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Novel pruning and truncating 
of the mixture of vine copula 
clustering models
Fadhah Amer Alanazi

The mixture of the vine copula densities allows selecting the vine structure, the most appropriate 
type of parametric marginal distributions, and the pair-copulas individually for each cluster. 
Therefore, complex hidden dependence structures can be fully uncovered and captured by the 
mixture of vine copula models without restriction to the parametric shape of margins or dependency 
patterns. However, this flexibility comes with the cost of dramatic increases in the number of model 
parameters as the dimension increases. Pruning and truncating each cluster of the mixture model 
will dramatically reduce the number of model parameters. This paper, therefore, introduced the first 
pruning and truncating techniques for the model-based clustering algorithm using the vine copula 
model, providing a significant contribution to the state-of-the-art. We apply the proposed methods to 
a number of well-known data sets with different dimensions. The results show that the performance 
of the individual pruning and truncation for each model cluster is superior to an existing vine copula 
clustering model.

Model-based clustering for unsupervised learning using finite mixture models has received growing interest 
for decades. Finite mixture models assume that the data are generated from a mixture of g components. Each 
observation has a probability of belonging to one of these components. In the literature, finite mixture models 
are commonly used in many areas (see, for  example1–3). Recently, the mixture of vine copula models received 
increasing interest in the literature for several reasons. First, the vine copula is a multivariate extension of the 
copula model using conditional densities. Therefore, copula models allow one to model the marginal distribu-
tions independently from the dependence patterns. Hence, one can fit different parametric shapes of the mar-
ginal distributions for each variable. Second, the vine copula models work on two variables at a time; hence, no 
restriction on the type of the bivariate copulas for each pair of variables. Thus, different types of bivariate copulas 
can be fitted to capture a wide range of complex dependence structures, including symmetric and asymmetric 
dependence shapes. Therefore, each mixture component has its flexible density. In the literature, the first attempt 
to incorporate the vine copula models into the finite mixture model is the work  of4. Kim et al.4 introduce the 
mixture of (Drawable vine copula) D-vine copula densities, where the vine structure is fixed for all mixture 
components, and one type of the bivariate copula was fitted to all pairs of variables. Roy and  Parui5 established a 
mixture of the vine copula models using a small number of the bivariate copula types and restricted their work 
to a sub-class of the vine copula model.  Alanazi6 extended the work  of4 into two-folds. First, the author extends 
the model from a mixture of D-vine to a mixture of regular vine (R-vine) copula model. The R-vine copula model 
is a general class of vine copula models that allow for a free vine structure. Second, the author fits a wide range 
of bivariate copula types. However, the author keeps the vine structure fixed among all the mixture components. 
 Recently7, introduced a model-based clustering algorithm with a vine copula model that allows the vine structure 
to vary from one mixture component to another. Their method contains five main steps. In the first step, the fast 
clustering such as k-means  of8 is used for the initial data clustering. In the second step, the truncated (at the 
first tree (level)) vine copula model is fitted and estimated for each cluster data. The n-dimensional vine copula 
model is called truncated at level T  if all conditional bivariate copulas after level T  are set to the independent 
copulas. Truncated the vine copula at the first level yields a Markov tree model. The aim of truncating the vine 
copula model is to reduce the computation complexity in high-dimensional cases. In the third step, the model 
parameters are estimated using the Expectational Conditional Maximization algorithm (ECM algorithm)  of9, 
keeping the marginal distribution, bivariate copulas, and vine structures fixed based on the selection in the 
second step. Hence, the iteration steps of the ECM work on the Markov tree instead of the full vine copula (no-
truncation level) model to reduce the model computational complexity. In the fourth step, the data is regenerated 
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based on the successive steps of the ECM algorithm. In the final step, a full vine copula model is fitted to the final 
clustered data, where the marginal distribution, bivariate copulas, and vine structure of each cluster are updated. 
Regardless of the flexibility of their method, a mixture of Markov trees does not provide a starting value for the 
model’s parameters at the remaining vine trees. Therefore, important dependence may be ignored in the estima-
tion process. Therefore, we think the full vine copula model should be fitted to the clustered data in all steps with 
an individual estimation of the truncation level for each cluster. Hence, the truncation level is estimated based 
on the cluster data instead of the fixed prior truncation level.  Alanazi10 incorporate the truncation method  of11, 
using selection criteria such as Akaike Information Criteria (AIC)  of12) and Bayesian Information Criteria (BIC) 
 of13, into the R-vine copula mixture models, where the bivariate copulas are the mixture components. However, in 
the mixture of R-vine densities, the R-vine densities are the mixture components (this paper). Therefore, for the 
mixture of R-vine densities, the truncation level should be determined individually for each cluster. In addition, 
AIC is known to select a complex model  (see14–16). BIC has two drawbacks. It can select the true model if the 

