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Effect of climate on surgical 
site infections and anticipated 
increases in the United States
Raymond J. Liou1, Michelle J. Earley2 & Joseph D. Forrester2*

Surgical site infections (SSI) are one of the most common and costly hospital-acquired infections in 
the United States. Meteorological variables such as temperature, humidity, and precipitation may 
represent a neglected group of risk factors for SSI. Using a national private insurance database, we 
collected admission and follow-up records for National Healthcare Safety Network-monitored surgical 
procedures and associated climate conditions from 2007 to 2014. We found that every 10 cm increase 
of maximum daily precipitation resulted in a 1.09 odds increase in SSI after discharge, while every g/
kg unit increase in specific humidity resulted in a 1.03 odds increase in SSI risk after discharge. We 
identified the Southeast region of the United States at highest risk of climate change-related SSI, with 
an estimated 3% increase in SSI by 2060 under high emission assumptions. Our results describe the 
effect of climate on SSI and the potential burden of climate-change related SSI in the United States.

Surgical site infections (SSI) cause morbidity, mortality, and excess healthcare expenditure among patients under-
going surgery. They are one of the most common hospital-acquired infections (HAI) in the United States, with 
an estimated 13,100–158,000 SSIs per year following inpatient  surgery1,2. Patients who develop SSI are twice as 
likely to die and on average stay 10 days longer in the  hospital3,4. SSIs increase each patient’s medical bill by at 
least $20,000, and are one of the most costly infections in the United States with an estimated annual expendi-
ture of $5.5  billion2. Due to the heavy burden SSIs place on patients and the healthcare system, much effort has 
been devoted to identifying SSI risk factors and developing mitigation strategies. However, current research and 
prevention strategies focus predominantly on perioperative and patient characteristics—the impact of meteoro-
logical variables such as temperature, humidity, and precipitation are less well  understood5–9.

Effects of climate on the distribution of many infectious diseases are well documented. Precipitation and 
temperature have been shown to increase spread of water and vector-borne diseases, while soft tissue infection 
and antibiotic-resistant microbes have also been shown to increase with  temperature10–16. As the planet’s climate 
continues to change, burden of these diseases is expected to  rise17. Yet data describing relationships between 
SSIs and meteorological variables remains  sparse9. Studies using single-center and national healthcare datasets 
have shown a temporal relationship between specific surgical procedures and SSI occurrence, with peak SSI 
rates occurring during summer  months18–22. However, relationships between specific climate conditions such 
as temperature, humidity, and precipitation and SSI are not well-studied and these studies do not analyze the 
effect of regional variability on climate-related  SSIs9.

Our objective was to evaluate effects of temperature, humidity, and precipitation on SSI rates in the United 
States across a range of surgical procedures using a high-spatial, high-temporal resolution national patient 
dataset. We describe the effect of meteorological variables and seasonality on SSI after adjusting for patient and 
procedural risk factors, stratify regions and surgical procedure categories by their climate-related SSI risk, and 
predict burden of SSI due to climate change across various future scenarios.

Methods
Epidemiological data acquisition. We obtained procedure and SSI occurrence data from the  IBM® 
 MarketScan® Research  Databases23. This dataset includes 6 de-identified claims databases capturing retrospec-
tive patient-specific information on healthcare expenditures, inpatient and outpatient claims data, outpatient 
prescription claims, and clinical utilization records, comprising 273 million individual patients in the United 
 States24.  MarketScan® claims data has previously been used to analyze health outcomes, drug utilization, and 
cost-analysis for a variety of surgical  procedures25–27. For the assessment of SSI rates, we extracted inpatient 
and outpatient records from the  MarketScan® Commercial and Medicare Supplemental Databases for the years 
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2007–2014. As no identifiable data was extracted this study was determined to be exempt by the Stanford Uni-
versity Institutional Review Board.

