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The potential distribution 
of Bacillus anthracis suitability 
across Uganda using INLA
V. A. Ndolo 1*, D. Redding 2, M. A. Deka 5, J. S. Salzer 5, A. R. Vieira 5, H. Onyuth 3, M. Ocaido 3, 
R. Tweyongyere 3, R. Azuba 3, F. Monje 4, A. R. Ario 4, S. Kabwama 4, E. Kisaakye 4, L. Bulage 4, 
B. Kwesiga 4, V. Ntono 4, J. Harris 5, J. L. N. Wood 1 & A. J. K. Conlan 1

To reduce the veterinary, public health, environmental, and economic burden associated with 
anthrax outbreaks, it is vital to identify the spatial distribution of areas suitable for Bacillus anthracis, 
the causative agent of the disease. Bayesian approaches have previously been applied to estimate 
uncertainty around detected areas of B. anthracis suitability. However, conventional simulation-
based techniques are often computationally demanding. To solve this computational problem, we use 
Integrated Nested Laplace Approximation (INLA) which can adjust for spatially structured random 
effects, to predict the suitability of B. anthracis across Uganda. We apply a Generalized Additive 
Model (GAM) within the INLA Bayesian framework to quantify the relationships between B. anthracis 
occurrence and the environment. We consolidate a national database of wildlife, livestock, and human 
anthrax case records across Uganda built across multiple sectors bridging human and animal partners 
using a One Health approach. The INLA framework successfully identified known areas of species 
suitability in Uganda, as well as suggested unknown hotspots across Northern, Eastern, and Central 
Uganda, which have not been previously identified by other niche models. The major risk factors for 
B. anthracis suitability were proximity to water bodies (0–0.3 km), increasing soil calcium (between 10 
and 25 cmolc/kg), and elevation of 140–190 m. The sensitivity of the final model against the withheld 
evaluation dataset was 90% (181 out of 202 = 89.6%; rounded up to 90%). The prediction maps 
generated using this model can guide future anthrax prevention and surveillance plans by the relevant 
stakeholders in Uganda.

Anthrax is a zoonotic disease caused by Bacillus anthracis, a Gram-positive, soil-borne, and spore-forming 
bacterium. In some environmental conditions, B. anthracis spores can survive in the soil for years or even 
 decades1,2, making long-term control of the disease very difficult. The disease primarily affects both domestic 
and wild  animals3,4, mostly herbivores, and can be transmitted to humans when they touch, ingest, or inhale 
bacterial spores from infected animals, carcasses, or animal by-products5. Anthrax is estimated to cause about 
20,000–100,000 human infections annually across the  world6. Approximately 1.1 billion livestock live in areas 
predicted to be at risk for anthrax  globally6.

Outbreaks can reduce the economic productivity of the agricultural sector, including dairy production, harm 
biodiversity, and wildlife conservation efforts, and threaten the food security for communities that consume 
 meat7. Effective control of anthrax disease in livestock needs robust surveillance efforts, annual livestock vaccina-
tion, and timely outbreak response involving ring vaccination, safe disposal of carcasses, and awareness creation 
 campaigns3. There is currently no policy in Uganda concerning the routine annual livestock vaccination against 
anthrax since the benefits of vaccination against the disease are considered a “private good,” so farmers have to 
buy vaccines and prophylactic antibiotics privately for their animals, usually during ongoing anthrax  outbreaks3.

The use of Ecological Niche Model (ENMs) in the fields of conservation biology, epidemiology, and environ-
mental health has increased in recent years. ENMs seek to estimate the association between species presence 
or absence with environmental variables to predict the probability of the species suitability in non-sampled 
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locations or time  periods8. ENMs have been used in the past to identify “hotspots” or priority areas likely to be 
inhabited by disease-causing micro-organisms or  vectors9–11. It is vital to identify these areas correctly to institute 
appropriate interventions. Several methods have been created over the past years to build ENMs for B. anthracis 
suitability; these include regression models such as Generalized Linear Models (GLM), Climate Envelope Models 
(e.g., BIOCLIM), Maximum Entropy Models (e.g., MAXENT), Artificial Neural networks such as SPECIES, and 
Classification and Regression Trees (e.g., BIOMOD)12–16. However, ecological datasets are complex, often requir-
ing sophisticated statistical techniques to analyse  them17. It is now standard practice to require explicit spatial 
dependence structures when developing models for complex and non-linear associations between the species and 
environmental variables and to estimate the sources of uncertainty due to the sampling methods, reporting biases, 
input data, and other analytical  errors17. Conventional approaches are limited in their ability to accommodate 
complex hierarchical dependency structures needed to adjust for spatial autocorrelation within ecological  data18.

Hierarchical Bayesian models can account for spatial autocorrelation and include spatial random effects that 
might capture spatial  distributions19. Posterior predictive distributions obtained from Bayesian models usu-
ally require numerical techniques to approach them. Simulation-based methods such as Markov Chain Monte 
Carlo (MCMC) may be used, but are computationally  intensive20,21 while the novel Integrated-Nested Laplace 
Approximation (INLA)  approach22 offers a better alternative. INLA has gained popularity as a framework for 
modelling spatial and temporal data of disease-causing organisms (e.g., Rift-Valley Fever and Lassa Fever)23,24, as 
it can produce improved predictions compared to the conventional ENM  approaches18. However, INLA appears 
yet to be used to model the spatial distribution of Bacillus anthracis.

