procedural learning) while in old rats a significant increase in 
hippocampal phospho-tau/tau protein ratio was observed. No significant difference was found in the 
cooperation (social cognition) and pairwise discrimination (visual memory) assays and hippocampal 
β-amyloid levels. STZ treated old animals showed impulsivity-like behavior in several tests. Our results 
partly coincide with partly deviate from those published on young, albino, unexperienced rats. Beside 
the age, strain and experience level of the animals differences can also be attributed to the increased 
dose of STZ, and the applied food restriction regime. The observed cognitive and non-cognitive 
activity pattern of icv. STZ in aged experienced rats call for more extensive studies with the STZ model 
to further strengthen and specify its translational validity.

Development of animal models with better translational relevance is essential for better understanding of Alz-
heimer’s disease (AD) and for more efficient drug development as well. Regrettably, no new cognitive enhancers 
have been found in the last 20 years mostly due to lack of efficacy1,2. Disease modifying drugs most advanced 
in the pipeline—but finally failed—targeted the β-amyloid cascade3 and relied on transgenic mouse models of 
the familial form of the disease4. The Intracerebroventricularly (icv) injected streptozotocin (STZ) represents an 
alternative approach as it is a widely used model of sporadic AD. The construct validity of the icv. STZ model is 
based on the induced insulin resistant brain state5 which gives rise to many symptoms of AD, such as cognitive 
deficiency and increased phospho-tau at 1 month post-injection, elevated β -amyloid level at 3 months, appear-
ance of plaques at 6 months6,7.

Our group established a rodent test system in which the animals acquire several types of cognitive tasks and 
then maintain their performance in regular training sessions8–10. Hereby we create a population with “widespread 
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knowledge” which better models the human population than naïve or freshly taught animals. This “widespread 
knowledge” is then impaired with various kinds of interventions to create a ‘patient population’, amenable to 
test cognitive enhancers on. We use Long-Evans rats as experimental subjects because of their well-known good 
learning ability, which is an essential requirement in the system11–15. Integration of the STZ induced insulin 
resistant brain state model to our specific test system could result in a model which well imitates the human 
cognitive decline.

As the icv. STZ model has been almost exclusively used in young albino rat strains, in our previous experi-
ments, we already examined the effect of STZ in young naïve Long-Evans rats and found that an increased dose 
was required to elicit subtle AD-like symptoms16. These results suggest that there may be specific differences 
between strains.

In this study, we examined the effect of icv. STZ in Long-Evans rats with widespread knowledge in two differ-
ent age groups (old and young), since theoretically, old experienced animals are translationally the most relevant 
population for the experimental investigation of AD. For logistical reasons the two age groups were studied in 
two separate experiments.

Methods
Animals.  Twenty-nine 23 months old and twenty-four 10 months old male Long-Evans rats (‘old’ and ‘young’ 
animals, respectively; obtained from Janvier Labs, Le Genest-Saint-Isle, France) were used in this study. Animals 
were kept three in a cage with paper tubes and wooden bricks as environmental enrichment tools under reverse 
light dark cycle (dark phase from 4 am to 4 pm). Animals had a restricted food access: 45 g of food was supplied 
for three rats before the end of the dark phase. We kept the animals under this regime because food restriction 
has repeatedly been shown to be healthier than ad lib feeding, slow the aging process and the age-associated 
increase in mortality rate17–20 as well as prolong cognitive functioning21–23. Furthermore, this regime made the 
animals motivated to work in the food-rewarded tasks on the following day. Food restriction was suspended for 
the period of icv. STZ injections and one week recovery thereafter when rats had free access to food. Drinking 
water was available ad libitum over the whole course of the experiment. The animals were intensively handled 
before and during the experiments and were regularly trained in several learning paradigms for 21  months 
(old animals) or 8 months (young animals), these are specifically described below and in the Supplementary 
material. At the end of the post treatment behavioral measurements, they were anaesthetized by isoflurane and 
decapitated to remove their hippocampus for the western blot measurements. The experiments were authorized 
by the regional animal health authority in Hungary (resolution number PE/EA/85–5/2019) and conformed to 
the Hungarian welfare law and the EU 63/2010 Directive and ARRIVE guidelines.

Experimental design.  The flow of the experiments is shown in Fig. 1. Sample size determination for young 
rats was carried out by power analysis centered on the novel object recognition test since it has got the larg-
est standard deviation among the behavioral assays. We obtained values from the G*Power 3.1.9.7 software24, 
(n = 12) as the group size for young animals. From the available 29 old animals we assigned 15 to the control and 
14 to the STZ group taking into account possible losses because of their age. Based on the baseline results in the 
cognitive assays the animals were randomly assigned to the treatment groups (STZ or vehicle) (Fig. 1). In the 
experiment with the old animals, two STZ-injected and three control rats did not recover from anesthesia. We 
lost four additional animals from the STZ group in the course of the experiment. Two died at weeks 2 and 11, 
while two others were euthanized due to poor health at weeks 9 and 11.