Patient records were filtered using the NHSN operative code list of procedures monitored for SSI  occurrence28. 
These codes represent 39 general procedure categories and include common procedures in general surgery, 
obstetrics, vascular surgery, cardiothoracic surgery, neurosurgery, orthopedic surgery, transplant surgery, and 
 urology29. The pacemaker group was omitted from analysis. International Classification of Diseases (ICD)-10 
Procedure Coding System (PCS) codes were converted to ICD-9 Clinical Modification (CM) using the 2018 
General Equivalence Mapping, with 1:1 and approximate matches manually reviewed for inclusion. The final list 
of ICD-9 CM and Current Procedure  Terminology® (CPT) procedure codes were used to filter patient records 
for inclusion in the study (Supplemental Table 1).

Each NHSN procedure category group has an SSI surveillance window of either 30 or 90  days30. For each 
patient record where an NHSN surgical encounter occurred, all follow-up records occurring within the desig-
nated surveillance window were queried. Relevant variables extracted included admission or encounter date, 
diagnostic and procedure codes, year, admission status, length of stay, age-adjusted Charlson Comorbidity Index, 
sex, Medicare status, and metropolitan statistical area (MSA) wherein the encounter occurred. SSI was defined 
by presence of ICD9 codes 998.51 and 998.59 in either admission or follow-up records.

Duplicate records, patients ages < 18 or > 109 years old, records with missing information, surgical encounters 
occurring outside the continental US, qualified surgical encounters that occurred within 90 days of another surgi-
cal procedure, and surgical encounters with procedures belonging to two or more surgical procedure categories 
were excluded except in cases where small bowel occurred with colon surgery and when ovarian procedures 
occurred with hysterectomy.

Climate data acquisition. Climate data was extracted from the Gridded Surface Meteorological (grid-
MET) dataset, a surface meteorological dataset of the United States from 1979 to the  present31. GridMET data 
was accessed via Google Earth Engine, a cloud-based geospatial processing  platform32. MSA boundaries for cli-
mate extraction were derived from U.S. Census TIGER/Line shapefiles for the years 2007–201433. Weather data 
gathered for each MSA included daily minimum temperature (°C), daily maximum temperature (°C), specific 
humidity (kg/kg), and precipitation (mm/day) between 2007 and 2014. We calculated average and maximum (as 
well as minimum in the case of temperature) values of these variables across moving 30- and 90-day windows. 
Recorded procedures were matched to appropriate weather windows with day of admission occurring dur-
ing the 15th day of the weather window. We used a 15-day lead time in order to account for possible effects of 
weather conditions on microbial skin colonization prior to procedure occurrence.

Predictors and confounders. We selected known SSI risk factors for inclusion in the data analysis such 
as age-adjusted Charlson Comorbidity Index scores, sex, length of stay, surgery procedure category, MSA, and 
Medicare  status34–37. In January 2012, a new mandate required hospitals to report their SSIs to the NHSN, which 
the Centers for Medicare and Medicaid Services used to qualify hospitals for their annual payment  update38. 
We included year of procedure to account for coding changes potentially associated with this policy transition. 
Age was not included as an independentpredictor as CCI already accounts for age. NHSN category groups were 
organized into 15 general procedure categories to reduce model complexity (Table 1).

Table 1.  Newly created categories for multivariate multinomial analysis using existing NHSN procedure 
category groups for SSI monitoring. The NHSN pacemaker group was omitted from analysis. AVSD: Shunt for 
dialysis.

New categories (n = 15) NHSN categories (n = 38)

Caesarean section Caesarean section

Hernia Hernia

Abdominal Gallbladder, colon, appendectomy, gastric, biliary, small bowel, rectal, spleen, exploratory laparotomy

Breast Breast

Prosthesis Knee prosthesis, hip prosthesis

Fracture Fracture

Spine Laminectomy, fusion

Gynecology Ovary, hysterectomy, vaginal hysterectomy

Thoracic Thoracic, cardiac, coronary artery bypass

Neuro Cranial, ventricular shunt

Neck Thyroid, neck

Amputation Amputation

Urology Prostate, kidney

Vascular AVSD, peripheral bypass, abdominal aortic aneurysm, carotid endarterectomy