This study aims to predict the geographical distribution of the species suitability of B. anthracis across Uganda 
using wildlife, livestock, and human data collected from 2004 to 2018. We use a Generalized Additive Model 
(GAM) using the INLA Bayesian framework to quantify the relationships between the occurrence of B. anthra-
cis infection and the environment. Our dataset consolidates a national database of anthrax case records across 
Uganda built across multiple sectors bridging human and animal partners using a One Health approach.

Methods
Study setting. Uganda covers 241,037  km2 (4° N, 2° S, 29° E, 35° E) and averages 1100 m above sea  level25. 
Uganda has a total population of 34.6 million people, with 7.4 and 27.2 million living in urban and rural areas, 
 respectively26. It borders Lake Victoria and has an equatorial climate. The study area is mainly plateau, with a few 
mountains. About 20 percent of Uganda’s area is covered by swamps and water bodies, including the four Great 
Lakes of East Africa (Lake Edward, Lake Victoria, Lake Albert, and Lake Kyoga). The country has ten national 
parks housing a high diversity of wildlife and endangered  species26. By 2009, agriculture ranked as the second 
leading contributor to the country’s Gross Domestic  Product27.

Surveillance data of Bacillus anthracis infection. Surveillance data of livestock and human cases from 
2018 were provided by the Ministry of Health (MOH) in Uganda through the Field Epidemiology and Labora-
tory Training Program and the Uganda Ministry of Agriculture, Animal Industry and Fisheries (MAAIF). Geo-
graphical coordinates of anthrax cases among wildlife (from 2004 to 2010) in Queen Elizabeth National Park 
were obtained from a recently published  study4. These cases were mapped to show the distribution of anthrax 
across Uganda (Fig.  1). It is only recently that Uganda has mandated systematic anthrax surveillance across 
the country following the outbreak that started in 2018. GPS coordinates gathered by field personnel during 
outbreak responses were used to map outbreak locations. The human anthrax cases were defined based on the 
CDC’s clinical criteria (signs and symptoms), presumptive laboratory diagnosis (Gram staining), and confirma-
tory laboratory diagnosis (bacterial culture, immunohistochemistry, ELISA, and PCR)28. The animal anthrax 
cases were also defined based on the clinical presentation, presumptive laboratory diagnosis, and confirmatory 
laboratory diagnosis. All cases were classified as either ‘probable’ or ‘confirmed,’ with probable defined as cases 
that met both the clinical and presumptive laboratory diagnostic criteria and confirmed defined as cases that met 
the clinical and confirmatory laboratory diagnostic criteria. A total of 497 livestock (n = 171), humans (n = 32), 
and wildlife cases (n = 294), both confirmed (n = 32) and probable (n = 465), occurring from 2004 to 2018 were 
compiled. All methods were performed in accordance with the relevant guidelines and regulations.

Environmental variable processing. Correlative studies of environmental risk factors for anthrax 
outbreaks suggest that  temperature6,29–37,  precipitation6,29–39,  elevation6,29,31,32,34,35,37–39, soil (type, calcium con-
centration, pH, carbon content, and moisture)6,30,31,33,34,36,37,39–43,  vegetation6,29,31,34,36–40,42,43, and  hydrology37,44 
are some of the major drivers of B. anthracis suitability. A total of 26 environmental predictors (Fig. 2) were 
selected for this study based on these known variables. These comprised 19 bioclimatic variables (the mean for 
the years 1970–2000) collected from the WorldClim database version 2 (https:// www. world clim. org/ data/ world 
clim21. html) at a resolution of 30 s (~ 1  km2)45. Four soil variables, including exchangeable calcium at a depth 
of 0–20 cm, soil water availability, soil pH (10×) in  H2O at a depth of 0 cm, and soil organic carbon at a depth of 
0–5 cm, were retrieved from the International Soil Reference and Information Centre (ISRIC) data hub at a reso-
lution of 250 m (https:// data. isric. org/ geone twork/ srv/ eng/ catal og. searc h#/ home). Distance to permanent water 
bodies was derived from a global hydrology map provided by ArcGIS online version 10.6.146. Elevation data of 
1  km2 in resolution was obtained from the Global Multi-resolution Terrain Elevation Data (GMTED2010) data-
set available from the United States Geological Service. Finally, the monthly Enhanced Vegetation Index (EVI) 
data for the years 2004, 2005, and 2010 (36 tiles in total) were obtained from The Aqua Moderate Resolution 
Imaging Spectroradiometer (MODIS) Vegetation Indices (MYD13A3 v.6) at a spatial resolution of 1 km (https:// 
lpdaac. usgs. gov/ produ cts/ myd13 a3v006/). The single variable, mean EVI, was calculated in QGIS by averaging 

https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
https://lpdaac.usgs.gov/products/myd13a3v006/
https://lpdaac.usgs.gov/products/myd13a3v006/
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all 36 tiles. The EVI minimizes variations in the canopy background and maintains precision over conditions 
with dense vegetation.