Intracerebroventricular streptozotocin treatment.  Icv. injection of STZ was carried out according 
to Gáspár et  al.16. 4.5  mg/kg STZ (Sigma-Aldrich, St. Louis, MO, United States) split into three equal doses 
(1.5 mg/kg) was administered on days 1, 3, and 5. A volume of 2μL/ventricle was injected to the left and the 
right ventricle for a rat of 500 g. The dose was adjusted to the body mass of the animal by changing the injection 
volume. STZ was dissolved in 0.05 M citrate buffer pH 4.5 (Santa Cruz Biotechnology, Santa Cruz, CA, United 

Figure 1.   Timeline of the experiments (icv intracerebroventricular, STZ streptozotocin, NOR novel object 
recognition, 5CSRTT​ five choice serial reaction time task, OF open field, PAL passive avoidance learning; MWM 
Morris water-maze, PD pairwise visual discrimination, WB western blot).
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States). The control groups received vehicle treatment in both experiments. Rats anaesthetized via a mixture 
of ketamine (80  mg/kg) (Produlab Pharma B.V. Raamsdonksveer, Netherlands) and xylazine (10  mg/kg ip.) 
(Produlab Pharma B.V. Raamsdonksveer, Netherlands) during the first drug administration and isoflurane (4% 
in pure oxygen) (CP-Pharma GmbH, Burgdorf, Germany) during the 2nd and 3rd surgeries. The icv. coordinates 
were: 0.72 mm posterior to bregma, 1.5 mm lateral to sagittal suture, 3.6 mm ventral of the surface of the brain25.

Behavioral assays.  Morris water‑maze (MWM).  The apparatus26 was a black circular pool (diameter 
190 cm, depth 60 cm) filled with water (38 cm, 23 ± 1 °C) and containing a non-visible round escape platform 
(10 cm diameter) placed 0.5 cm below the water surface. The platform was located in one of the four quadrants 
(south-east (SE), south-west (SW), north-east (NE), north-west (NW)), 40 cm from the edge of the pool. On the 
wall of the experimental room extra-maze cues were placed to facilitate the orientation during swimming. The 
learning session consisted of 3 daily trials. At the start of a trial the rat was placed into the pool at one of the four 
possible start points and had 3 min to find the hidden escape platform. When the animal didn’t find it, it was 
gently guided to the platform and allowed to climb onto it. Rats could spend 30 s on the platform then were taken 
out, dried and replaced in their home-cage. The interval between the trials was 30 min. Escape latency was meas-
ured and swimming path was recorded by Smart v3.0 video tracking system software (Panlab, Barcelona, Spain). 
Rats learned the task with the platform fixed at the SE quadrant, then they received monthly maintenance train-
ing sessions in which the location of the platform was rotated around the four quadrants from session to session.

5‑choice  serial reaction time task (5CSRTT).  The 5CSRTT device27 consisted of a 31 × 35 × 34 cm test box (cat. 
no. 259920) (TSE Systems, Bad Homburg vor der Höhe, Germany). The boxes were equipped with 5 nose-poke 
modules on the back wall and with a magazine at the front wall. During the task, after 5 s inter-trial interval, in 
one randomly selected nose-poke module a 1 s long stimulus was presented and the animal had to nose-poke 
into the signalled hole. The animal made a correct response if nose-poked into this hole during the stimulus 
presentation or within 5 s afterwards (limited hold). Correct responses were rewarded with a pellet delivered 
into the magazine. Nose-poke into the magazine initiated the next trial. The animal made an incorrect response 
if nose-poked into one of the holes where the stimulus was not presented. An omission response was recorded 
when the rat did not make any nose-poke up to the end of the limited hold. Incorrect responses and omissions 
were followed by 5 s time-out punishment, when the house light was turned off. After the time-out, the house 
light was set back and the rat could start the next trial by nose-poking into the magazine. The animal made a 
premature response, if nose-poked into any of the holes during the inter-trial interval. These responses were also 
punished with time-out. Length of a daily test session was 20 min. The outcome parameters were the percentages 
of correct, omission and premature responses and accuracy defined as 
(

total correct responses
total correct responses+ total incorrect responses × 100

)

.

Pot jumping.  The experiment was conducted according to Ernyey et al.28. In the MWM tank 12 flower pots 
(16 cm high and 10 cm wide at the bottom) were placed upside down forming a circle. Distance between the 
centers of the adjacent pots gradually increased from 18 to 46 cm in anticlockwise direction. The tank was filled 
with 6 cm deep water to restrain rats climbing off the pots. During a session, animals were placed onto the start 
pot, which was within the shortest distance from the next pot. For 3 min they could freely move on the pots and 
their behavior was observed and recorded with a video camera system. Outcome parameters were the longest 
interpot distance jumped over and the number of passes.