Table 1.  Summary of the fitted univariate marginal distribution for each cluster. The numbers in the bracket 
refer to the marginals’ parameters.

Variable First cluster  (φ) Second cluster  (φ)

Var1 Normal (1, 0.4) Normal (1.5, 0.2)

Var2 Normal (10, 4) Gamma (1.5, 0.5)

Var3 Normal (1.2, 0.2) Normal (1, 0.3)

Var4 Gamma (0.9, 0.9) Gamma (1.5, 0.25)

Var5 Normal (1.2, 0.45) Normal (1.3, 0.3)

Var6 Normal (0.8, 0.8) Log-normal (1.2, 0.25)

Figure 1.  Scatter plot of the simulated data.
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number of the possible parameters increases sufficiently slowly with the sample size, and it assumes that all the 
models are equally  likely17. Therefore, identifying the optimal truncation level for each cluster is needed. It can 
provide numerous flexibility to the mixture vine copula models. In addition, for the nun-truncated levels, pruning 
each cluster will add extra reduction to the mixture of the vine copula densities, especially in high-dimensional 
applications. The pruning method aims to fit independent copulas to all pairs of variables with weak/independent 
dependence structures. To the best of the author’s knowledge, individual pruning and truncating vine copula 
model of each mixture component do not exist in the literature. Therefore, this present research provides a novel 
method and a great contribution to state-of-the-art. For the pruning vine copula model, we apply the independ-
ent test using Kendall’s tau  of18. For the truncation, we adopt the truncation technique of  the17 into the mixture 
content. We conducted a comprehensive real-data study to illustrate the performance of the proposed method. 
The results show a dramatic reduction in the number of model parameters. Furthermore, the proposed method 
outperforms the existing vine copula clustering model.

The remainder of the paper is divided as follows. Section  introduces copula, vine copula, and model-based 
clustering algorithm using the vine copula model, the pruning and truncation approaches. Section  provides 
the result of the simulation and real-data applications. Section discusses the founding results of the studies in 
this paper.

Results
In this section, we illustrate the performance of the proposed method for simulation and real data applications.

Simulation study. We simulate two mixture components from a 6-dimensional R-vine vine copula model 
(truncated at tree 2) with 300, and 500 observations, respectively for each cluster. The simulated data is repeated 
100 times. We simulate the data using vineclust Git-hub repository  of19. Table 1 shows the summary of 
the univariate marginal distributions with their corresponding parameters for each cluster. Figure 1 presents 
the scatter plot of the simulated data (300 observations). Listing (1) and Listing (2) present the summary of 
the two-component mixture of the vine copula model, where par and tau refer to copula parameter(s) and the 
corresponding Kendall’s tau value (the detail of the fitted models is given by RvineMatrix function of the 
R-program’s20 package VineCopula21).
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Listing (1) and Listing (2) shows the two-components 6−dimensional vine copula mixture model. The listings 
show that the vine copula model for each cluster is truncated at the second tree. All the trees after the second 
tree are specified with independent bivariate copulas. We generated two simulated data sets from this model 
with 300 and 500 observations, respectively. For the sake of comparison, we fit the Gaussian finite mixture 
model  (from22 package using the default setting of the package), Tvcmm, Fvcmm, and k-means. Tables 2 and 
3 summarize the performance of each fitted model for the simulated data set with 300 observations and 500 
observations , respectively. The best-fit model is shown in bold text. Figure 2 shows the box plots of the fitted 
models for each simulated data set.