Transplant Kidney transplant, liver transplant, heart transplant
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Statistical analysis. Univariable and multivariable multinomial logistic regression models were employed 
to evaluate the association between climate variables and SSI. These analyses were performed in STATA (Stata-
Corp, Release 16, College Station, TX)39. For univariable multinomial models, all weather variables were ana-
lyzed independently, with outcome levels: no SSI; SSI reported during surgical encounter; and SSI reported in 
follow-up during surveillance window period. To address issues of extremely large or small odds ratios, units of 
specific humidity and precipitation were converted to g/kg from kg/kg and cm/day from mm/day, respectively. 
Only one covariate for precipitation, specific humidity, and temperature was included in the multivariable mul-
tinomial model, with selection discrimination involving effect size comparisons between different variables, 
literature evidence of the effect of the measured variable and SSI occurrence, and a significance cutoff of p < 0.1. 
The final multinomial fixed effects model included the chosen climate covariates from univariable analyses and 
the aforementioned predictors and confounders. P-values were adjusted using Holm’s correction. Designed 
for astrophysics applications, the Lomb-Scargle periodogram is a spectral analysis method similar to a Fourier 
transform, with added benefit of computing statistics for periodogram  peaks40,41. To determine seasonality of 
SSI occurrence we calculated SSI rates for every month between 2007 and 2014 and used the “lomb” package in 
R (R Foundation for Statistical Computing, version 3.5.1, Vienna) to detect any significant  periodicity42. Once 
periodicity was determined, we calculated time of maximum SSI occurrence by fitting the previously defined 
non-linear equation:

where a and b define the linear trend, ϵ strength of seasonality, and φ phase and month of highest SSI 
 occurrence11.

Regional susceptibility analysis. To determine areas at risk for future climate-associated SSI, we obtained 
predicted precipitation, humidity, and temperature across two Representative Concentration Pathways (RCPs) 
for 2040 and 2060 using coupled atmosphere–ocean general circulation models (AOGCMs) from the Coupled 
Model Intercomparison Project 5 (CMIP5). The two RCPs chosen were RCP 4.5 and RCP 8.5, with the former 
representing a medium stabilization emission scenario and the latter representing a high emission  scenario43. 
Temperature and precipitation were obtained from the NASA Earth Exchange Downscaled Climate Projec-
tions, which includes downscaled projections from 33  AOGCMs44. Surface specific humidity was gathered from 
11 AOGCMs (Supplemental Table 2). Using the multivariate multinomial climate coefficients, odds ratios for 
climate-related SSI from future scenarios compared to 2010 were calculated for each MSA.

Results
Descriptive statistics. In total, 7,702,846 records from 393 MSAs met inclusion criteria, including 
4,303,447 (55.9%) inpatient and 3,399,399 (44.1%) outpatient records (Table 2). SSI incidence across all pro-
cedures was 1.6%, with 18.6% diagnosed during the procedure admission and 81.4% diagnosed during follow-
up. Patients with female sex underwent 5,175,830 (67.2%) procedures. Patients with Medicare supplemental 
insurance paid by employers represented 1,456,559 (18.9%) records, with the remaining on private employer-
sponsored insurance. Mean (SD) length of stay across all procedures was 3.5 (5.3) days.

The abdominal procedure category group accounted for the largest portion of procedures (n = 1,635,175, 
21.2%), followed by the caesarean section procedure group (n = 1,008,056, 13.1%), prosthesis procedure group 
(n = 870,623, 11.3%), and gynecology group (n = 814,686, 10.6%) (Supplemental Table 3). The procedure cat-
egory groups with fewest procedures were the transplant (n = 9361, 0.12%), amputation (n = 132,616, 1.7%), and 
vascular (n = 147,146, 1.9%) procedure groups.

Univariable analysis. Results of univariable multinomial logistic regression models with climate variables 
are described in Table 3. Across precipitation covariates, maximum daily precipitation (cm/day) was the most 
significant predictor for SSI during admission (OR: 0.97, 95% CI 0.96–0.97), and SSI after discharge (OR: 1.007, 
95% CI 1.004–1.01). Across specific humidity covariates, maximum daily specific humidity (g/kg) was the only 
variable significantly associated with both SSI during admission (OR: 0.99, CI 0.99–0.99) and SSI after discharge 
(OR: 1.01, 95% CI 1.01–1.01), whereas mean daily specific humidity was only significant in the model for post-
discharge SSI. Thus, maximum daily precipitation and maximum daily specific humidity were included in the 
multivariable multinomial model.