Cooperation task.  Social memory was measured in a cooperation task modified after Kozma et  al.29. in a 
30 × 24 × 21 cm Skinner box (MedAssociates, VT, USA). The opposite walls of the chamber were equipped with 
one nose-poke module, one lever press module and one magazine for each. During the task, the animals worked 
in pairs but were separated from each other by a separating fence. One of the animals had to nose poke in to the 
nose poke module for 3 s, when it activated the lever press module at the opposite side. The other animal had to 
push the lever, as a result of which they received a reward pellet and started a new trial. The task was unsuccessful 
if one of the steps was missing. An omission response was recorded when the rats did not make any nose-poke or 
lever press. Out of sequence and incorrectly timed responses were punished with 5 s timeout. Length of a daily 
test session was 20 min.

Fear conditioning.  The test device was a sound-proof shocking chamber (26 × 26 × 30 cm) (Ugo Basile, Gemo-
nio, Italy) in which the fear-behavior of the animals was recorded with an infrared video camera controlled by 
the software EthoVision v13.0 (Noldus, Wageningen, Netherlands). The experiment, based on Varga et al.30, con-
sisted of one acquisition and two retention trials (24 h and 1 month later). Duration of each session was 5 min. 
During the acquisition trial, the rats received 5 mild foot-shocks as unconditional stimulus (0.6 mA, 1 s), the 
delay between shocks was 60 s. The shocks were preceded by a combination of continuous sound (65 dB, 3 kHz) 
and flickering light (1 Hz) conditional stimuli for 10 s, in the last second overlapping the unconditional stimulus. 
During retention trials, the animals received the same conditional stimuli, in absence of the foot shock. The main 
outcome variable was the animals’ freezing time.

Novel object recognition (NOR).  The test apparatus31 was a 48 × 48 × 42 cm box with bedding material on the 
bottom where the behavior of the animals were recorded by a video camera system. The assay consisted of an 
acquisition trial and a retention trial. In the acquisition trial, the rats had 3 min to explore two identical objects in 
the box. After a delay of 80 min, in the retention trial one of the objects was changed to a novel one and the ani-
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mals had 3 min again to explore them. The recognizable objects were a plastic bottle filled with gravel and a glass 
bottle filled with blue dye solution. Exploration time of each object was the registered parameter. Recognition 
memory was characterized by the discrimination index, DI = new object−old object

new object+old object . Rats that explored the objects for 
less than 10 s or explored only one of the two objects in any of the trials were excluded from the evaluation (one 
animal from the control group and one rat from the STZ group among the young animals).

Pairwise visual discrimination.  The task32 was carried out in a touchscreen apparatus (Campden Instruments 
Ltd., Lafayette, IN, USA, cat. no. 80604). The boxes were equipped with a touch screen at the front and with a 
magazine at the back wall. The touchscreen wall can be divided into two sections using a cover panel. Subjects 
(old animals) were trained to discriminate between two images (one was correct, the other was incorrect) pre-
sented randomly in the left or right window of the touchscreen. Nosepoking the correct image was rewarded 
with a pellet. Choosing the incorrect image led to 5 s time out, when the houselight turned on. Entering and 
exiting the food magazine initiated the next trial i.e. appearance of the two images. Length of a daily test session 
was 30 min. Number of completed trials, correct and incorrect responses were registered by ABET II touch v2.15 
software.

Passive avoidance learning (PAL).  The type of the experiment was a step through passive avoidance test33. The 
apparatus consisted of a light and a dark chamber separated by a guillotine door. The test consisted of two parts, 
the acquisition trial and 24 h later the retention trial. During the trials the rats were placed into the light chamber 
and 30 s later the door opened and the animal could cross into the dark chamber. In the acquisition trial the 
animals had 180 s (cut off time) to enter the dark compartment of the device, whereas at the retention trial the 
cut off time was 300 s. When the rat passed through to the dark side, the door closed and after a 3 s delay a mild 
foot shock (0.6 mA, 3 s) was delivered. The animal was left in the dark compartment for an additional 5 s after 
the shock. The measured parameters were entry latencies into the dark compartment in the acquisition and the 
retention trials. Animals which did not cross to the dark chamber at the acquisition trial were excluded from the 
experiment (two rats from the STZ group in the young group).

Elevated plus maze (EPM).  The apparatus34 consisted of four arms (50 × 15 cm), two opened and two closed 
arms, the latter with 40 cm high walls. The arms were connected in a central square (15 × 15 cm). The entire 
maze was elevated 52 cm from the floor. The animals were placed in the central square, facing one of the open 
arms and had 300 s to explore the maze. The behavior of the rats were recorded by a video camera system. The 
measured parameters were the times spent in the open arms and the entry numbers to the arms. One rat from 
the young STZ group which did not moved from the central square was excluded from the experiment.