Real-data application. To test the performance of the proposed method, we applied it to several real data 
sets, namely diabetes, Banknotes, Flea and Sonar data sets. Table 3 summarizes the results of the truncated mix-
ture of vine copula models and the full models. The better performance is shown in bold text.

Discussion
This paper incorporates the pruning and truncation methods with the vine copula model-based clustering 
algorithm. The pruning pairs and truncation levels are determined individually for each cluster. To illustrate the 
performance of the proposed method, we apply it to a simulation and real data sets. We evaluate the performance 
of the newly proposed method (Tvcmm), the Fcvmm algorithm  of7, the Gaussian mixture model (GMM), and 
k-means. Figure 2 shows the Box plots of the misclassification rate of each algorithm per simulation replication 
data set. Tables 2 and 3 summarize the performance of each algorithm per simulated replication. The performance 
evaluation of the fitted model for the real data setes is summarized in Table 4 Lower BIC value or misclassifica-
tion rate are used as a selection criterion for better clustering assignment.

For the simulated data sets, Fig. 2 shows that the Tvcmm, Fvcmm, and GMM provide a better fit than 
the k-means algorithm. Also, the figure shows that the performance of the Tvcmm and Fvcmm algorithms is 
noticeably close to each other, and both models provide a better fit than the GMM algorithm. Regarding the 
misclassification rate, the Tvcmm model provides better clustering assignment, while k-means is the worst. One 
can notice that although the misclassification rate of the Tvcmm is lower than the Fvcmm model, overall, the 
accuracy rate of both models is close to each other. The main reason of almost similar performance of Tvcmm and 
Fvcmm models, is that the data is only truncated at the second tree level. Hence, the performance of the Fvcmm 
algorithm, with the vine copula model truncated at the first tree level at the initial step, is close to the Tvcmm 
(truncated at the second tree level). Therefore, this illustrates that the truncation tree level of the data influences 
the final result, which is illustrated in the real data studies. From Table 4, for the small dimensional data sets, 
namely, Diabetes, Banknote, and Flea, the performance of Tvcmm, Fcvmm, and GMM are either identical or 
almost the same. However, GMM outperforms all the other algorithms for BIC value and accuracy rate for the 
Diabetes and Flea data sets. For Diabetes, the GMM model results in 86.21% misclassification accuracy and with 
BIC of − 4751.316. In the case of the Flea data set, the GMM model’s performance results in a 100% accuracy 
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rate with a BIC of − 2785.572. As a result, the accuracy classification of the Tvcmm and Fvcmm algorithms 
are identical for Diabetes, Banknote, and Flea data sets. The result is hardly surprising, as the truncation tree 
level for all latter data sets is at the first tree. Therefore, the performance of Tvcmm is identical to the one of the 
Fvcmm model, as both treat the data at the initial steps as Markov tree structure. However, for the Sonar data 
set with individual truncation level for each cluster, the Tvcmm model outperforms all the fitted models with 
80.3% accuracy classification and BIC of − 40711.15, while the accuracy rate of the Fvcmm, GMM, and k-mean 
are 54.3% , 64.9% , and 79.327% , respectively. In addition, the Tvcmm provides a substantial model parameter 
reduction, resulting in 522 model parameters instead of 4052 parameters for the Fvcmm model. The result of 
the real data applications strongly supports this paper’s contribution and goal. From the result, the conclusion 
can be summarized into two main points based on the strength of the dependency among variables as follows:

