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Deep neural network‑based 
structural health monitoring 
technique for real‑time crack 
detection and localization using 
strain gauge sensors
Jiyoung Yoon 1,5, Junhyeong Lee 2,5, Giyoung Kim 3, Seunghwa Ryu 2* & Jinhyoung Park 4*

Structural health monitoring (SHM) techniques often require a large number of sensors to evaluate 
and monitor the structural health. In this paper, we propose a deep neural network (DNN)‑based 
SHM method for accurate crack detection and localization in real time using a small number of strain 
gauge sensors and confirm its feasibility based on experimental data. The proposed method combines 
a DNN model with principal component analysis (PCA) to predict the strain field based on the local 
strains measured by strain gauge sensors located rather sparsely. We demonstrate the potential of 
the proposed technique via a cyclic 4‑point bending test performed on a composite material specimen 
without cracks and seven specimens with different lengths of cracks. A dataset containing local strains 
measured with 12 strain gauge sensors and strain field measured with a digital image correlation (DIC) 
device was prepared. The strain field dataset from DIC is converted to a smaller dimension latent space 
with a few eigen basis via PCA, and a DNN model is trained to predict principal component values of 
each image with 12 strain gauge sensor measurements as input. The proposed method turns out to 
accurately predict the strain field for all specimens considered in the study.

Structural damage reduces the lifespan and reliability of engineering structures such as aircraft, buildings, and 
bridges, and can lead to serious fatalities and economic losses. The monitoring of structural damage is essential to 
improve the lifetime safety, maintainability, and reliability of structures. Therefore, structural health monitoring 
(SHM) techniques have been developed to monitor the extraction of damage-sensitive features such as strain, 
acoustic emission (AE), vibration signals, and electromechanical impedance, recorded using various sensors 
installed on the structure and determine the current state of structural health through statistical analysis of the 
extracted  features1–6. Recently, with the development of high-performance graphics processing units and parallel 
computing, convolutional neural networks (CNN)-based approach using the 2D images for detecting damage 
have been  proposed7–10.

AE-based SHM can quantitatively identify damage by analyzing the characteristics of elastic waves in the 
monitored structure. However, the detected elastic waves can be very complicated and difficult to analyze because 
their propagation through the structure is influenced by dispersion and geometric  boundaries11. Alternatively, 
vibration-based SHM is used to monitor structural damage by analyzing vibrational characteristics such as 
natural frequencies, mode shapes, damping, and frequency response functions. However, it is difficult to moni-
tor dynamic structures such as  aircrafts12 because the influence of ambient noise and vibrations increases the 
difficulty in extracting the vibrational characteristics and the damaged signal can be concealed by uncertainties. 
By utilizing the variation of the mechanical impedance under structural damage, electromechanical imped-
ance -based SHM can identify failures by monitoring the structure’s mechanical impedance using the electrical 
impedance of piezoelectric (PZT) sensors attached to the monitored structure. However, because PZT sensors 
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are brittle, external load or impact and environmental disturbances may lead to bonding defects and sensor 
 breakage13. Because the measured impedance is very sensitive to temperature and environmental noise or vibra-
tion, robust compensation methods must be  developed14. CNN-based SHM can identify pixel-level cracks in 
2D images according to the functionality of a given algorithm, allowing it to detect the presence of cracks in an 
inspection image or to identify the precise pixels where the crack. However, it is used to detect cracks in fixed 
structures such as pavement and bridge deck, not dynamic structures such as aircraft because a camera device 
is required to collect high-resolution images of the target  structures15–17.

Strain is a direct indicator of stress associated with damage. Hence, strain-based SHM, as realized through 
strain measurements using strain gauge sensors or fiber optic sensors, has gained increasing popularity as a 
reliable method for real-time strain measurements. In addition, because cracks are an important feature for 
determining the damage condition of structures, strain-based crack monitoring techniques for crack detection 
provide a qualitative indication of the presence of cracks and enable their localization. These techniques are 
already in use for SHM approaches in the aerospace industry and have been extensively researched in the last 
2 decades. Ramdane et al. theoretically and experimentally investigated the identification of crack positions, 
inclinations, and lengths, as well as the magnitudes of external loading based on data from 8 to 12 strain gauges 
distributed along the edges of a rectangular plate by using the concept of distributed dislocations in conjunction 
with a genetic algorithm (GA)18,19. Haim et al. investigated the detection of straight cracks, circular holes, and 
holes with arbitrary shapes based on strain measurement sensors by using the extended finite element method 
and genetic algorithms (GA)20,21. Liang et al. investigated the identification of holes and cracks in composite 
plates for multiple static loading modes by using strain gauge sensors and a nonlinear optimization program 
that applied the boundary element method and genetic  algorithm22. Yong et al. proposed a crack detection and 
localization method for elastic structures that combined a rectangular strain rosette structure with three fiber 
Bragg gratings (FBGs), body force method, and an improved particle swarm optimization (PSO)  algorithm23.