Open field (OF).  The test apparatus35 was a 48 × 48 × 40 cm box with 30 × 30 infrared beam net where the hori-
zontal and vertical behavior of the animals were recorded by automated Conducta moti-meter system (Experi-
metria, Budapest, Hungary). The animals placed in the center of the apparatus and their behavior was recorded 
for 30 min. Analyzed parameters were the ambulation time, local movement time and immobility time.

Western blot (WB).  After the behavioral tests, the animals were decapitated, their brains were removed 
and both hippocampi were dissected then frozen and stored at − 80 °C. Membranes were incubated with pri-
mary antibodies (obtained from Santa Cruz Biotechnology, Santa Cruz, CA, United States) against Phospho-Tau 
(p-tau) (PHF-13, sc32275)36, Tau (sc32274)37 and β-Amyloid (sc28365)38 overnight at 4 °C, followed by 2 h incu-
bation at room temperature with anti-mouse HRP-linked secondary antibody. Phospho-Tau protein expression 
was normalized to the corresponding total protein. β-actin was used to control for sample loading and protein 
transfer and to normalize the content of the β-amyloid.

Data and statistical analysis.  Group means ± standard error were calculated and significance was deter-
mined by unpaired t-test (NOR, PAL, EPM, OF, WB), single sample t-test (NOR), repeated measures ANOVA 
(MWM, pot jump, 5CSRTT, cooperation, fear condition, pairwise visual discrimination) or one-way ANOVA 
(WB) using the Statistica 13.5.0.17 software package (TIBCO Software Inc.). In tasks involving repeated meas-
urements, data of animals lost (died or euthanized) during the course of the experiment were handled according 
to the last observation carried forward method. The number of old animals actually taking part in a measure-
ment is shown in the corresponding figure legend.

Results
Morris water‑maze (MWM).  STZ-treated rats needed significantly longer time to find the hidden plat-
form in both experiments. The difference was maintained throughout the whole measurement period except at 
day 4 in young rats, when the treated animals performed similarly to controls though still significantly worse 
than at their own baseline (Fig. 2A,B).

5‑choice serial reaction time task (5CSRTT).  Old STZ-treated rats produced significantly more prema-
ture responses than that of the controls in the post-injection period from Week 2 to Week 12 (Fig. 3C). There was 
no significant difference between the groups in the percentage of correct responses and omissions (Fig. 3A,B). 
Response accuracy was significantly lower in the ‘STZ’ group on the first post treatment occasion, however, this 
difference was not detectable on additional measurement days (Fig. 3D). In young rats, STZ-treated animals 
showed significantly reduced correct responses and increased omissions up to Week 6 (Fig. 3E,F) with preserved 



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20247  | https://doi.org/10.1038/s41598-022-24292-5

www.nature.com/scientificreports/

accuracy (Fig. 3H) and unchanged premature nosepokes, except in the very last session (Week 11), when the 
latter was elevated compared to controls (Fig. 3G).

Pot jumping.  In old rats, we could not detect significant difference between the groups in this procedural 
learning task either in the longest interpot distance jumped over or in the number of passes (Fig. 4A,B). In 
contrast, young STZ-injected rats jumped over significantly shorter distance than control rats, and made signifi-
cantly less passes at the first post-treatment occasion (Week 2) (Fig. 4C,D).

Cooperation.  In old rats, because of the high mortality rate the pairs were broken and it was not possible 
to evaluate the data. In young rats, there was no significant difference between the learning performances of the 
two groups (Fig. S1).

Fear conditioning (FC).  There was no significant difference between the behavior of the animals in acqui-
sition trials in any of the experiments. In old rats, STZ-treated animals had longer freezing time compared to 
the controls in the retention trials (24 h and 1 month later) but the difference was not statistically significant 
(repeated measures ANOVA, treatment effect: F(1, 20) = 4.08, p = 0.057; treatment*trial effect: F(2,40) = 3.06, 
p = 0.058). In young rats, there was no significant difference in retention trials either (Table 1A).

Novel object recognition (NOR).  We found significant difference between the groups in the DI param-
eters in both experiments. In old rats, control animals showed a DI (0.19) significantly different from zero (no 
discrimination) whereas the DI of STZ-treated rats (0.06) did not differ from zero (Fig. 5A). In young rats, STZ-
treated animals had a significantly lower DI (0.05) compared to the controls (0.25) (Fig. 5B).

Pairwise visual discrimination in old rats.  The STZ-treated animals made a significantly higher num-
ber of incorrect responses (Fig. 6B) and their number of completed trials were also significantly higher com-
pared to the controls (Fig. 6D). Nevertheless, there was no difference between the two groups in the percentage 
and number of correct responses (Fig. 6A,C).