• If the data exhibit weak/independent conditional dependency structure among variables after the first tree, 
then truncating the vine copula model at the first tree level will not affect the final result. Therefore, the 
misclassification rate is identical to the one of the Fvcmm model. However, due to the pruning method, 
Tvcmm result in less number of the estimated model parameters (this is noticed in the result of all the real 
data sets). In most cases, the BIC criterion selects the model with lower parameters. Comparing the result 
of the Fvcmm and GMM algorithm for the Sonar data set, BIC criterion selects the Fvcmm model, while its 

Table 2.  The summary of the performance of the Tvcmm and Fvcmm, GMM, and k-means methods fitted 
to the simulated data with 300 observations. Tvcmm, Fvcmm, GMM, and k-means refer to the truncated vine 
copula mixture model, full vine copula mixture model, Gaussian mixture model and the k-means method, 
respectively.

Criteria GMM Tvcmm Fvcmm k-means

Miscassification rate 0.00765 0.00168 0.00217 0.08821667

Average BIC − 5372.103 3686.947 3589.848 –

Table 3.  The summary of the performance of the Tvcmm and Fvcmm, GMM, and k-means methods fitted 
to the simulated data with 500 observations. Tvcmm, Fvcmm, GMM, and k-means refer to the truncated vine 
copula mixture model, full vine copula mixture model, Gaussian mixture model and the k-means method, 
respectively.

Criteria GMM Tvcmm Fvcmm k-means

Miscassification Rate 0.00529 0.00185 0.00202 0.08621

Average BIC − 8818.664 6013.238 5877.62 –
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Figure 2.  The box plot of the clustering performance of the fitted models for the simulated data (300) 
observations (left panel) and for the simulated data (500) observations (Right panel).
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accuracy classification is lower than that of the GMM model. Therefore, our findings support the one  of7, 
that a better selection criterion than BIC value is needed for the vine copula model, which can be considered 
as possible future work.

• If the data exhibit a strong conditional dependency structure, with a truncation tree level that can vary from 
one cluster to another, then the performance of the Tvcmm is superior to other fitted models. Moreover, 
Tvcmm results in a dramatic reduction in the number of the estimated parameters of the model.

Methods
Copula models have been an interesting research area for decades in several areas (see, for  example23–26), due 
to Sklar’s  theorem27.

Theorem 1 (Sklar’s theorem) For any an n-dimensional distribution function, H, with marginal distributions 
H1 = H1(x1), . . . ,Hn(xn) , then there exists an n-dimensional copula function, C : [0, 1]n → [0, 1] , such that:

where X = (X1, . . . ,Xn)
′ is an n-dimensional random vector. Then the joint density function can be given by:

Where c is the copula density function. If all margins are continuous, then copula is unique.

Sklar’s theorem states that one can model the joint density function as a product of the marginal’s densities 
and the copula density. However, multivariate copulas impose the same dependence structures among variables, 
and only elliptical (Gaussian and t-student) copula models can be extended to multivariate cases. Vine copula 
incorporates the benefit of the copula models into a multivariate context. The vine copula models back to the 
idea  of28 and then received more interest development  in29. The density of n-dimensional copula model can be 
expressed, using vine copula model, as n(n− 1)/2 bivariate copulas (pair-copulas) densities. Bedford and  Cooke30 
represent the vine copula as an unconnected graph structure known as a regular vine copula (R-vine). Due to 
the decomposition of the bivariate copulas, the vine copula models allow modeling two variables at a time. Each 
pair of variables can be modeled with a different choice of bivariate copulas; thereby, there is no restriction on 
the type of dependence among variables. Following the definition of the vine copula structure  in30, the formal 
definition of the vine copula structure can be given as follows:

Definition 1 The structure V is a regular vine on n variables if it meets the following conditions: 

1. T1 is a tree with node set V1 = {1, . . . , n} , and edge set E1 = n− 1.

(1)H(x1, . . . , xn) = C(H1(x1), . . . ,Hn(xn)),

(2)h(x) =

n
∏

i=1

hn(xn) · c(H1(x1), . . . ,Hn(xn)), x ∈ R
n

Table 4.  The summary of the performance of the Tvcmm and Fvcmm, GMM, and k-means methods fitted 
to the simulated data with 500 observations. Tvcmm, Fvcmm, GMM, and k-means refer to the truncated vine 
copula mixture model, full vine copula mixture model, Gaussian mixture model and the k-means method, 
respectively. d, T1 , T2 , T3 , and δ refer to the data dimension (without the class variable), the truncation level of 
the first cluster, the truncation level of the second cluster, the truncation level of the third cluster, and the total 
number of the estimated model parameters, respectively. Significant values are in bold.