All environmental variables were resampled using the R package ‘Resample’47 to a resolution of 1 km and 
clipped to the extent of Uganda. Since data sampling for wildlife data (used in model training) was not done 
systematically across the study area, target backgrounds buffers (polygon buffers created at certain radii from 
the training points and used for the random selection of pseudo-absences) were created for model calibration to 
reduce sampling bias. As there was no information on the sampling radius, a sensitivity analysis was conducted by 
creating target backgrounds using circular buffers of radius 50 km, 75 km, and 100 km around the presence points 
used for model training, leaving 10 km between the presence points and the various buffers (Fig. 1). Quantum 
Global Information System (QGIS) version 3.16 (https:// qgis. org) software was then used to add 294 random 
pseudo-absence points within each buffer polygon giving a ratio of 1:1 for the training presences to pseudo-
absences. A recent study explored how four approaches of pseudo-absence creation affect the performance of 
models across different species and three model types by building both terrestrial and marine models using 
boosted regression trees, generalised additive mixed models, and generalised linear mixed  models48. They then 
tested four methods for generating pseudoabsences across all the different model types: (1) correlated random 
walks (RW); (2) reverse correlated RW; (3) sampling pseudoabsences within a buffer area surrounding the pres-
ence points; (4) background  sampling48. The findings of the study suggested that the separation or distance in 
the environmental space between the presence locations and the pseudoabsences was the most significant driver 
of the model predictive ability and explanatory power, and thus finding was consistent across the three model 
types (boosted regression trees, generalised additive mixed models, and generalised linear mixed models) and 
both the terrestrial and marine  habitats48.

The values of the environmental variables were then extracted for each presence and pseudo-absence location 
using the raster package in R. With these, we did an initial data exploration to check for outliers within the covari-
ates, collinearity, and to explore the relationships between the covariates and the response variables (presence or 
absence of anthrax). Cleveland dot plots were used to check for possible outliers. Following the outlier checks, 
variance inflation factors (VIF), pairwise plots, and Pearson correlation coefficients with correction for multiple 
comparisons were used to measure the statistically significant correlation between the covariates (Fig. 2). For 
variables that were highly correlated (correlation greater than 0.6) or those with high variance inflation (VIF > 3), 
only one was used in the modelling process. Five variables were selected following this analysis: Temperature 
seasonality (BIO4), elevation, distance to water, soil calcium, and soil water (Table 1).

Figure 1.  Distribution of anthrax presence and pseudo-absence locations across Uganda. The navy-blue circles 
show wildlife cases (n = 294) used for model training, the blue triangles show livestock cases (n = 171), and the 
red diamonds represent human cases (n = 32). The blue polygons show the locations of the 50 km, 75 km, and 
100 km buffers which were constructed around the wildlife cases with a distance of 10 km between the buffers 
and the presence locations. The pink dots show the pseudo-absence points selected within the 50 km buffer, 
the orange dots show the pseudo-absence points selected within the 75 km buffer, and the white dots show the 
pseudo-absence points selected within the 100 km buffer. Prediction maps were developed using the Quantum 
Geographic Information System software (QGIS). URL: https:// qgis. osgeo. org (2020).

https://qgis.org
https://qgis.osgeo.org


4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19967  | https://doi.org/10.1038/s41598-022-24281-8

www.nature.com/scientificreports/

Modelling anthrax suitability across Uganda. QGIS v.3.16 (https:// qgis. org) and the R statistical pack-
age version 4.1.049 were used to conduct data visualization, cleaning, and model analysis (R code used available in 
a Github repository: https:// github. com/ valen tinan dolo/ Uganda- Spati al_ Model/ tree/ master). The wildlife cases 
(n = 294) were used for model training and testing. The remaining human (n = 32) and livestock (n = 171) cases 
were used for model evaluation. Since the wildlife case locations were recorded from 2004 to 2010, while the 
livestock and human cases were recorded in 2018, the latter locations were both spatially and temporally distinct 
from the wildlife cases, making an excellent basis for block cross-validation of the final model  performance50. 
Random partitioning of the data into training and testing sets can inflate the performance of a model and under-
estimate the error in the spatial prediction  evaluation50. Block cross-validation uses spatial blocks that separate 
the testing and training datasets; thus, the method has been suggested to be a good technique for error estima-
tion and a robust approach for measuring a model’s predictive  performance50.