Passive avoidance learning (PAL).  In old animals, there was no significant difference between the 
learning performances of groups either in acquisition or retention trials (Table 1B). In young animals, during 
the acquisition trial, the STZ-treated animals showed significantly longer latency to enter the dark chamber 
compared to the controls. In turn, there was no significant difference between the groups in the retention trial 
(Table 1B).

Elevated plus maze (EPM).  In old rats, STZ-treated animals spent more time in the open arms and the 
ratio of open/total entries was significantly larger compared to the controls (Table 1C). In young rats, there was 
no significant difference between the two groups in either of the parameters (Table 1C).

Figure 2.   Learning performance of icv. STZ-injected (‘STZ’) and vehicle-treated (‘control’) rats in the Morris 
water-maze at various time points post-injection. Means ± SEM of daily latency values are shown. (A) Results of 
old rats. *, **, ***: p < 0.05, p < 0.01 p < 0.001: significant difference between groups on days 1 2, 3 and 4 (post-hoc 
Duncan test following repeated measures ANOVA with significant Day × treatment interaction: F(4, 84) = 6.13, 
p = 0.000). (B) Results of young rats. *, **: p < 0.05, p < 0.01: significant difference between groups on days 1 2 and 
3 (post-hoc Duncan test following repeated measures ANOVA with significant Day × treatment interaction: F(4, 
88) = 3.88, p = 0.006). Group size of old STZ-treated rats: n = 11 at Week 4 and 6–8, n = 10 at Week 9–11, n = 8 at 
Week 14–15.
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Open field (OF).  STZ-treated rats demonstrated significantly increased activity in both experiments. Con-
sequently, they spent significantly less time in immobility (Table 2).

Phospho‑tau and beta‑amyloid levels.  Significant elevated p-tau/tau ratio was found in old but not in 
young STZ-treated rats compared to their respective controls (Fig. 7A). There was no difference in β-amyloid 
levels between STZ-treated and control groups in either experiments (Fig. 7B). In a separate measurement we 
re-assayed the β-amyloid level in the young and old experienced control rats in parallel with the samples of 
naïve control young animals of 5 months age studied in our previous experiment16.We found an age-dependent 
increase in β -amyloid level with significant differences between the three age groups (Fig. 7C).

Discussion
In young animals, STZ-treatment impaired recognition (NOR) and spatial memory (MWM) and attention 
(5-CSRTT). However, the latter effect was transient, as it passed by the end of the experiment suggesting that 
the previously acquired knowledge could compensate the detrimental effect. Impaired procedural memory (pot 
jump test) was also found in young STZ treated rats. In contrast, there was no significant difference between the 
control and STZ-treated groups in the PAL and FC tests, and in the cooperation paradigm; that is, STZ treatment 
did not affect fear memory and social learning.

Figure 3.   Learning performance of icv. STZ-injected (‘STZ’) and vehicle-treated (‘control’) rats in the 5CSRTT 
at various time points post-injection. Means ± SEM values are shown. (A, B, C, D) Results of old animals. + : 
p = 0.023 significant treatment effect in percentage of premature responses (F(1, 21) = 5.98). **: p < 0.01 
significant difference vs control on the same day (post-hoc Duncan test following repeated measures ANOVA 
with significant Day × treatment interaction: F(10, 200) = 2.53, p = 0.007) for percentage of accuracy. (E, F, G, 
H) Results of young animals. *, **: p < 0.05, p < 0.01 significant difference between groups on the same day 
(post-hoc Duncan test following repeated measures ANOVA with significant Day × treatment interaction: F(10, 
220) = 2.20, p = 0.019 for percentage of correct responses and F(10,220) = 2.06, p = 0.029 for omissions). Group 
size of old STZ-treated rats: n = 12 at Week 2, n = 11 at Week 3–9, n = 10 at Week 10, n = 8 at Week 11–12.
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Figure 4.   Performance of icv. STZ-injected (‘STZ’) and vehicle-treated (‘control’) rats in the pot jumping task 
at various time points post-injection. Means ± SEM of number of passes and longest distance jumped over 
are shown. (A, B) Results of old animals. (C, D) Results of young animals. **: p < 0.01 significant difference 
between groups on the same day (post-hoc Duncan test following repeated measures ANOVA with significant 
Day × treatment interaction: F(4,88) = 5.20, p = 0.000. + : p = 0.047 significant treatment effect in longest distance 
(F(1, 22) = 4.42). Group size of old STZ-treated rats: n = 11 at Week 2–3, 4–7 and 8–10, n = 8 at Week 11–12.