Data (d) Model Misclassification rate Average BIC T1(T2 ) ( T3 ) ( δ)

Diabetes (3)

Tvcmm 0.179 4756.75 1 (1)(1)(32)

Fvcmm 0.179 4773.05 NA(34)

GMM 0.137931 − 4751.316 –

k-means 0.179 – –

Banknote (6)

Tvcmm 0.005 1674.75 1 (1)(-)(40)

Fvcmm 0.005 1696.63 NA(63)

GMM 0.005 − 1717.445 –

k-means 0.04 − –

Flea (6)

Tvcmm 0.0405 2791.96 1(1)(1)(51)

Fvcmm 0.0405 2893.71 NA(90)

GMM 0 − 2785.572 –

k-means 0.02702 − –

Sonar (60)

Tvcmm 0.197 − 40711.15 1(3)(-)(522)

Fvcmm 0.457 − 30501.02 NA(4052)

GMM 0.35096 33500.22 –

k-means 0.20673 – –
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2. For i = 2, . . . , n− 1 , Ti is a tree with node set Vi = Ei−1.
3. Two edges in Ti become a node in Ti+1 , if and only if they shared a common node in Ti . This condition is 

known as proximity condition.

The structure V = (T1, . . . ,Ti) is called a vine structure. If each edge in V is associated with a bivariate copula, 
then V is called a vine copula model or a pair-copula construction. The general class of the vine copula model 
is known as regular vine copula (R-vine copula). In the R-vine copula, there is no restriction on the way of con-
necting the variables. Variables can be connected by any possible shape following the three conditions given in 
Definition 1. There are two other sub-classes of the vine copula model, known as Canonical vine (C-vine) and 
Drawable vine (D-vine). These two sub-classes require a specific structure of the V . For the C-vine, the variables 
at the first tree are connected concerning a particular variable; hence, it has a star shape. In the D-vine copula, the 
variables are connected sequentially, one variable after the other, taking a path shape. An example of a mixture of 
C-vine and D-vine copula is given in Example 2. For full details of the two sub-classes of the R-vine copula, we 
refer the reader  to31. In Example 1 we introduce a simple 3-dimensional C-vine copula models (for 3-dimensional 
data set, the C-vine and D-vine copula models have the same vine structure).

Example 1 (Example of 3-dimensional C-vine copula model). Suppose a 3-dimensional random vector 
X = (X1,X2,X3)

′ is given, where all the variables are continuous. Suppose further that H1,H2,H3 are the corre-
sponding univariate marginal distributions with their marginal density functions, h1, h2, h3 , and corresponding 
parameters φ1,φ2,φ3 , respectively. Then, according to Sklar’s  theorem27. The joint density function, h, can be 
given as follows:

where c3,2 is the density function of the bivariate copula c associated with the variables 3, and 2, and θ3,2 its 
corresponding parameters. c3,1|2 is the conditional density function of the conditional bivariate copula between 
the third and first variables conditioning on the second variable. We can see that the conditional copula, c3,1|2 
depends on the conditioning x2 . In most of the vine copula applications, and to reduce the model complexity, 
the c3,1|2 assumed to be independent of the value of the x2 , and hence, called simplified vine copula. 
Then, the joint density in Eq. (3) can be rewritten as follows:

 The structure of the 3-dimensional C-vine copula model for this example is presented in Fig. 3.