Thus, previous strain-based SHM studies applied optimization algorithms such as GA and PSO, using a small 
number of strain gauge sensors or FBG sensors to identify the crack detection and localization of structures. In 
this case, the crack damage cannot be monitored in real time because the optimization algorithm requires a large 
number of iterations to converge to the actual crack location and length. If the crack damage is not discovered 
and repaired in time, the service life of the structure will be reduced and the maintenance cost will increase. 
Therefore, real-time detection and localization of crack damage is an important requirement.

In this paper, we propose a machine learning-based method for accurately detecting and localizing cracks 
in real time using a small number of strain gauge sensors. The feasibility of the approach was verified based on 
experimental data. Because stress concentration occurs at the crack tip, it is possible to detect the cracks, deter-
mine their position and length, and monitor their growth through real-time strain field analysis. For specimens 
without damage and specimens with various types of damage, a dataset of local strains measured with 12 strain 
gauge sensors and their corresponding strain field maps over a wide domain measured with digital image cor-
relation (DIC) devices were used to train and evaluate the DNN model performance. The high dimensional 
strain field map (14 × 12 pixel image) is compressed into a smaller dimension latent space via PCA to reduce the 
output dimension for the DNN . The trained DNN takes the 12 strain gauge measurements as input and accu-
rately predict the strain field map over a wide domain. The feasibility of the proposed method is demonstrated 
for real-time SHM for cyclic 4-point bending test.

Methodology
Figure 1 shows the real-time crack-damage monitoring system, which predicts the strain field through a machine 
learning model with a small number of strain gauge sensors. The target monitoring structure is an aircraft.When 
the aircraft is on the ground, resting on its landing gear, the force of gravity attempts to bend the wing downward. 
An aircraft in flight experiences a bending force on its wing as an aerodynamic lift attempts to raise the  wing24. 
Therefore, the aircraft wing is subjected to cyclic bending moment. We prepared a dataset consisting of local 
strains measured with 12 strain gauges and strain field measured with the DIC device for one specimen without 
damage (Healthy) and seven specimens with various lengths of edge cracks (Damaged) under a cyclic bending 
moment. The specimen was made of a composite material laminated carbon fiber-reinforced plastic (CFRP) 
generally used in  aircraft25. To preprocess the strain field, we represented all the strain field map from DIC in 168 
dimensions (14 × 12 pixel image) and reduced them to eight dimensions (referred to as eight principal compo-
nent values, hereafter) by employing  PCA26,27. The dimensionality reduction process is important for reducing 
the computational time and enhancing the training accuracy of DNN. Finally, the DNN model used the local 
strains measured with the 12 strain gauge sensors as input and predicted the eight principal component values. 
The DNN model prediction was transformed back into a regular strain field. By analyzing the predicted strain 
field, the feasibility of real-time monitoring of crack detection and localization was verified.

Experiments. This section presents the experimental process for preparing the training, validation, and 
testing datasets for crack detection and localization of the composite using machine learning.

Specimen preparation. Figure 2a shows the schematic of the specimen geometry and preparing process of the 
specimens. The dimensions of the specimens were 200 mm (length) × 100 mm (width) × 1 mm (height). Eight 
specimens were prepared, one crack-free healthy specimen and seven damaged specimens with cracks of differ-
ent lengths at a fixed position. The CFRP specimen was produced by compression molding a 4-ply carbon fiber 
epoxy resin woven prepreg with a thickness of 0.26 mm. In the curing cycle for this prepreg, the temperature 
was ramped up to 125 °C and held for 2 h before allowing the material to cool in a conventional thermal heating 
environment. The in-plane Young’s modulus of the composite material was 60 GPa. All specimens with cracks 
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were prepared using a waterjet cutting machine for crack fabrication. The crack was located at the edge of the 
symmetry line in the rectangular specimen.