Multiple temperature variables were significant predictors and were highly colinear with other climate vari-
ables. Of note, only minimum daily maximum temperature and minimum daily minimum temperature had 
significant positive associations with both outcomes. These two variables were also the least colinear with maxi-
mum daily specific humidity. Minimum daily minimum temperature was chosen for inclusion in the multivariate 
analysis due to its statistical significance, effect size, and better model fit when compared with minimum daily 
maximum temperature.

Multivariable analysis. Results of the multivariable analysis are described in Table 4. For SSI during surgi-
cal admission, minimum daily temperature was a significant predictor with every 5 °C increase resulting in a 2% 
increase in the odds of surgical site infection. Maximum daily specific humidity was also a significant predictor, 
however upon Holm’s correction specific humidity was no longer significant for SSI during admission. Maxi-
mum daily precipitation was not a significant predictor for SSI during admission.

(1)
(

yi , ti
)

= (ati + b)

(
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(

ti − φ
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Table 2.  Descriptive statistics of qualified  MarketScan® procedures records (n = 7,702,846). SSI: Surgical site 
infection.

Variable

All No SSI SSI during admission SSI after discharge

Mean (SD) Range Mean (SD) Range Mean (SD) Range Mean (SD) Range

Age (years) 50.2 (16.8) 18–108 50.2 (16.8) 18–108 55.3 (14.9) 18–98 50.1 (16.3) 18–105

Charlson 
comorbidity 
Index

2.4 (2.9) 0–26 2.4 (2.9) 0–26 3.9 (3.4) 0–22 2.8 (3.1) 0–23

Length of stay 
(days) 3.5 (5.3) 1–541 3.5 (5.2) 1–541 10.2 (11.9) 1–307 4.5 (6.8) 1–342

Maximum daily 
precipitation 
(mm/day)

33.6 (21.2) 0–231 33.6 (21.2) 0–231 32.1 (20.8) 0–221 33.9 (21.4) 0–221

Mean daily 
precipitation 
(mm/day)

2.9 (1.8) 0–21 2.9 (1.8) 0–21 2.9 (1.9) 0–16.6 2.9 (1.8) 0–18.5

Maximum daily 
specific humid-
ity (kg/kg)

0.012 (0.004) 0.001–0.02 0.012 (0.004) 0.001–0.02 0.011 (0.004) 0.001–0.02 0.011 (0.004) 0.002–0.02

Mean daily 
specific humid-
ity (kg/kg)

0.007 (0.004) 0.001–0.02 0.007 (0.004) 0.001–0.02 0.007 (0.004) 0.001–0.02 0.007 (0.004) 0.001–0.02

Maximum daily 
maximum tem-
perature (°C)

28.7 (7.6) − 4.3–47.7 28.7 (7.9) − 4.3–47.7 28.1 (8.1) 0.2–46.3 28.9 (7.8) − 2.2–47.7

Mean daily 
maximum tem-
perature (°C)

19.7 (9.8) − 12.9–43.2 19.7 (9.8) − 12.9–43.2 19.5 (9.9) − 10.6–42.3 20 (9.7) − 11.8–43.2

Minimum daily 
maximum tem-
perature (°C)

9.4 (11.7) − 27.1–39.9 9.4 (11.7) − 27.1–39.9 9.8 (11.7) − 25–38.5 9.6 (11.6) − 26.5–39.9

Maximum daily 
minimum tem-
perature (°C)

16 (7.1) − 16.7–31.7 16 (7.1) − 16.7–31.7 15.6 (7.3) − 11.2–31.6 16.2 (7.1) − 13.7–31.4

Mean daily 
minimum tem-
perature (°C)

7.7 (8.8) − 27.2–28.6 7.7 (8.8) − 27.2–28.6 7.6 (8.9) − 21.9–27.3 8 (8.8) − 24.1–27.9

Minimum daily 
minimum tem-
perature (°C)

− 1.3 (10.6) − 38.2–25.5 − 1.3 (10.6) − 38.2–25.5 − .94 (10.7) − 37.6–24.1 − 1 (10.6) -38.2–25.1

Table 3.  Univariable multinomial analysis coefficients and odds ratios for climate predictors. Specific 
humidity and precipitation units were converted to g/kg from kg/kg and cm/day from mm/day, respectively, 
to reduce exponential power of odds ratios. Selection for inclusion in the multivariable analysis took into 
consideration variable effect size, significance, and literature support for inclusion.