For a n-dimensional vine copula model, the joint density function, h is given as follows:

where α is the parametric vector of all the model parameters, xDe is a sub-vector of x = (x1, . . . , xn)
T ∈ Rn and De 

is the set of the conditioning variables. At the first tree, there are no conditioning variables; hence, De is an empty 
set in the first vine copula model. For Ti , i = 1, . . . , n− 1 , De = i − 1 . Hem|De is the conditional distribution func-
tion of Xem |XDd

 , with the corresponding marginal φem|De
 , and the conditional bivariate copula parameters θ em|De.

Finite mixture with vine copula model. This section will briefly introduce the model-based clustering 
algorithm with the vine copula model using the ECM algorithm following the work  of7. For more details, we 
refer to the latter reference. In addition, we will discuss the pruning and truncation technique for the mixture of 
the vine copula models proposed in this paper.

mixture of the vine copula model. Finite mixture models assume that the data are generated from a 
mixture of g components, g = 1, ..,G . Using an iterative algorithm, such as ECM, each observation is assigned to 
one of the mixture components with a probability. Incorporating the vine copula models into a mixture context 
adds numerous flexibility to the finite mixture models. The mixture of the vine copula models uncovers complex 
hidden bivariate dependence patterns among the variables. To define the mixture of the vine copula model for-
mally, suppose that an n-dimensional random vector X = (X1, . . . ,Xn)

′ is given. Suppose further that we draw 
t independent realization = xt = (xt,1, . . . ., xT ,n) , t = 1, ..,T , from X . Then we said that X is generated from a 
mixture of g-components R-vine copula densities, if its density is given as follows:

(3)
h(x;α) = c3,2(H3(x3;φ3),H2(x2;φ2); θ3,2) · c2,1(H2(x2;φ2),H1(x1;φ1); θ2,1)

· c3,1|2(H3|2(x3|x2;φ3,φ2, θ3,2),H1|2(x1|x2;φ1,φ2, θ1,2); x2, θ3,1|2),

(4)
h(x;α) = c3,2(H3(x3;φ3),H2(x2;φ2)) · c2,1(H2(x2;φ2),H1(x1;φ1))

· c3,1|2(H3|2(x3|x2;φ3,φ2, θ3,2),H1|2(x1|x2;φ1,φ2, θ1,2))

(5)

h(x;α) =

n
∏

j=1

hj(xj;φj)

·

n−1
∏

i=1

∏

e∈Ei

cem ,ek |De (Hem|De (xem |xDe ;φem|De , θ em|De ),Hek |De (xek |xDe ;φek |De , θ ek |De ); θ em ,ek |De ),

(6)h(x; δ) =

G
∑

g=1

πg · hg (x;αg ),
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where δ is the parameters vector that contains all the mixture model parameters, and δg = (πg ,φg , θ g ) the 
parameters vector of all the parameters of the gth component. hg (x;αg ) is the density of the gth component and 
πg is the mixing proportion (mixture weight) that satisfies the following two conditions: 

1. 
∑G

g=1 πg = 1

2. 0 < πg < 1

In this paper, we will use the Inference for margins (IFM) method  of32. The IFM is a two-stage approach. In the 
first step, the marginal distribution is estimated parametrically. Then, the estimated margins parameters are used 
to estimate the copula parameters.

The flexibility of the mixture of the vine copula models comes with the cost of the complex computational 
process. However, pruning and truncating the mixture vine copula models recover this limitation and provide 
a great parameter reduction. In this paper, we incorporate the truncation method  of17.  In17, the authors apply a 
new modified Bayesian Information Criteria (mBICV) of the traditional Bayesian Information Criteria (BIC) 
 of13 to select the optimal truncation level of the vine copula model. Determining the optimal truncation level in 
their method start by fitting a low truncation level and calculating the mBICV. Then, gradually add more vine 
copula trees until there is no improvement in the mBICV value. The BIC, and mBICV can be given as follows:

where δ̂ , is the estimated parameters of the model, T is the total number of observations, p is the total number 
of the model parameters, θ̂ the estimated parameters of the bivariate copulas, ϑ , is the (effective) number of the 
model parameters, i is the tree level of the vine copula model, ϕ0 is the prior probability that the bivariate copula 
is a non-independent copula, and qi is the total number of non-independent bivariate copulas in tree i. For the 
pruning method, we use the independent test based on Kendall’s tau introduced  in18. In the following example, 
we will explain the idea of the mixture of the vine copula model with the pruning and truncation technique.