Experimental setup. A cyclic 4-point bending test was performed using a uniaxial hydraulic testing machine 
(MTS Systems) to determine the strain of the specimens. Loading was applied for 10 cycles with displacement 
control from 0 to 20 mm at a speed of 0.1 Hz (Fig. 2b). Figure 2c depicts the experimental setup for measuring 
the strain in the x-direction using uniaxial strain gauge sensors (KFGS series, Kyowa Electronics). The strain 
gauge sensors consist of insulating flexible backing that supports a metallic foil pattern. When a specimen with 
a strain gauge sensor is deformed, the metallic foil is deformed, causing its electrical resistance to change. The 
strain is derived from the resistance changes measured using a Wheatstone bridge. The experimental setup for 
measuring the strain field in the x-direction using a DIC device (GOM Aramis) is presented in Fig. 2d28. The 
DIC technique measures the displacement and deformation of a specimen by using a digital camera. It involves 
forming a random speckle pattern on the surface of a specimen, and comparing the images before and after the 
deformation to derive the displacement, deformation, and strain. Pixel information with 256 Gray levels was 
formed on the measured area of the specimen. A speckle pattern should be formed on the surface of an object 
before deformation because the larger the contrast, the more accurate is the information contained in a unit 
pixel. When the object is deformed, this pattern is deformed and the amount of deformation is measured in 
pixels. A group of pixels forms a subset and acts as a hypothetical strain gauge. The DIC technique can be con-
sidered as the continuous measurement of a subset in a continuous image.

The experimental setup consisted of two upper displacement points moving in the vertical direction, and 
two lower support points fixed on the table. Since the behavior of the specimen could not be simultaneously 
measured using the strain gauge sensors and the DIC device, the positions of the upper displacement points 
and lower support points were different in the experiments to measure the same deformation behavior in both 
cases. Twelve strain gauge sensors were used, and 168 subsets were applied to the strain field measured using the 
DIC device. The training, validation, and test datasets were created with a sampling rate of 5 Hz. Considering 
the error of the experiment, a cyclic 4-point bending test was performed with five specimens for each specimen 
type (healthy and damaged), and a dataset of 20,000 data was obtained.

Deep neural network (DNN) model. This section presents the machine learning process to predict the 
strain field in real time using strain gauges based on the datasets obtained in the previous section.

Modelling the strain filed by DIC with PCA. Because of the high dimensionality of strain field data with 168 
subsets (DIC generates 14 × 12 pixel image of strain field) , PCA is employed to reduce the dimensionality of the 
strain field. PCA reduces the dimensions of a dataset consisting of a large number of interrelated variables while 
maintaining the variation present in the dataset to the extent possible. This is achieved by converting a new set 
of variables into ordered principal components such that the first few are uncorrelated and retain most of the 
variations present in all original variables.

Out of 10,000 DIC images with 168 dimensions, we can construct a 10,000 × 168 strain matrix (denoted as 
the X matrix), where each row represents a strain field at a given time and each column represents the strain 
value according to time at a given subset. PCA is performed by employing the singular value decomposition 

Figure 1.  Framework of the proposed method for real-time structural health monitoring using strain gauge 
sensors.
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(SVD) shown in Eq. (1); it is a real matrix factorization method similar to the reliable and robust orthogonal 
matrix decomposition technique. Here, U and V are left and right singular vectors, respectively. All off-diagonal 
elements of the � matrix are zero, and the diagonal elements are known as singular values σi of Eq. (2). The 
�T� matrix contains the eigenvalues �i of Eq. (3), which determines the variance explained for each principal 
component. The VT matrix contains the principal components in the order in which the variance decreases. The 
first n principal components (the singular value n) were retained and the rest were discarded. This is achieved 
by projecting the data along the singular value of VT to obtain an n-dimensional representation of the strain 
field. The singular value should be selected to approximately describe the X matrix. This can be determined by 
examining the cumulative explained variance ratio as a function of the singular value defined in Eq. (4)29,30.