SSI during admission SSI after discharge

B (SE) OR (95% CI) p B (SE) OR (95% CI) p

Maximum daily precipitation 
(cm/day) − 0.034 (0.003) 0.97 (0.96–0.97) < 0.001 0.007 (0.001) 1.007 (1.004–1.01) < 0.001

Mean daily precipitation (cm/day) 0.065 (0.035) 1.07 (1.00–1.14) 0.06 0.049 (0.017) 1.05 (1.02–1.09) 0.004

Maximum daily specific humidity 
(g/kg) − 0.01 (0.002) 0.99 (0.99–0.99) < 0.001 0.008 (0.007) 1.01 (1.01–1.01) < 0.001

ean daily specific humidity (g/kg) − 0.0007 (0.0016) 1.00 (1.00–1.00) 0.65 0.008 (0.0008) 1.01 (1.01–1.01) < 0.001

Maximum daily maximum tem-
perature (°C) − 0.009 (0.0008) 0.99 (0.99–0.99) < 0.001 0.004 (0.0004) 1.004 (1.003–1.004) < 0.001

Mean daily maximum tempera-
ture (°C) − 0.002 (0.0007) 0.998 (0.996–0.999) 0.004 0.003 (0.0003) 1.003 (1.002–1.003) < 0.001

Minimum daily maximum tem-
perature (°C) 0.003 (0.0005) 1.003 (1.002–1.004) < 0.001 0.002 (0.0003) 1.002 (1.001–1.002) < 0.001

Maximum daily minimum tem-
perature (°C) − 0.008 (0.0009) 0.99 (0.99–0.99) < 0.001 0.005 (0.0004) 1.005 (1.004–1.005) < 0.001

Mean daily minimum tempera-
ture (°C) − 0.001 (0.0007) 0.999 (0.997–1.0003) 0.12 0.004 (.0004) 1.004 (1.003–1.005) < 0.001

Minimum daily minimum tem-
perature (°C) 0.003 (0.0006) 1.003 (1.002–1.004) < 0.001 0.002 (0.0003) 1.002 (1.002–1.003) < 0.001
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Maximum daily precipitation, maximum daily specific humidity, and minimum daily minimum temperature 
were all significant predictors of SSI diagnosed on follow-up after Holm’s correction. Every 10 cm increase of 
maximum daily precipitation resulted in a 1.09 odds increase in SSI after discharge, while every g/kg unit increase 
in specific humidity resulted in a 1.03 odds increase in SSI risk after discharge. Of note, minimum temperature 
was associated with decreased odds of SSI after discharge (OR: 0.995, 95% CI 0.993–0.996). When running an 
identical model with specific humidity omitted, minimum daily minimum temperature was positively associ-
ated with SSI after discharge (OR: = 1.004, 95% CI 1.003–1.004). As maximum specific humidity is a function of 
temperature and thus partly colinear, this suggests that much of the effect of temperature on SSI after discharge 
is driven by an increase in specific humidity.

Surgical site infection seasonality. Lomb-Scargle analysis showed a significant SSI periodicity of 
~ 12 months (p < 0.001) (Fig. 1A). Regression of Eq. (1) showed strength of seasonality ( ǫ ) was statistically sig-
nificant and > 0, further supporting seasonality of SSI occurrence. In subgroup analysis of 5° latitude bands 
ranging from 25° to 50° N, this periodicity remained significant at ~ 12 months except for 25°–30° N, where there 
was no significant periodicity. SSI incidence peaked for procedures performed in July (p < 0.001), with an overall 
decreasing incidence of SSI of 0.04% (p < 0.001) per year from January 1, 2007 to December 31, 2014. Figure 1B 
shows the best-fit model for Eq. (1). There was an overall relative 18.1% (p < 0.001) increase in SSI rate between 
December, the month with the lowest SSI rate, and July across all observed years (Fig. 1B).