Example 2 (A two-components mixture of 4-dimensional vine copula mixture model). Assume that a 
data set is generated from two components 4-dimensional random vectors X1 = (X11,X21,X31,X41) , and 
X2 = (X12,X22,X32,X42) and are given. Suppose further that t independent realization, xt = (xt,1, . . . , xT ,n) , 
t = 1, ..,T , are drawn from X1,X2 , respectively. Figure 4 represents a two-component mixture of vine copula. 
From the figure, one can see that each component has its own vine structure. The first component follows the 
D-vine copula structure, while the second component is a C-vine copula structure. T11,T12 , and T13 represent 
the trees of the first vine structure, whereas T12,T22 , and T32 refer to the trees of the second vine structure. For 
each vine copula model, only the first two trees are fitted with (different) bivariate copulas. For the third tree of 
each component, independent bivariate copulas are specified. Hence, each component is truncated at the second 
tree. Moreover, at the first two trees of each component, some pairs are associated with independent copulas, 
representing the pruning method. Then the density of the two-component mixture of the vine copula model 
can be given as:

h1(x;α1), h2(x;α2) can be given in a similar way as in Eq. (5).

ECM algorithm. The parameters of the mixture model are usually estimated using iterative methods, such 
as Expectation Maximization (EM)  algorithm33 and Expected Conditional Maximum (ECM)  algorithm9). In the 
general situation, estimating the model parameters can be given by computing the the value that maximizes the 
log-likelihood of the given data is as follows:

(7)BIC =− 2 ln l(α̂)+ p ln(T)

(8)mBICV =− 2 ln(θ̂)+ ϑ ln(T)− 2

n−1
∑

i=1

(qi ln(ϕ
i
0)− (n− i − qi) ln(1− ϕi

0),

(9)h(x; δ) = π1 · h1(x;α1)+ π2 · h2(x;α2)

Figure 3.  3-dimensional C-vine copula.
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However, since the true label of the data is unknown, the EM algorithm treats the data as incomplete data 
and introduces latent variables z t = (zt,1, . . . , zT ,g )

′ . zt,g = 1 if the xt belongs to the gth component and zt,g = 0 
otherwise, and the random vector Zt follows multinomial distribution, such that: Zt ∼ Mult(1, (π1, . . . ,πg )) . 
Therefore, we can define the complete data as xc = (xt , z t)

′ . Hence, the log-likelihood of the complete data can 
be given by:

where hg (xt;αg ) is given in Eq. (5). EM-algorithm is commonly used in the mixture literature. The E-step 
computes the conditional expectation of the log-likelihood of the complete data, given the observed data at the 
current estimation of the model parameters. The M-step, then, maximizes the expected log-likelihood from the 
E-step over all the model parameters. The iterations are continuous till the model converges. However, in the vine 
copula model, the joint estimation of the marginal parameters, bivariate copula parameters, and mixture weight 
parameters of the gth component is not tractable and  efficient7. Therefore,  the7 adapted the ECM algorithm with 
the mixture of the vine copula models. ECM algorithm divided the M-step of the EM algorithm into three lower 
dimensional steps called CM-steps. A brief introduction,  following7, of the CM-steps in the mixture of the vine 
copula models can be given as follows:

• E-step: This step calculates the posterior probability that an observation xi belongs to the gth mixture 
component given the current value of the mixture weight, π s

g , and αs
g , where s indicates the first iteration: 

 for t = 1, . . . ,T , and g = 1, . . . ,G.
• CM-step 1: (update the mixture weights): Maximize lc(δ; z, x) over the mixture weights πg given r(s+1)

t,g  , 
such that: 

 A closed form solution of π(s+1)
g  exists and can be given as: 

(10)l(δ; x) = ln

T
∏

t=1

h(xt;α) = ln

T
∏

t=1

G
∑

g=1

πg · hg (xt;αg ).