The INLA package in R was applied to model the suitability of B. anthracis across Uganda. INLA calculates 
the spatial interaction effects using a Stochastic Partial Differential Equation (SPDE) method, which estimates 
a continuous Gaussian Markov Random Field (GMRF) where the correlation between two locations in space is 
specified by the Matérn correlation which is explained in more detail  elsewhere51. The initial step in fitting an 
SPDE model is the creation of a Constrained Refined Delaunay Triangulation or a mesh to illustrate the spatial 
 process51. R-INLA uses a function called ‘inla.mesh.2d()’ that applies a variety of arguments to build the mesh, 
these include: loc, loc.domain, boundary, max.edge, and cutoff51. The loc argument contains the point locations 
which provide information about the area of study and are used to create the triangulation nodes. Alternatively, 
a polygon of the study area can be used to identify the extent of the domain via loc.domain. We applied the 
point locations using the loc argument. We then specified the boundary of the mesh as a convex hull. We used 
the max.edge argument to specify the maximum edge length for the inner mesh domain/triangles and the outer 
triangles. We did this by first studying the distribution of distances between the point locations for the training 
presences and pseudo-absences. Most points were within a distance of about 90–100 km away from each other, 
thus, a possible guess for the range at which spatial autocorrelation persists was 100 km. We used a distance 
of 20 km as a range guess to create a finer mesh which has been shown to produce more precise models. We 
specified the maximum edge length for the inner triangles as 20 km divided by 5 (4 km) and the maximum edge 
length for the outer triangles as 20 km. Finally, the cutoff argument sets the minimum distance allowed between 
point locations. We divided the maximum edge length for the inner triangles by 5 (4 km divided by 5 = 0.8 km), 
meaning that points that were closer in distance than 0.8 km were replaced by one vertex to avoid the occur-
rence of small triangles.

The spatial effect, which is a numeric vector, then links each observation within the data to a spatial loca-
tion, thus, accounting for region-specific variation that cannot be accounted for by the covariates. Following the 

Figure 2.  Results of correlation between covariates using Pearson’s correlation test. Correlation between 
covariates was shown by red numbers (negative correlation) and blue numbers (positive correlation). 
BIO1 = Annual Mean Temperature, BIO2 = Mean Diurnal Range, BIO3 = Isothermality, BIO4 = Temperature 
Seasonality, BIO5 = Max Temperature of Warmest Month, BIO6 = Min Temperature of Coldest Month, 
BIO7 = Temperature Annual Range, BIO8 = Mean Temperature of Wettest Quarter, BIO9 = Mean Temperature 
of Driest Quarter, BIO10 = Mean Temperature of Warmest Quarter, BIO11 = Mean Temperature of Coldest 
Quarter, BIO12 = Annual Precipitation, BIO13 = Precipitation of Wettest Month, BIO14 = Precipitation of Driest 
Month, BIO15 = Precipitation Seasonality, BIO16 = Precipitation of Wettest Quarter, BIO17 = Precipitation of 
Driest Quarter, BIO18 = Precipitation of Warmest Quarter, BIO19 = Precipitation of Coldest Quarter.

https://qgis.org
https://github.com/valentinandolo/Uganda-Spatial_Model/tree/master
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recommendation by Lindgren and  Rue52, multivariate Gaussian distributions with means of zero and a spatially 
defined covariance matrix were used to model the spatial effect. Several versions of Bayesian hierarchical additive 
models were created by estimating a Bernoulli generalized additive model (GAM) with and without spatially 
correlated random effects. The Bernoulli GAM is defined as shown in Eqs. (1) and (2)

where Ci denotes the observed value, such that: B. anthracis presence or absence at a given location i (i = 1, …, 
n; n = 588) is given as Ci , where Ci =1 if B. anthracis was present, and Ci =0 if absent. Logit is the link function 
for binomial family, pi is the expected value of the response variable (the probability of B. anthracis suitability) 
at location i, α is the intercept, Xj,i and Xk,i are the j th and the k th covariates at a location i, βj are the beta coef-
ficients, fk are the smooth functions (cubic regression splines) for k th covariates, and µi is the spatial random 
effect at the location i53. The number of variables in linear term (m) and the non-liner term (l) are different 
because the variables employed in each term are different. We estimated both linear and non-linear effects for 
the covariates. Our overall database had 294 B. anthracis pseudo-absences generated randomly across the target 
background buffers to match the number of species presences recorded. Because we had no prior information, 
a Gaussian prior distribution with a mean of zero (default no effect prior unless data is informative) was applied 
for all the model parameters. The posterior mean, standard deviation, and 95% credible intervals were estimated 
for all the parameters.

Model selection. Several different candidate models were examined. First, a baseline model was built using 
only the intercept. A second baseline model was then built, which included the intercept and spatial random 

(1)Ci ∼ Bernoulli
(

pi
)
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(2)logit
(
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)
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∑
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(
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Table 1.  Summary of the environmental variables used.

Variable name Units Spatial resolution Source Year

BIO1 = Annual Mean Temperature,

°C

30 arc-s WorldClim database version 2 (https:// www. 
world clim. org/ data/ world clim21. html) (36) The average for 1970–2000

BIO2 = Mean Diurnal Range,

BIO3 = Isothermality,

BIO4 = Temperature Seasonality

BIO5 = Max Temperature of Warmest Month

BIO6 = Min Temperature of Coldest Month

BIO7 = Temperature Annual Range

BIO8 = Mean Temperature of Wettest Quarter

BIO9 = Mean Temperature of Driest Quarter

BIO10 = Mean Temperature of Warmest 
Quarter

BIO11 = Mean Temperature of Coldest 
Quarter

BIO12 = Annual Precipitation

ml

BIO13 = Precipitation of Wettest Month

BIO14 = Precipitation of Driest Month

BIO15 = Precipitation Seasonality

BIO16 = Precipitation of Wettest Quarter

BIO17 = Precipitation of Driest Quarter

BIO18 = Precipitation of Warmest Quarter

BIO19 = Precipitation of Coldest Quarter

Elevation (m) m 1 km
Global Multi-resolution Terrain Elevation 
Data (GMTED2010) dataset available from the 
United States Geological Service