Table 4.  Multivariable multinomial analysis coefficients and odds ratios for predictors of surgical site 
infection. Procedure categories (n = 15) and MSA (n = 393) were included in analysis but omitted from the 
table. Years are measured from 2007 up to 2014. Adjusted p-values were derived using Holm’s method.

SSI during admission SSI after discharge

B (SE) OR (95% CI) p Adjusted p B (SE) OR (95% CI) p Adjusted p

Sex (1 = female) − 0.14 (0.14) 0.87 (0.84–0.90) < 0.001 < 0.001 0.032 (0.008) 1.03 (1.01–1.05) < 0.001 < 0.001

Medicare − 0.4 (0.018) 0.67 (0.64–0.69) < 0.001 < 0.001 − 0.31 (0.01) 0.73 (0.72–0.75) < 0.001 < 0.001

Inpatient 2.98 (0.031) 19.7 (18.5–20.9) < 0.001 < 0.001 0.54 (0.009) 1.72 (1.68–1.75) < 0.001 < 0.001

Charlson 
comorbidity 
index

0.054 (0.002) 1.06 (1.05–1.06) < 0.001 < 0.001 0.068 (0.001) 1.07 (1.07–1.07) < 0.001 < 0.001

Length of stay 0.028 (0.0004) 1.03(1.03–1.03) < 0.001 < 0.001 0.015 (0.0004) 1.02 (1.01–1.02) < 0.001 < 0.001

Years − 0.039 (0.003) 0.96 (0.96–0.97) < 0.001 < 0.001 − 0.029 (0.002) 0.97 (0.97–0.97) < 0.001 < 0.001

Maximum daily 
precipitation 
(cm/day)

0.002 (0.004) 1.002 
(0.99–1.01) 0.65 0.065 0.009 (0.002) 1.009 (1.006–

1.013) < 0.001 < 0.001

Maximum daily 
specific humid-
ity (g/kg)

− 0.008 (0.004) 0.99 (0.99–1.0) 0.037 0.07 0.026 (0.002) 1.03 (1.02–1.03) < 0.001 < 0.001

Minimum daily 
minimum tem-
perature (°C)

0.0042 (0.0015) 1.004 (1.001–
1.007) 0.004 0.01 − 0.005 (0.0007) 0.995 

(0.99–1.00) < 0.001 < 0.001

Figure 1.  (A) Lomb-Scargle periodogram showing significant ~ 12 month periodicity for surgical site infections 
across the continental United States. Points above the dotted line show significance of p < 0.05. (B) Non-linear 
regression modeling of SSI seasonality. The x-axis represents how many months have passed since January 2007. 
The shaded blue area represents the model 95% CI.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19698  | https://doi.org/10.1038/s41598-022-24255-w

www.nature.com/scientificreports/

Regional susceptibility analysis. Figure 2 shows the predicted odds ratio increase in SSI across different 
greenhouse gas scenarios and years. Across all MSAs, mean odds ratios for RCP 4.5 are 1.01 and 1.02 for year 
2040 and 2060, respectively. For RCP 8.5, mean odds ratios are 1.01 and 1.02 for year 2040 and 2060, respectively. 
Supplemental Table 4 shows mean odds ratios for census regions and divisions as defined by the U.S. Census 
Bureau. In both intermediate and worst-case emission scenarios, the Southeast region of the United States is 
predicted to have the highest increase in climate-related surgical site infection risk with an odds ratio of 1.03. In 
particular, the South Atlantic division, composed of the states of Florida, Georgia, South Carolina, North Caro-
lina, Virginia, West Virginia, Maryland, Delaware, and the city of Washington D.C. will see an odds increase of 
~ 1.03 by 2060 in the worst-case emission scenario.