(1)X = U�VT

(2)� = diag(σ1, σ2, . . . , σ168)

(3)(σi)
2
= �i

Figure 2.  Experimental setup (a) Schematic of the specimen geometry and preparing process of the specimens, 
(b) Cyclic 4-point bending, (c) strain measured with strain gauge sensors, (d) strain field measured with DIC 
device.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20204  | https://doi.org/10.1038/s41598-022-24269-4

www.nature.com/scientificreports/

In Fig. 3a, the usage of singular values up to σ1 , σ2 , and σ8 (n = 1, 2, and 8) have cumulative explained variances 
of 93%, 95%, and 97%, respectively. Figure 3b shows the strain measured at subsets 73, 79, and 84 in the speci-
men with an edge crack length of 15 mm for the three singular values. Although the difference in the cumulative 
explained variance ratio was not large among them, significant error in strain estimation occurs at the pixels 
closer the closer the crack. Figure 3c shows the actual strain field from DIC and approximated strain field in the 
specimen with a crack length of 15 mm when the displacement load was 20 mm, which clearly shows that the 
improvement of strain field estimation with more singular values. Because stress concentration occurred at the 
crack tip, the position of maximum strain occurrence was considered as the crack tip. For precise crack locali-
zation, the position of maximum strain in the approximated strain field should correspond to the actual point 
of maximum strain. Figure 3d shows a comparison of the actual points of maximum strain for five specimens 
with a crack length of 15 mm and the approximated point of maximum strain for n = 2 and n = 8. The singular 
value was selected as 8 because the position of occurrence of maximum strain and strain distribution in the 
approximated strain field were close to the actual values. Thus, we converted the 168-dimensional strain field 
image from the DIC into 8-principal component values which allows us to more efficient train a DNN model.

(4)C.E.V .(n) =

∑n
i=1 �i∑168
j=1 �j

Figure 3.  (a) Screen plot of PCA, i.e., cumulative explained variance ratio according to the number of 
components, (b) comparison of actual strain and approximated strain, (c) comparison of actual strain field and 
approximated strain field, (d) Y-position of maximum strain.
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DNN model design and training. The DNN model was trained to predict eight principal component values with 
local strains measured at 12 strain gauge sensors as inputs. The input and output features of the DNN model 
were normalized using min-max normalization. The DNN model used in this study comprised an input layer, 
three hidden layers, and an output layer (Fig. 4a). The neurons in two adjacent layers were fully connected. Each 
connection was assigned a trainable weight multiplied by the input value. All hidden layers used the Leaky ReLU 
activation function, followed by batch normalization. The weight and bias values (parameters) were initialized 
using Xavier initialization. The mini-batch size was set to 50, and the number of epochs to 200. The Adam opti-
mizer was used to update the DNN parameters during backpropagation, and the initial learning rate was set 
to 0.00131,32. Additionally, the learning rate was dropped 10 times every 50 epochs for fine tuning of the neural 
network hidden layer. The loss function plays an important role in the construction of the DNN model and 
improvement of its performance because it is an indicator of the difference between the actual and predicted val-
ues. We selected the weighted mean squared error loss functions based on the importance weighting in Eq. (4)33:

In other words, the weighted mean squared error loss function trains the DNN model such that certain 
components are more important than the rest by using the ratio of the eigenvalues that describe the explained 
variance of each component. The experimental results of the three specimens for each specimen type were 
used as the training/validation datasets (12,000), and those of the remaining two specimens as the test datasets 
(8000). The splitting ratio for the training/validation dataset was set at 9:1. Figure 4b shows the convergence of 
loss function over training and validation data.

Results and discussion
This section presents the performance of the proposed method for crack detection and localization.

Comparison of measurement results of strain gauge sensors and DIC device. Figure 5 shows the 
local strain values measured from 12 strain gauge sensors at the maximum displacement load during the cyclic 
loading tests for specimens with different crack lengths. The strain value (y-axis) corresponds to the averages 
of the top 50 values for specimens with given crack length. The x-axis represents the crack length, and can be 
regarded as the time axis through which the crack propagates if we presume to perform a fatigue test. The strain 
in channel 5 was maintained at 0.5% when the crack length was 12 mm or less, and it was measured to be 0.8% 
when the crack length was 15 mm. A sudden strain change in channel 5 of the strain gauge indicated that a crack 
was detected nearby.

The strain of all channels, except channel 5, did not increase rapidly with the crack length. Because the stress 
was concentrated at the crack tip, a sudden increase in the strain according to Hook’s law indicated that cracks 
were detected. Considering the crack length and position of channel 5, it can be seen that the strain gauge sen-
sor can only detect cracks existing in an area within 7 mm, and it is difficult to accurately estimate the damage 
localization such as crack position and crack length. It is possible to use a large number of strain gauge sensors 
to estimate the crack localization, but this is impractical, as it requires significant effort and cost.

