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Integrative network analysis 
interweaves the missing links 
in cardiomyopathy diseasome
Pankaj Kumar Chauhan1 & Ramanathan Sowdhamini1,2,3*

Cardiomyopathies are progressive disease conditions that give rise to an abnormal heart phenotype 
and are a leading cause of heart failures in the general population. These are complex diseases that 
show co-morbidity with other diseases. The molecular interaction network in the localised disease 
neighbourhood is an important step toward deciphering molecular mechanisms underlying these 
complex conditions. In this pursuit, we employed network medicine techniques to systematically 
investigate cardiomyopathy’s genetic interplay with other diseases and uncover the molecular 
players underlying these associations. We predicted a set of candidate genes in cardiomyopathy by 
exploring the DIAMOnD algorithm on the human interactome. We next revealed how these candidate 
genes form association across different diseases and highlighted the predominant association with 
brain, cancer and metabolic diseases. Through integrative systems analysis of molecular pathways, 
heart-specific mouse knockout data and disease tissue-specific transcriptomic data, we screened and 
ascertained prominent candidates that show abnormal heart phenotype, including NOS3, MMP2 
and SIRT1. Our computational analysis broadens the understanding of the genetic associations of 
cardiomyopathies with other diseases and holds great potential in cardiomyopathy research.

Cardiomyopathies are a severe and chronic health issue across the  world1–4. These are complex heart muscle 
diseases compounded by genetic and environmental factors. Cardiomyopathies share overlapping genetic and 
phenotypic features with other  diseases5–7. Evidence from a growing number of studies suggests that several 
drugs, including anti-cancer, antiretroviral and antipsychotic, pose a potential risk of cardiotoxicity and drug-
induced  cardiomyopathies8,9. It is well understood that sarcomere genes are the major drivers for cardiomyo-
pathy  phenotypes1,10,11. Besides sarcomeric genes, cellular energy-related,  Ca2+ handling and other genes are 
also implicated in  cardiomyopathy10–13. A subset of these genes influences cardiomyopathy expressivity and 
 severity14,15. We refer to such genes (variants) as ‘modifier genes’ that influence the function of another gene. 
Hamilton et al. defined modifier genes as the genetic variants that can change the phenotypic outcome of an 
independent ‘conditioning’ variant at another  locus16. Genome-wide association studies (GWAS) and candidate 
gene analysis approaches point to many common genetic variants as one of the plausible reasons for toxicity 
or induced  cardiomyopathy17–19. Hence, a fundamental knowledge of the cardiomyopathies and the molecular 
players involved is critical for developing novel approaches for its prevention and treatment. Modifier genes 
are suitable candidates for finding  biomarkers20,21, drug toxicity  explanations22,23, and possible missing links 
between distinct diseases.

The emergence of network biology has allowed us a more refined understanding of complex systems like 
protein–protein interactions and disease-disease  links24,25. Disease network analysis is helpful in disease epide-
miology as it facilitates and projects a simple concept of the relative risks of diseases and characteristics of their 
shared  architecture26–28. In this direction, the first genotype-based human disease network was constructed 
based on commonly shared genes between diseases. It was a novel attempt to show the global organization of 
diseases and functional  modules29. Now, this methodology has been used in therapeutic innovation and disease 
drug  repurposing30. Cardiomyopathies have been reported in several disease network  studies29,31. However, to 
the best of our knowledge, none of the studies exclusively focus on cardiomyopathies, potential modifiers and 
their associations, consequently requiring in-depth, rigorous analysis. In this perspective, our study is the first 
of its kind large-scale exploration of candidate (potential modifier) genes and disease associations involved in 
cardiomyopathy.
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The current study employs an integrative systems biology approach to understand cardiomyopathy-centric 
complexities and the shared genetic architecture. Firstly, we performed comprehensive mining of publicly avail-
able genetic, protein–protein interaction (PPI), mouse phenotype, and transcriptome data related to cardiomyo-
pathies. Secondly, we generated a cardiomyopathy-centric diseasome network based on genetic data. Thirdly, we 
explored human interactome datasets to predict candidate (potential modifier) genes in cardiomyopathies and 
assessed their associations with other diseases. Furthermore, we screened our findings using mouse-abnormal 
heart phenotype data and transcriptome datasets from the European Nucleotide Archive (https:// www. ebi. 
ac. uk/ ena/ brows er/ home) repository to associate the cardiomyopathy-centric candiate genes to other disease 
phenotypes.