Discussion
To our knowledge, this is the first study investigating impact of temperature, humidity, precipitation, and sea-
sonality on SSI rates for all NHSN monitored surgical procedures during both hospital admission and post-
discharge using a representative dataset of the continental United States. Previous studies have investigated the 
effects of meteorological conditions and seasonality on surgical site infection, however many of these studies 
are limited by geographic region, a small subset of surgical procedures, or poor correlation between SSI occur-
rence and procedure  date18–22. The most comprehensive prior study by Anthony et al. found a significant effect 
of seasonality and temperature on surgical site infection across the National Inpatient  Sample22. However, this 
study is limited by weather variables correlated to date of SSI admission and not date of procedure, unlinked 
SSI incidences to procedure type or date, and a small selection of NHSN surgical procedures used to calculate 
SSI incidence. Nevertheless, our findings are consistent with previous studies, with peak incidence occurring 
in July and nadir occurring in December. Of note, there was an annual decrease of SSI incidence of 0.04% per 
year, suggesting that current SSI prevention measures may be decreasing SSI incidence overall, reporting of SSIs 
may be decreasing or both.

For SSI during surgical admission, only minimum daily minimum temperature was found to be predictive 
of SSI after Holms’ correction, with every 5 °C increase in temperature correlating with a 2% increase in odds 
of SSI. While specific humidity was not significant after Holms’ correction, it is possible that our 15-day lead-
time did not accurately capture the impact of specific humidity on SSI during admission. Previous studies have 
found an association between humidity and temperature with other hospital-acquired infections. For example, 
a retrospective study looking at skin and soft tissue infection (SSTI) incidence in adolescent Medicaid patients 
saw an increase in SSTI incidence with increases in mean temperature and specific  humidity11. A prospective 
cohort study looking at MRSA and vancomycin-resistant enterococci (VRE) colonization in 20 ICUs in the 

Figure 2.  Odds ratios for surgical site infection across all 393 MSAs compared to 2010, with each figure 
representing a unique combination of Representative Concentration Pathway (RCP) scenarios and year of 
prediction. Odds ratios were calculated using CMIP5 predictions of precipitation, specific humidity, and 
temperature multiplied by the multivariable multinomial logistic model coefficients for SSI post-discharge.
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United States found a 10% increase in relative humidity led to a 9% increase in MRSA and VRE prevalence 
 rate10. Further studies into lead-time effect of temperature and humidity prior to surgical admission may better 
describe weather risk-windows and help guide preventative strategies for in-hospital SSI.

In contrast with SSI during surgical admission, daily maximum precipitation, daily maximum specific humid-
ity, and minimum daily minimum temperature were all found to be significant predictors of SSI post-discharge. 
Overall effect size of climate variables was greater for development of SSI after discharge than while hospital-
ized. While precipitation was found to be a significant predictor, its effect size is minimal compared to that of 
temperature and humidity, and the amount of precipitation change required for significant change in SSI rates is 
substantial. However, future investigations using more sensitive metrics of precipitation centered around occur-
rence of SSI event may elucidate larger effect sizes. Of note, minimum temperature was negatively associated with 
SSI post-discharge, however when a similar model was run without specific humidity, the relationship between 
minimum daily minimum temperature and SSI rate was positively associated. This inversion of coefficients is 
likely a result of the collinearity existing between specific humidity and temperature. While the specifics of the 
mathematical relationship between specific humidity and temperature are detailed elsewhere, in brief at 100% 
relative humidity, every 1–2 °C increase in temperature results in a 1 g/kg increase in specific humidity depending 
on atmospheric  temperature45. As the effect size of a unit g/kg increase in specific humidity on SSI is roughly 6 
times greater than a 1 °C increase in temperature, the overall effect of temperature on SSI development is positive 
for high relative humidity. This distinction between effects of humidity and temperature is important as areas 
with high heat, humidity, and precipitation will likely see marked increased risk of SSI relative to other regions 
which may see equivalent increases in temperature without the same change in atmospheric water content.

This interdependence of climate variables has important implications when planning for future best case-
worst case scenarios at the locoregional level. Using existing climate predictive models, we have shown an increase 
in climate-related SSI after discharge across the United States for both intermediate and worst-case emission 
scenarios—however the Southeast region appears particularly vulnerable. While the odds increase by 2040 
represents only a 1–2% increase in SSI, the cumulative effect of an additional 1000–1500 SSIs every year across 
decades of climate change is substantial, particularly when considering the individual implications and cost to 
the healthcare system. By 2060 and in the highest emission scenario (RCP 8.5), there could be an additional 3% 
SSI annual increase in the most vulnerable regions. While described as the “worst-case” scenario, recent literature 
suggests that we are currently on-track with RCP 8.5  emissions46.