2010

Distance to permanent water bodies (km) km 1 km Derived from a global hydrology map pro-
vided by ArcGIS online version 10.6.1 2019

Mean Enhanced Vegetation index (EVI) Units 1 km
The Aqua Moderate Resolution Imaging Spec-
troradiometer (MODIS) Vegetation Indices 
(MYD13A3 v.6) (https:// lpdaac. usgs. gov/ 
produ cts/ myd13 a3v006/)

Average of 36 tiles from the years 2004, 2005, 
and 2010

Soil exchangeable calcium (depth of 0–20 cm) cmolc/kg

250 m
International Soil Reference and Information 
Centre (ISRIC) data hub (https:// data. isric. 
org/ geone twork/ srv/ eng/ catal og. searc h#/ 
home)

Soil water availability v%

Soil pH (× 10) in H2O (depth of 0 cm) Units (1–14)

Soil organic carbon (depth of 0–5 cm) Dg/kg

https://www.worldclim.org/data/worldclim21.html
https://www.worldclim.org/data/worldclim21.html
https://lpdaac.usgs.gov/products/myd13a3v006/
https://lpdaac.usgs.gov/products/myd13a3v006/
https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
https://data.isric.org/geonetwork/srv/eng/catalog.search#/home
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effects only. Covariates were added to the second baseline model (intercept plus spatial effects model) without 
any smoothing function (i.e., only linear effects). The contribution of the spatial random effect was then re-
examined by taking it out from the model. Smoothing functions were then added to all covariates, and the same 
procedure was repeated. Model selection was done using this forward stepwise approach. The final model was 
run using the three different target background buffers to identify the buffer distance with the lowest Deviance 
Information Criterion (DIC). The various options were assessed using the  DIC54, Watanabe-Akaike information 
criterion (WAIC), and the Conditional Predictive Ordinate (CPO). The DIC and WAIC were chosen because 
they are commonly used to assess model performance by measuring the compromise between the goodness of 
fit and complexity. For CPO, the logarithmic score (− mean(log (CPO)) (LCPO) was calculated and  used55. CPO 
can also be used to conduct internal cross-validation of models using a leave-one-out approach to evaluate the 
predictive performance of the model. Lower LCPO, DIC, and WAIC estimates suggest superior model perfor-
mance. Thus, the favoured model had the lowest values across the 3 metrics.

Model validation and evaluation. Model validation for the favoured model was conducted using an 
independent evaluation dataset comprising of livestock and human outbreaks occurring at different spatial loca-
tions and 8 years after the training data. The omission rate, which indicates the proportion of positive test loca-
tions that end up in pixels predicted to be unsuitable for B. anthracis56, was used to validate the model. A low 
omission rate indicates good model performance. The threshold for suitability was the probability threshold that 
maximized the sensitivity and specificity of the model. The sensitivity was then derived by calculating the pro-
portion of positive test locations that end up in pixels predicted to be suitable for B. anthracis56. A high sensitivity 
indicates good model performance.

Model prediction. The favoured model selected using the criteria described above was used to generate 
countrywide prediction maps showing the posterior mean values, standard deviation, and the 95% credible 
intervals of the probability of B. anthracis suitability. The raster package in R was used to make the prediction 
maps. Bayesian kriging was done by treating all model parameters as random variables to include uncertainty 
in the  prediction57. This kriging is built into the INLA framework via the SPDE, which allows a Delaunay trian-
gulation to be constructed around the presence and absence locations within the sampling  frame52. INLA then 
conducts model inference and prediction at the same time by considering the prediction points as locations 
missing the response variable (set to NA)51. Following successful model prediction, additional linear interpola-
tion functions then generate the output for the whole study area scaled from 0 to 1.

Ethical approval. Ethical approval for this study was provided by the Human Biology Research Ethics 
Committee, University of Cambridge, UK (Ref: HBREC.2019.02) the School of Veterinary Medicine and Animal 
Resources Institutional Animal Care and Use Committee, Makerere University, Uganda (Ref: SVAREC/21/2019); 
and the Uganda National Council for Science and Technology. Informed consent was obtained from all subjects 
and/or their legal guardian(s). All methods were performed in accordance with the relevant guidelines and 
regulations.

Results
A total of 497 anthrax cases comprising livestock (n = 171), humans (n = 32), and wildlife cases (n = 294), occur-
ring from 2004 to 2018 were compiled (Fig. 1). Of these, 32 cases were classified as confirmed and 465 cases were 
probable. The wildlife cases were used to train and calibrate the model. Table 2 shows the results of the candidate 
models created across the different target background buffers. The 75 km background buffer radius gave the best 
results in terms of lower DIC values, so it was selected as the final background extent for model calibration. The 
baseline prediction model that incorporated the spatial random effect had a much lower DIC than the baseline 
model without it (Table 2) and addition of linear covariates reduced it further. The chosen best model (option 17 
in Table 2) had the lowest DIC, WAIC and LCPO compared to the rest of the models. This final model applied a 
non-linear effect on elevation and linear effects on distance to water, soil calcium, and soil water (Table 2). The 
spatial random effect was not included in the model.