Figure 6a shows the strain field results measured using the DIC device for each crack length under the 
maximum displacement load. Because we used 168 subsets for the DIC measurement owing to the data storage 
problem, the subset size was 5 mm (length) × 5 mm (width). Therefore, the strain field was represented using 
Delaunay  triangulation34 with linear interpolation to accurately perform the crack detection and localization. A 

(5)Weighted MSE =

n∑

i=1

8∑

j=1

�j∑168
k=1 �k

(yi[j] − ŷi[j])
2

Figure 4.  (a) Network structure and parameters of the DNN model, (b) curve of loss function during DNN 
model training.
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comparison of the strain fields with and without cracks shows that the strain concentration appears at the crack 
length of 3 mm, and it occurs near the crack tip based on which the crack length can be estimated. Thus, it can 
be seen that crack detection and localization are possible with the current DIC subset size for crack lengths of 
3 mm or more.

Damage detection and localization. To examine the performance of the trained and validated DNN 
model, we used 8000 test dataset that were not utilized in the training and validation processes. The DNN model 
prediction in the 8-dimensional latent space was transformed back into a strain field. The predicted strain fields 
were then compared with the actual strain field measured using a DIC device. The regression evaluation metrics 
of R-squared value ( R2 ), mean absolute error (MAE), and root mean squared error (RMSE) were used as the 
DNN model performance  metrics35. In addition, because the crack detection, position, and length can be pre-
dicted based on the position of maximum strain, the prediction accuracy for the position of maximum strain 

Figure 5.  Strain measured with strain gauge sensors according to crack length.
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was also adopted as a DNN model performance metric. The performance results of the DNN model are listed 
in Tables 1 and 2. In Table 1, R2 , also known as the coefficient of determination, is an indicator of the extent to 
which an independent variable (predicted value) explains the dependent variable (actual value) in a regression 
model. In this study, R2 was 0.96, which means that the strain field predicted by the DNN model could explain 
96% of the strain field measured using the DIC device. MAE assigns the same weight to the error in all cases by 
calculating the average of the absolute values of the difference between the predicted and actual values. RMSE 

Figure 6.  Comparison of actual and predicted strain fields (a) actual strain field measured with DIC device, (b) 
strain field predicted by the DNN model.
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is calculated as the square root of the average of the squares of all errors; thus, each error has a different weight. 
Because the MAE is an intuitive indicator and the RMSE is an outlier-sensitive indicator, we examined these two 
types of errors. Considering the typical strain gauge measurement error of 5% or less and the strain range meas-
ured in this study, the MAE and RMSE were within the measurement error range. Additionally, the predicted 
position of maximum strain for each crack length matched the actual position by more than 90% from Table 2. 
Thus, the DNN model could effectively predict the strain field measured with the DIC device.

Figure 6b shows the strain field predicted by the DNN model for each crack length under the maximum 
displacement load. The strain field predicted by the DNN model was similar to that measured by the DIC device. 
The strain field predicted from the DNN model is smoother than the original image from the DIC device because 
the measurement noise was eliminated through PCA dimension reduction, which is beneficial in damage detec-
tion and localization.

Conclusion
We proposed a real-time crack monitoring method for a composite material by combining DNN with PCA and 
SVD and predicting the strain field based on local strains measured using 12 strain gauge sensors. The feasibility 
of the proposed method was demonstrated based on experimental data following the length of the edge crack 
under the restriction of fixed crack position. When only 12 strain gauge sensors were used, crack detection was 
impossible when the length of edge crack was 12 mm or less. However, when our proposed method was applied, 
crack length of at least 3 mm could be detected, and the exact location and length of the detected cracks were also 
accurately monitored. The proposed method can be extended to the application of various crack parameters such 
as crack position, length, and inclination in the future. To accurately identify the crack detection and localization 
in real time, a large number of strain gauge sensors are required, which necessitate a lot of effort and cost; so it 
is difficult to apply. However, our proposed DNN based-SHM technique will contribute to strain-based SHM 
of engineering structures such as aircrafts because it is possible to accurately identify the crack detection and 
localization in real time through a small number of strain gauge sensors.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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