Table 1.   Results of icv. STZ-injected (‘STZ’) and vehicle-treated (‘control’) rats in various behavioral assays. 
(A) Learning performance in the Fear conditioning paradigm. ‘Old rats’ column: + + + : p < 0.001 significant 
difference vs acquisition trial (post-hoc Duncan-test following repeated measures ANOVA with significant 
‘trial’ effect (F(2, 40) = 18.36, p = 0.000). ‘Young rats’ column: +++: p < 0.001 significant difference vs acquisition 
trial (post-hoc Duncan-test following repeated measures ANOVA with significant ‘trial’ effect (F(2, 44) = 43.54, 
p = 0.000). Group size of old STZ-treated rats: n = 11 at retention trial 24 h and n = 10 at 1 month. (B) Passive 
Avoidance Learning. ‘Old rats’ column: +++: p < 0.001 significant difference vs acquisition trial (post-hoc 
Duncan-test following repeated measures ANOVA with significant ‘trial’ effect (F(1, 18) = 89.44, p = 0.000). 
‘Young rats’ column: *: p < 0.05 significant difference vs control: unpaired t-test, t(20) = −2.56, effect size: 
1.15; + + + : p < 0.001 significant difference vs. acquisition trial (post-hoc Duncan-test following repeated 
measures ANOVA with significant ‘treatment’ (F(1, 20) = 5.41, p = 0.030) and ‘trial’ (F(1, 20) = 397.41, p = 0.000) 
effects. Group size of old STZ-treated rats: n = 8. (C) Elevated plus maze results. ‘Old rats’ column: § p = 0.042 
significant difference vs control (Mann–Whitney U-test, U = 29; because of variance inhomogeneity non-
parametric test was used), effect size: 0.91. Group size of old STZ-treated rats: n = 10. Group size of young 
STZ-treated rats: n = 11.

Old rats Young rats

Test

Control STZ Control STZ

Mean  ± SEM Mean  ± SEM Mean  ± SEM Mean  ± SEM

A

FC acquisition trial freezing time (s) 31.7  ± 14.39 43.3  ± 11.24 123.0  ± 11.95 84.9  ± 14.22

FC retention trial freezing time 24 h (s) 76.9+++  ± 21.63 161.2+++  ± 30.52 204.5+++  ± 21.02 208.4+++  ± 22.15

FC retention trial freezing time 1 months 
(s) 89.0+++  ± 25.22 168.3+++  ± 32.49 187.0+++  ± 25.74 190.3+++  ± 22.74

B

PAL acquisition trial entry latency (s) 33.5  ± 8.23 33.3  ± 2.86 45.7  ± 9.92 88.6*  ± 13.91

PAL retention trial entry latency (s) 226.1+++  ± 35.06 273.8+++  ± 7.32 278.4+++  ± 17.07 300+++  ± 0

Not entered/total number of animals 8/12 6/8 10/12 10/10

C
EPM time spent in open arms (s) 5.3  ± 3.25 34.1  ± 17.98 19.4  ± 8.40 12.2  ± 5.0

EPM percentage of open/total entries 3.7  ± 0.022 21§  ± 0.095 19  ± 0.063 29  ± 0.085



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20247  | https://doi.org/10.1038/s41598-022-24292-5

www.nature.com/scientificreports/

Figure 5.   Novel object recognition performance of icv. STZ-injected (‘STZ’) and vehicle treated (‘control’) 
rats at Week 11 post-injection. Columns show means ± SEM values of discrimination index. Numbers inside 
the columns indicate the number of animals. (A) Results of old animals. + : p < 0.05 vs zero, singe sample t-test, 
control: t(11) = 2.76, STZ: t(8) = 0.67, ns.), effect size: 0.55.Three animals in the STZ group died before the test 
was carried out (B) Results of young animals. *: p < 0.05 vs control, unpaired t-test, t(20) = 2.24), effect size:0.96. 
Two rats were excluded from the evaluation according to the criteria described in the Methods section.

Figure 6.   Pairwise visual discrimination performance of icv. STZ-injected (‘STZ’) and vehicle-treated (‘control’) 
old rats in a touchscreen apparatus in the post-injection period of Week 12–14. Means ± SEM values are shown. 
(A) Percentage of correct responses (B) Number of incorrect responses. + + : p = 0.005 significant treatment effect 
(F(1,18) = 10.28). (C) Number of correct responses. (D) Number of completed trials. + : p = 0.018 significant 
treatment effect (F(1,18) = 6.83). Group size of old STZ-treated rats: n = 8.
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STZ treatment increased novelty-induced exploratory activity in the open-field, but caused no significant 
difference in the anxiety levels of animals in the EPM. Biochemical markers, such as hippocampal β-amyloid 
and phospho-tau levels did not show significant differences either.