The posterior predicted mean probability of B. anthracis suitability and the 95% credible intervals for the 
parameters of the fixed effects used in the final INLA model are shown in Fig. 3. The results demonstrated a 
negative relationship between distance to water and the presence of B. anthracis between 0 and 0.3 km. However, 
soil calcium had a positive association with the occurrence of B. anthracis between 10 and 25 cmolc/kg. Similarly, 
the results showed that higher occurrences of B. anthracis are expected in areas with soil water availability of 
between 20 and 30 v% (the volumetric soil water content defined as the volume of water for each unit volume of 
soil) and elevation of 140–190 m (Fig. 3). The omission rate of the final model against the withheld evaluation 
dataset was 10%, indicating a sensitivity of 90% (181 out of 202 = 89.6%; rounded up to 90%). Only 21 loca-
tions out of the 202 positive test locations were omitted (predicted to be unsuitable) by the model projection, 
however, these locations were all within 50 km of the nearest predicted high-risk area. The recent study of the 
environmental factors influencing the distribution of anthrax across Queen Elizabeth National Park in Uganda 
had 5.2% omission rate, correctly predicting 94.8% of the test points applied for model  validation33. The other 
recent study of the distribution of B. anthracis across Africa had omission rates of 3.4%, 10%, and 5.9% when no 
thinning, 30 km thinning, and 50 km thinning was applied to the  dataset58.

The prediction maps from the INLA model identified several districts across Western, Central, Eastern, 
and Northern Uganda to be suitable for the occurrence of B. anthracis as shown in Table 3. These areas were 
identified to be regions that are likely to be suitable for the occurrence and persistent of B. anthracis (Fig. 4). The 
spatial effect which shows the intrinsic spatial variability of the observed data after excluding the environmental 
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predictors, showed a low (almost negligible) effect and was, therefore, excluded from the final model, implying 
that the variability of the species data for B. anthracis appears to be explained by the chosen variables used in 
the final model. Figure 5 is a binary map created using the threshold for maximum sensitivity and specificity. It 
shows areas that are likely to be suitable for anthrax and those that are not.

Discussion
This study uses a Bayesian framework to model the suitability of B. anthracis using wildlife data from Queen 
Elizabeth National Park, as well as livestock and human data from the MAAIF and MOH in Uganda. We dem-
onstrate the INLA Bayesian framework to be a method that can predict hotspots of disease-causing organisms 
and inform prevention and surveillance strategies. ENMs have gained rapid popularity as powerful disease epi-
demiology  tools23,24. A major preliminary step to reducing anthrax outbreaks is to identify and prioritize areas 
that are suitable for the occurrence of B. anthracis33. The correct detection of such areas can enhance effective 
management strategies for anthrax prevention. However, this requires a detailed understanding of the spatial 
distribution of B. anthracis, given that misidentification of anthrax “hotspots” can cause erroneous outbreak 
prevention practices leading to considerable economic losses.

The Bayesian model results show that the suitability of B. anthracis is influenced by soil properties, topogra-
phy, as well as proximity to permanent water bodies. The non-linear relationship between elevation and species 
distribution demonstrated by the models implies that B. anthracis may occur in areas with distinct environmental 
properties but displaying higher preferences for areas with lower elevation (around 140–190 m). The linear rela-
tionships suggest that B. anthracis may prefer areas closer to water bodies (between 0 and 0.3 km). These results 
concur with the findings from a recent study on B. anthracis suitability conducted in Kruger National Park in 
South Africa which showed that low altitude (between 225 and 280 m) and close proximity to a water bodies 
were essential for survival and persistence of  anthrax37. Soil water availability had a weak positive effect on B. 
anthracis suitability. This variable, sometimes referred to as soil moisture has been shown to be an important 
predictor of B. anthracis suitability in Southern  Kenya36.

Table 2.  Model comparison of the fitted INLA models using linear and non-linear associations across 
three background buffer radii. The criteria for comparison are DIC Deviance Information Criterion, WAIC 
Watanabe-Akaike Information Criterion, LCPO Conditional Predictive Ordinate, Variables acronyms are 
Distw Distance to water, Ca Soil calcium, Elev Elevation, Swater Soil water, BIO4 Temperature Seasonality, µ 
Spatial effect.