Results
Genetic connectivity of cardiomyopathy genes with other pathophysiological diseases. To 
identify the molecular players underlying genetic links between cardiomyopathies and other diseases, we first 
constructed  a comprehensive diseasome network based on the genetic data from publicly available datasets 
(see "Methods" Section). We extracted a non-redundant set of 4406 disease phenotypes and associated genes 
in this process. Furthermore, each disease was partitioned into disease-category after merging similar diseases 
using fuzzy matching. ultimately reducing the size to 2722 distinct disease-gene associations (see Supplemen-
tary Table S1). Next, to construct cardiomyopathy-centric diseasome, we investigated only those disease-gene 
associations that consisted of at least one cardiomyopathy gene (see Supplementary Table S2) . This exercise 
resulted in a bipartite network with 146 diseases and 1929 genes (see Supplementary Table S3). Ultimately, this 
bipartite network was projected to the disease network based on common genes (see Supplementary Table S4). 
This disease-projected network was termed as cardiomyopathy-centric diseasome consisting of 146 diseases 
with 1193 distinct links (Fig. 1).

Figure 1.  Cardiomyopathy-centric diseasome: A graph representing the cardiomyopathy-centric diseasome 
network, in which two diseases are linked if a gene is implicated in both diseases. It is constructed by projecting 
a cardiomyopathy-centric bipartite graph. Each node represents a distinct disease in the network, and it is 
coloured based on the disease category it belongs to. The size of each node is proportional to the number of 
genes in that particular disease. The name of diseases with > 20 associated genes are labelled in the network. 
There are 12 disease categories in the cardiomyopathy-centric diseasome as labelled in the legend. The links 
between disease pairs are shown in grey colour. The weight of a link is proportional to the number of genes 
implicated in both diseases.

https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
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Evaluation of the cardiomyopathy-centric diseasome network properties. Cardiomyopathy-
centric diseasome network revealed that cardiomyopathies were linked with cardiovascular, neoplasms, muscu-
loskeletal, metabolic and nervous system disease-categories (Figs. 1 and 2). The predominant category was the 
cardiovascular system occupying 28.7% of the total associations, followed by musculoskeletal and congenital, 
each sharing 13.7% interactions. Surprisingly, neoplasms were also linked to cardiomyopathies (12.2%) domi-
nated by the RAF1 gene (41%). Metabolic disorders were another significant contributor (10.0%). We performed 
network statistics such as degree, betweenness and closeness centrality, degree distribution (k) and gene distri-
bution on the cardiomyopathy-centric diseasome network (see Supplementary Table S5). The degree distribu-
tion points that most diseases are linked to only a few other diseases (Fig. 2, also see Supplementary Figure S1). 
In contrast, intended cardiovascular diseases such as DCM (k = 96) and hypertrophic cardiomyopathy (HCM) 
(k = 63) are linked to many diseases. For comparison of cardiomyopathic-centric diseasome with random con-
trol, we reshuffled the genes of each disease (10,000 trials). Results show that cardiomyopathic-centric diseasome 
has significantly higher disease links (z-score = 6.652, p-value = 1.44e-11) than random expectation. Also, most 
of the intra-disease category links are significantly high compared to the one in the random networks (Fig. 2).

Functional diversity of cardiomyopathy genes can be critical in the risk of cardiotoxicity and phenotypic 
modulation of cardiomyopathies. We conducted a suite of analyses to statistically quantify biological and func-
tional diversity in the cardiomyopathy-centric diseasome network using the molecular pathways homogeneity 
(PH) and gene ontology homogeneity (GH)29 distributions (Fig. 3). We also performed randomization of genes in 
each pathway and GO terms to evaluate the significance of real distribution v/s random simulations using normal 
distribution test statistics (z-score and p -values, see "Methods" Section). We observed that disease-associated PH 
are significantly higher at perfect homogeneity value in comparison to the random control (fold change = 19.7, 
z-score = 23.31, p-value = 1.75e-120). Similar trend was observed in gene ontology homogeneity (GH) analysis 
in all three branches (molecular function fold change = 7.9, z-score = 9.3, p-value = 7.02e-21; cellular components 
fold change = 2.5, z-score = 5.6, p-value = 1.07e-08; and biological processes fold change = 12.5, z-score = 13.7, 
p-value = 5.07e-43; respectively). Disease degree vs PH or GH distribution showed that higher PH or GH values 
showed decline in the disease degree. Likewise, distribution of common shared genes between two diseases 
and their average PH followed the similar trend. These results point that diseases with higher number similar 
functional genes tend to have few disease association. On the whole, pathway and gene ontology homogeneity 
analysis demonstrated that disease genes tend to be connected functionally and this property can be explored 
to predict new genes.