(11)lc(δ; z , x) = ln

T
∏

t=1

G
∏

g=1

[

πg · hg (xt;αg )
]zt,g

=

T
∑

t=1

G
∑

g=1

zt,g · lnπg +

T
∑

t=1

G
∑

g=1

zt,g · ln hg (xt;αg ),

(12)r
(s+1)
t,g =

π
(s)
g hg (xt;α

(s)
g )

∑G
g ′=1 π

(s)
g ′ hg (xt;α

(s)
g ′ )

(13)π(s+1)
g = arg maxπg

T
∑

t=1

r
(s+1)
t,g · lnπg

Figure 4.  Two-component mixture of R-vine copula densities. (a) The left panel represents a 4-dimensional 
D-vine copula as the first cluster of the mixture model. (b) The right panel represents a 4-dimensional C-vine 
copula as the second cluster of the model.
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• CM-step 2 (update the marginal parameters): Maximize lc(δ; z, x) over the marginal parameters φg given 
the current value of the bivariate copula parameters θ (s)g  , and r(s+1)

i,g  : 

 for g = 1, . . . ,G . φ∗
h is the optimal marginal parameter estimate of the gth component. Since a closed-form 

solution does not exist, the lc(δ; z, x) is maximized numerically over φg such that: 

• CM-step 3 (update the bivariate copula parameters): Similar to the marginal parameters, a closed-form 
solution that maximizes lc(δ; z, x) 6over θ g given φ(s+1)

g  and r(s+1)
t,g  does not exist. Thus, lc(δ; z, x) will be 

maximized numerically over θ g , such that: 

 for g = 1, . . . ,G.

In this paper, the truncation and pruning techniques are applied to each model cluster individually. Therefore, 
the steps of the present work differ from the work  of7 in the second and final step. Unlike the work  of7, at the 
second step, no prior truncation level is determined. For the last step, truncation and pruning techniques are 
applied individually for each cluster. The steps of the proposed pruning and truncation method of this paper 
can be divided into the following steps: 

1. Cluster the original data using k-means (other clustering methods are possible).
2. Obtains the copula data for each cluster from step 1.
3. Fit vine copula model for each cluster and determine the truncation and pruning pairs. For the vine structure 

and pair-copula selection, we use the Akaike Information Criteria (AIC)  of12. AIC can be given as follows: 

 where θ̂ , and p are the estimated parameters of the bivariate copulas and the number of the model param-
eters, respectively.

4. Run the ECM algorithm using the cluster data from step 1 and the vine copula model from step 2.
5. Re-clustering the data based on the ECM successive steps.
6. Fit vine copula model and determine the truncation and pruning pairs for each cluster.

To test the model performance, we use the BIC and misclassification rate. The best-fitted model is selected based 
on the lower BIC or misclassification rate.

Data availability
R software version 4.2.1 (R Development Core Team 2022) was used to implement the proposed methods. The 
R-package “vineclust” (https://github.com/oezgesahin/vineclust) and “rvinecopulib” were mainly used in this 
paper. Moreover, several dependent key packages were used, such as “mclust” and “VineCopula” packages. The 
Diabetes, Banknote data sets are available in the “mclust” package (https:// cran.r- proje ct. org/ web/ packa ges/ 
mclust/ vigne ttes/ mclust. html). The flea data set is available in the “fdm2id” (https:// cran.r- proje ct. org/ web/ 
packa ges/ fdm2id/ index. html) package. The Sonar data set is available in the “mlbench” package from (https:// 
rdrr. io/ cran/ mlben ch/ man/ Sonar. html).
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