Buffer radius Model option Type Variables DIC WAIC CPO

50 km

1 Linear Baseline 817 817 0.69

2 Linear Baseline + μ 187 181 0.15

3 Linear BIO4 + Distw + Elev + Ca + Swater + μ 85 85 0.07

4 Linear BIO4 + Distw + Elev + Ca + Swater 83 84 0.07

5 Linear Distw + Elev + Ca + Swater 81 81 0.07

6 Non-linear f(Distw) + f(Elev) + f(Ca) + f(Swater) 78 118 1.75

7 Non-linear f(Distw) + f(Elev) + f(Ca) + f(Swater) + μ 120 263 5.29

8 Non-linear Distw + f(Elev) + Ca + Swater 60 61 0.05

9 Non-linear Distw + f(Elev) + Ca + Swater + μ 63 64 0.06

75 km

10 Linear Baseline 817 817 0.69

11 Linear Baseline + μ 187 182 0.15

12 Linear BIO4 + Distw + Elev + Ca + Swater + μ 60 75 1.93

13 Linear BIO4 + Distw + Elev + Ca + Swater 50 60 0.08

14 Linear Distw + Elev + Ca + Swater 49 53 0.07

15 Non-linear f(Distw) + f(Elev) + f(Ca) + f(Swater) 108 301 2.20

16 Non-linear f(Distw) + f(Elev) + f(Ca) + f(Swater) + μ 184 604 9.79

17 Non-linear Distw + f(Elev) + Ca + Swater 44 47 0.05

18 Non-linear Distw + f(Elev) + Ca + Swater + μ 53 63 2.95

100 km

19 Linear Baseline 817 817 0.69

20 Linear Baseline + μ 176 170 0.14

21 Linear BIO4 + Distw + Elev + Ca + Swater + μ 95 96 0.08

22 Linear BIO4 + Distw + Elev + Ca + Swater 95 96 0.08

23 Linear Distw + Elev + Ca + Swater 92 92 0.08

24 Non-linear f(Distw) + f(Elev) + f(Ca) + f(Swater) 77 161 5.16

25 Non-linear f(Distw) + f(Elev) + f(Ca) + f(Swater) + μ 145 613 9.50

26 Non-linear Distw + f(Elev) + Ca + Swater 85 85 0.07

27 Non-linear Distw + f(Elev) + Ca + Swater + μ 86 86 0.08
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High soil calcium concentrations (10–25 cmolc/kg) also had a significant positive effect on the suitability of 
and area to B. anthracis. A recent study of B. anthracis suitability in Queen Elizabeth National Park in Uganda 
reported exchangeable calcium to be an important contributor in the creation of a species survival model for the 
 bacteria33. Steenkamp et al.37 also reported that high calcium concentration was a significant driver of anthrax 
occurrence in South Africa. A growing body of evidence supports the fact that calcium has an important role 
in the preservation of anthrax spores in the  soil59. Studies have shown that calcium can be absorbed from the 
environment by the bacteria during spore formation and incorporated into the layers of the bacterial spore, 
particularly the  core60,61. Calcium then combines with diplicolinic acid to form a salt lattice that helps to stabilize 
the enzymes and DNA in the spore, hence, helping the bacteria to maintain dormancy and develop thermore-
sistance  properties60–62.

The INLA framework also allows the use of Delaunay triangulation as opposed to the regular grid structures 
that are commonly applied in conventional ENMs. This approach gathers more information from the areas 
with more observed data; thus, the density of triangulation is higher across these regions contributing to more 
accurate predictions. This approach considers the boundary effect by creating a mesh that transitions smoothly 

Figure 3.  (A) The fixed effect and credible intervals for the linear covariates, (B) the smoothed fits of elevation 
(in m in x-axis) and linear fits of: (C) distance to water (in km in x-axis), (D) soil calcium (in cmolc/kg in 
x-axis), (E) soil water (in v% in x-axis) variables. The y-axis shows the estimated probability of presence. The 
shaded grey polygons represent 95% credible intervals.

Table 3.  Districts across Uganda with moderate to high B. anthracis suitability by region.

Region Districts

Western
Kasese, Rubirizi, Kitagwenda, Rukungiri, Kanungu, Kamwenge, Bunyangabu, Kabarole, Kazo, Kiruhura, Isingiro, Mbarara, 
Kabale, Kisoro, Kyegegwa. Bundibugyo, Kyenjojo, Ntoroko, Kagadi, Kakumiro, Kikuube, Hioma, Masindi, Buliisa, Kiryan-
dongo

Central Kyotera, Rakai, Lwengo, Lyantonde, Ssembabule, Mubende, Gomba, Kalungu, Kassanda, Mityana, Mpigi, Wakiso, Mukono, 
Kampala, Kayunga, Luwero, Nakaseke, Kiboga, Nakasongola, Kyankwanzi

Eastern Kapchorwa, Kween, Bulambuli, Jinja, Kamuli, Buyende, Iganga, Luuka, Kaliro, Budaka, Kibuku, Pallisa, Ngora, Katakwi, 
Kapelebyong, Soroti, Serere, Kalaki, Kaberamaido

Northern Kitgum, Kotido, Abim, Agago, Napak, Moroto, Nabilatuk, Nakapiripirit, Omoro, Oyam, Kole, Apak, Lira, Kwania, Dokolo, 
Abletong, Nwoya, Pakwach, Nebbi, Arua, Yumbe, Madi, Okollo, Obongi, Adjumani, Moyo, Amuru, and Lamwo
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from regions dominated by the smaller triangles (domain of interest in the model) to the regions with the large 
triangles (areas outside the domain of interest that help to avoid boundary effects within the model).

The areas of Western Uganda within Queen Elizabeth National Park, Northern Uganda around Arua, and 
Kween district in Eastern Uganda were predicted to be highly suitable for B. anthracis occurrence, confirming 
the results of previous studies with the accurate detection of the most suitable areas for the occurrence of the 
 species33,58. Compared to the most recent attempt to model the distribution of anthrax in  Uganda33, our model 
was different with regards to the parameters included and some of the covariates that were selected. For instance, 
the inclusion of the spatial random effect during model selection allowed the consideration of the effect of spatial 
autocorrelation before and after the addition of the covariates. The spatial effect was eventually excluded from 
the final model because the covariates used were able to account for most of the variation observed within the 
observed data. However, it is still important for future studies to test for any residual spatial variation and, if 
present, account for this and INLA provides a computationally efficient way of achieving this.