Looking at the results obtained in the old groups, first of all, 3 × 1.5 mg/kg STZ was more toxic to the old than 
to the young animals, as we lost four drug-treated rats during the post-treatment period. In old animals, similarly 
to young ones, STZ treatment impaired recognition (NOR) and spatial memory (MWM). However, in contrast 
to young rats, attention was not influenced by the treatment suggesting that the knowledge accumulated over 
the years became resistant to the impairing intervention. Procedural memory was also not affected, although 
this finding may have resulted from a floor effect, as old rats moved much shorter distances than young rats in 
the pot-jumping test. Social memory could not be evaluated due to mortality and thus disintegration of pairs. 

Table 2.   Open field results of icv. STZ-injected (‘STZ’) and vehicle-treated (‘control’) rats. Columns include 
means ± SEM values. ‘Old rats’ column: *: p < 0.05 significant difference between groups, unpaired t-test, 
ambulation time: t(18) = −2.32, effect size: 1.12, local movement time: t(18) = −2.72, effect size: 1.31, immobility 
time: t(18) = 2.72, effect size: −1.31. ‘Young rats’ column: **, ***: p < 0.01, p < 0.001 significant difference 
between groups; unpaired t-test, ambulation time: t(22) = −3.11, effect size: 1.33, local movement time: 
t(22) = −4.05, effect size: 1.73, immobility time: t(22) = 3.05, effect size: −1.30. Group size of old STZ-treated 
rats: n = 8.

Test

Old rats Young rats

Control STZ Control STZ

Mean  ± SEM Mean  ± SEM Mean  ± SEM Mean  ± SEM

Ambulation time 188.4  ± 23.23 268.5*  ± 23.62 332.6  ± 13.67 409.2**  ± 20.48

Local movement time 727.9  ± 34.40 871.3*  ± 38.34 645.6  ± 15.43 758.5***  ± 23.12

Immobility time 833.4  ± 55.32 617.8*  ± 49.67 670.1  ± 24.79 541.4**  ± 34.13

Figure 7.   Results of the western blot assays. (A) Phospho-tau/tau ratio. ‘Old rats’ column: §:p = 0.016 significant 
difference vs control ((Mann–Whitney U-test U = 18; because of variance inhomogeneity non-parametric 
test was used), effect size: 1.23. Group size of old STZ-treated rats: n = 9. (B) β-amyloid level ns. Group size 
of old STZ-treated rats: n = 10. (C) Comparison of tissue protein levels of β-amyloid in 5 month old (young 
naïve), 12 month old (young experienced) and 25 month old (old experienced) rats measured by western blot. 
Means ± SEM values are shown. *, ***: p < 0.05, p < 0.001 significant difference vs. young naïve rats, #: p < 0.05 
significant difference vs. young experienced rats (post-hoc Duncan test following one way ANOVA (F(2, 
24) = 10.09, p = 0.001). Group sizes are 9, 11 and 11 for young naïve (y.n.), young experienced (y.e.) and old 
experienced rats (o.e.), respectively. The inset shows representative blots; original complete blots are presented in 
Supplementary material, Figs. S2-S3.
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Fear memory was not affected in the PAL test, and—strictly in statistical terms—neither was it in the FC test. 
However, STZ treated rats showed about twice as much freezing as the controls during the retention trials. It may 
reflect better fear memory, however (1) it would be a surprising effect of STZ and (2) is not supported by the PAL 
results. A major difference between the PAL and FC paradigm is that in the former the animal has control over 
the situation (it may choose not to enter the dangerous place) while in the latter it has not (the rat is placed into 
the dangerous place) and as an anticipatory reaction to the imminent danger it shows freezing. Thus, the intensity 
of freezing reflects not only the strength of the memory trace but also the level of anxiety related to the previously 
experienced shock. In the pairwise visual discrimination task the two groups showed similar learning efficiency 
(% correct responses) although STZ-treated rats initiated and completed a significantly greater number of tri-
als. Results of this assay suggests that the rats’ ability to acquire new knowledge was not disrupted by icv. STZ.

A peculiar and notable finding in the STZ-treated group was the increased percentage of premature responses 
in the 5CSRTT. This effect is interpreted as a sign impulsivity27. STZ treatment increased novelty-induced explo-
ration in the open-field. Furthermore, rats from this group showed signs of decreased anxiety in the EPM test. 
The above results, together with the observed differences in the FC and pairwise discrimination tests, suggest 
that beside its cognitive effects icv. STZ exerted emotional effects as well. We interpret these findings as the 
compound elevated impulsivity in old rats. With this assumption, the seemingly contradictory results of the FC 
and EPM tests (increased vs decreased anxiety) may be explained as similar but context-dependent overreac-
tion to the actual situation: in positive context (EPM) more courageous behavior, in negative context (FC) more 
fearful behavior. Also, the increased number of initiated trials in the pairwise discrimination paradigm may be 
interpreted as increased “interest” in the rewarded new task (positive context).