While exact mechanisms behind climate-related SSI remain unknown, previous research suggests increased 
skin flora in warm and humid conditions may contribute. Bacteria causing SSIs commonly originate from the 
patient’s own microbial flora, and high-temperature high-humidity conditions have been shown to increase 
bacterial skin colonization in certain body  regions47,48. Methicillin-resistant Staphylococcus aureus coloniza-
tion of the nares has long been associated with SSI and is shown to increase during the  summer49. Enterobacter 
aerogenes has been found to grow best in high-temperature high-humidity conditions on a variety of surfaces, 
likely due to decreased desiccation  stress9. While increased skin colonization during hot and humid conditions 
likely contributes to increased SSI incidence, other mechanisms may exist and warrant further investigation.

Our study has several important limitations. First, weather data was averaged across entire surveillance peri-
ods. Patients could have developed SSI before the surveillance window ended, potentially reducing the effect size 
of weather variables on SSI. Second,  Marketscan® does not include key demographic data such as race and income, 
which have been shown to be contributors to SSI in certain surgical  procedures9,35. Populations not represented 
in this study include the uninsured, those on Medicaid, and those who live outside an MSA. These vulnerable 
populations likely represent an at-risk group of climate-related SSI potentially leading to underestimation of the 
future risk by our  models9. Third, procedure characteristics such as wound class and procedure length, which are 
also known risk factors for SSI, were also unavailable in the dataset. Fourth, our study did not include encounters 
where surgeries from multiple procedure category groups occurred. As these were likely larger operations that 
require longer lengths of stay, it is likely that SSI in these groups would be even higher than those reported in 
our study, suggesting our predictions are underestimates. Fifth, we grouped NHSN procedure categories into 
larger procedure category groups to help prevent overfitting of the model, however NHSN specific subgroup 
analysis could help elucidate which procedure groups in particular are at risk for climate-related SSI and receive 
appropriate adjustment in NHSN standardized infection ratio calculations. Sixth, infections were defined by ICD9 
code, and so are susceptible to coding error. However, a meta-analysis showed ICD9 codes 998.51 and 998.59 
have a sensitivity and specificity of 84.1% and 97.1%  respectively50. Future studies that include bacterial micro-
bial data and further subgrouping of SSI into superficial, deep, or organ space categories could help illuminate 
which microbes and infection types are most associated with climate-related SSI. Seventh, this study relied on 
healthcare administrative data which depends on the veracity of the coding, and does not include independently 
verified clinical outcomes. Eighth, it is possible that future surgical technique will be associated with lower risk 
of SSIs—this potential for improved technology was not accounted for in our models which could lead to over-
representation of future risk. Ninth, the CMIP5 climate prediction models did not include error ranges, thus it is 
difficult to estimate what the upper and lower bounds of future SSI risk may be. Tenth, seasonality, temperature, 
humidity, and precipitation are interrelated. We elected to demonstrate seasonal impact on SSI incidence using 
the Lomb-Scargle periodogram. It is possible that some of the greater future risk in the southeastern US could be 
attributable to decreased seasonal variation, rather than humidity or temperature changes alone. Future studies 
could compare statistical methods to account for seasonality to further elucidate the inter-relatedness of these 
climactic variable. Finally, we were not able to account for the humidity and temperature experienced while a 
patient was hospitalized or other important in-hospitalization variables known to contribute to development of 
SSI. For this study we assumed that variability in these practices is homogenous across the United States.

In conclusion, we were able to describe a modest effect of meteorological conditions and season on SSI across 
NHSN monitored procedures occurring within the continental United States. Using climate modeling scenarios, 
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we identified the Southeast region of the United States as particularly vulnerable to future climate-related SSI. 
Further investigations into the mechanisms of climate-related SSI, the lead-lag time between weather conditions 
and development of SSI, and inclusion of more vulnerable groups both domestically and abroad are warranted. 
These studies could help develop prevention strategies and further identify at risk groups of climate-related SSI.

Data availability
The data that support the findings of this study are available from Stanford Center for Population Health Sciences 
Data Core but restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the corresponding author upon reason-
able request and with permission of Stanford Center for Population Health Sciences Data Core.
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