The INLA Bayesian framework applies probability distributions for the posterior estimates to model uncer-
tainty within the parameter  values23. As such, a point estimate of the posterior probability of suitability as well 
as the uncertainty surrounding it can be obtained and  assessed24. Estimating this uncertainty via spatial maps 
is vital to offering end-users a realistic species suitability distribution to identify prevention and surveillance 
options. INLA models can not only deal with smoothing techniques such as GAMs, but they can also conduct 
inference and model prediction simultaneously, handle missing data, and incorporate biases within the data as 
spatial random effects, e.g., survey effort. One key limitation of this study is the lack of systematically collected 
and detailed anthrax case information. Therefore, it was impossible to account for structural dependencies such 
as temporal autocorrelation and analytical biases like survey effort or surveillance efficiency. Future studies 
should try to consider the incorporation of survey effort as well as temporal autocorrelation as model offsets or 
as other explanatory covariates within the model particularly when modelling incidence.

Figure 4.  (A) The posterior predictive mean (B) posterior standard deviation (C) posterior lower credible 
interval (2.5% quantile) and (D) posterior credible upper interval (97.5% quantile) of the probability of B. 
anthracis suitability across Uganda from wildlife data (2004–2010). Prediction maps were developed using the 
Quantum Geographic Information System software (QGIS). URL: https:// qgis. osgeo. org (2020).

https://qgis.osgeo.org
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This work employs a Bayesian GAM via INLA to examine the spatial suitability of B. anthracis using data 
from MAAIF, MOH, and published studies in Uganda. R-INLA has been shown to generate model predictions 
of species occurrence, which are better than those generated by Maxent and Boosted Regression Trees especially 
when the occurrence dataset is clumped or  restricted18. Our model was able to pick up known locations of anthrax 
outbreaks occurring 8 years after the dataset used to calibrate the model with a sensitivity of 90%. The 10% of the 
test locations that were omitted by the model projection were all within 50 km of the nearest predicted high-risk 
area. There is a possibility that the animals could have acquired the infection within a high-risk area and died at 
a different location which was then georeferenced. These results demonstrate a high level of precision, making 
the prediction maps useful enough to be incorporated into future anthrax prevention and surveillance plans by 
the relevant stakeholders in Uganda. The model used in the past study to map the distribution of anthrax across 
Queen Elizabeth National Park in Uganda had a lower omission rate (5.2%) and slightly higher sensitivity of 
94.8% against the test  points33. However, the occurrence data points used in the study were split randomly by a 
ratio of 3:1, with 75% of the data applied in model calibration, and the remaining 25% in model  validation33. The 
other recent continental study of the distribution of B. anthracis across Africa also had lower omission rates when 
no thinning (3.4%) and 50 km thinning (5.9%) were applied to the  datasets58. However, like the Queen Elizabeth 
study, the models were created by randomly sampling 50% of the occurrence dataset for model calibration and 
the rest (50%) for model  validation58. Random partitioning of the data into training and testing sets can inflate 
the performance of a model and underestimate the error in the spatial prediction  evaluation50.

The overall achievement of this study was to generate novel and highly relevant predictions of the spatial 
distribution of B. anthracis suitability across Uganda. Anthrax emerged as the top disease of highest priority for 
human and animal health sectors during the Ugandan One Health Zoonotic Disease Prioritization Workshop 
in  201724. The key recommendations from this workshop included an emphasis on building laboratory capacity, 
enhancing surveillance, improving outbreak response, and focusing on prevention and control, particularly using 
a multi-sectoral, One Health approach. The suitability maps we have generated in this study will help policy-
makers in Uganda to effectively estimate the cost of implementing targeted anthrax prevention and surveillance 
campaigns and plan their management decisions effectively. This study also provides a basis for targeted studies 
to validate and improve predictions.

Conclusion
This work used a Bayesian framework to model the suitability of B. anthracis using data from MAAIF, MOH, 
and published studies in Uganda. The model identified known locations of anthrax outbreaks in Kiruhura, 
Arua, Pakwach, and Kween Districts, occurring 8 years later with excellent sensitivity. The prediction maps 
generated here can guide future anthrax prevention and surveillance plans by relevant stakeholders in Uganda. 
INLA methods can account for the analytical biases and structural dependencies within the input data, but more 

Figure 5.  A binary map of the posterior predictive mean of the probability of B. anthracis suitability across 
Uganda using the threshold for maximum sensitivity and specificity (0.52). Prediction maps were developed 
using the Quantum Geographic Information System software (QGIS). URL: https:// qgis. osgeo. org (2020).

https://qgis.osgeo.org
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effort still needs to be put in place to allow for detailed and systematic data surveillance to improve the quality 
of observation data available.

Data availability
The datasets and R code supporting the conclusions of this article are available in the GitHub repository, https:// 
github. com/ spati almod els/ Uganda- Spati al_ Model.
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