STZ differentially affected β-amyloid and phospho-tau levels: in the former no change could be observed 
while in the latter a significant increase was detected in the old rats.

Our results partly coincide with (MWM, NOR, phospho-tau) partly deviate (PAL, β –amyloid) from those 
published on young, albino, unexperienced rats.

Decreased spatial learning and memory performance in the MWM is one of the most common and charac-
teristic effects of STZ experiments39–55 although in some studies the impairment was only observed in the probe 
trial49,56,57. The paper of Majkutewitz et al.53 is of particular relevance in this comparison as they—similarly 
to us—examined 22 months old rats and applied a protocol where the platform location changed day by day. 
Interestingly, in our previous study in young naïve Long-Evans rats16 we did not find impaired MWM learning.

Impaired recognition memory in the NOR test was also detected in several studies16,52,58–62.
Besides MWM, PAL impairment is the most common finding in the icv. STZ literature7,40,43,44,50,54,58,59,63–67. 

However, neither in this study nor in our previous experiment16 we could detect changes in this assay.
We found only one study60 where the effect of icv. STZ was investigated in the FC paradigm. The authors 

found decreased freezing response in the tone-conditioned but not in the context-conditioned version of the test.
Our findings of increased activity in the open-field are similar to those of Chen et al.68 and Guo et al.56 but 

in contrast to those of others who did not find difference in this test54,63,64,66,67.
Anxiety level of STZ-treated animals in the EPM was measured in two studies; Ileva et al.69 observed—in 

contrast to our results—increased anxiety in young STZ-treated animals, while Moreira-Silva et al.60 found no 
difference from the control.

Elevated β -amyloid level is a common finding in the literature16,44,48,58,61,62,69–72, however it was not confirmed 
in the present study. As in the cited studies typically 4–6 months old rats were used, a possible explanation for this 
discrepancy may be that the 12 and 25 months old animals of the current study already had high protein levels 
resulting in a ceiling effect in the STZ treatment. This assumption is backed up by our finding of a significant 
age-dependent increase in β -amyloid level showing appr. threefold higher levels in the 12 months old than in 
the 5 months old rats. For comparison: STZ could cause a 2.2 fold increase in the amount of β-amyloid in the 
5 months old rats in our previous study16. However, as our 12 and 25 months old rats also showed cognitive 
impairment, the above finding suggest that the eventual effect of STZ on β -amyloid formation may not be a 
causative factor in its detrimental cognitive effects.

Increased phospho-tau/tau ratio was also reported in many studies16,43,47–49,51,56,58,60–62,72. In the current study 
we only detected a significant increase in the old animals, while in young rats a non-significant 68% increase 
was observed. Interestingly, Osmanovic Barilar et al.73 examined STZ-treated rats of different ages and found 
increased phospho-tau/tau ratio in 6 and 9 months old rats but not in 12 months old ones.

Impulsive-like behavior has not been described in the literature yet, and it may be a hint for a possible direc-
tion of further investigations. It is not among the characteristic non-cognitive symptoms of AD74,75, rather, 
impulsivity and disinhibition are well known symptoms of frontotemporal dementia75–77, which lacks amyloid 
pathology78,79.

Comparison of our results with those in the literature shows that the effect of icv. STZ varies in different 
strains, depends on the age of animals and influenced by their level of experience and learning history. However, 
if the method is to be considered as a dementia model then the translationally most relevant animal population 
should be that of (i) old and (ii) experienced rats. Up to our best knowledge the present study is the first where the 
effect of icv. STZ was investigated in such a population. In these animals icv STZ produced impairments in spatial 
and recognition memory but not in fear learning/memory, visual discrimination and social learning; however 
it induced impulsive-like behavior. β-amyloid level was not increased probably because of the high basal level.

Nevertheless, it would be premature to generalize these findings to the STZ-icv model as such, since beside 
the age and experience level of the animals several other factors differed from those common in the literature. 
Strain difference is one of them: Long-Evans rats are better performers in cognitive tasks than Wistar rats11–15, and 
there is also a difference in local cerebral blood flow reactivity80. The dose of STZ applied in our study (4.5 mg/
kg)16 was greater than those used in the literature (not greater than 3 mg/kg) and we do not know whether the 
Alzheimer disease-like pathophysiology induced by 3 mg/kg and 4.5 mg/kg STZ-icv has the same time course 
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of onset, development and progression in Long-Evans and Wistar rats. Last, cognitive performance is usually 
measured in ad libitum fed rats, while we applied a food restriction regime, which may have rendered the ani-
mals more resistant to the toxic effects of STZ18,21,22. Thus, findings of the current study together with the above 
discussed differences call for more extensive studies with the STZ model involving both Wistar and Long-Evans 
strains to further strengthen and specify its translational validity.
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