Figure 2.  Diseasome properties: Overview of the cardiomyopathy-centric diseasome network. (A) Circos plot 
showing the inter disease category association of diseases in the cardiomyopathy-centric diseasome network. 
The names of the 12 disease classes are shown on the right and coloured accordingly. (B) Distribution of the 
degree k (number of diseases sharing common genes) in cardiomyopathy diseasome. The green dots represent 
the logarithmically binned data. (C) Distribution of the gene size g (number of genes implicated in a particular 
disease) in the cardiomyopathy-centric diseasome. (D) Number of disease links in the cardiomyopathy-centric 
diseasome versus random expectation. (E) Intra-disease category links distributions for real data and random 
trials. Green bars represent real data while gray bars show average intra-disease category links in the random 
trials. Error bars denote standard deviation.
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Identification of candidate genes in cardiomyopathies and disease modules. Further extend-
ing the clustering of genes visible in the PH and GH analysis of cardiomyopathy-centric diseasome, we pre-
dicted new candidate (potential modifier) genes in cardiomyopathies. For this, we utilized the DIseAse MOdule 
Detection (DIAMOnD) algorithm on network topology created by the human interactome (see "Methods" Sec-
tion)32. The DIAMOnD algorithm is a popular method used in several studies for disease-gene  prediction33–35. 
It explores the topological neighbourhood of the seed genes in the human interactome and identifies newer 
genes based on significant connectivity to the seed genes (see "Methods" Section)32. An exhaustive number of 
DIAMOnD genes (1000 candidate genes) were predicted for each cardiomyopathy. Since the DIAMOnD algo-
rithm continues to identify and associate newer genes to the initial set of seed genes, it is necessary to set a limit 
for the expansion of such association in the entire gene dataset. For this, we quantified the biological relevance 
of the newly predicted gene using the molecular pathway data (see "Methods" Section). We tabulated all the 
molecular pathways enriched in pathway enrichment of seed genes (adjusted p-value = 0.05) for individual car-
diomyopathies. Subsequently, DIAMOnD genes showing enrichment with same pathways were considered true 
hits for candidate genes. We profiled approximately the first 601, 508, and 31 DIAMOnD genes that show a clear 
and significant biological association with HCM, DCM, and arrhythmogenic right ventricular cardiomyopathy 
(ACM), respectively (Fig. 4). In minor forms like idiopathic cardiomyopathy (IdCM), hypertrophic obstructive 
cardiomyopathy (HoCM), restrictive cardiomyopathy (RCM) and histiocytoid cardiomyopathy (HcCM), we 
found 20, 10, 7, and 1 DIAMOnD genes, respectively, while in amyloid cardiomyopathy (AmCM), mitochon-
drial cardiomyopathy (MtCM), diabetic cardiomyopathy (DbCM) boundary was not possible due to a limited 
number of seed genes (see Supplementary  Table  S6). To further screen the candidate genes associated with 
cardiomyopathies, we verified if their ortholog genes in the mouse knockout dataset showed abnormal heart 
phenotype (see "Methods" Section). Only mapped candidates were used for further analysis. This result led to the 
identification of 53, 45 and 2 mapped candidate genes in HCM, DCM, and ACM, respectively (Fig. 4, and also 
see Supplementary Table S7). IdCM, HoCM, RCM, and HcCM DIAMOnD genes did not show any overlapping 
genes with mouse phenotype data (see Supplementary Figure S2). Further, to compare our constructed human 
interactome, we considered two independent datasets (HuRI and BioPlex3)36,37. We looked for the interaction of 
human ribosomal proteins. Both of these datasets failed to account for interactions in the ribosomal complex. 

Figure 3.  Diseasome properties: (A) A distribution of the molecular pathways homogeneity (PH) of individual 
diseases in cardiomyopathy-centric diseasome. Purple bars represent the actual diseasome, and the green bars 
show the random control calculated for each disease by randomly choosing the same number of genes. The 
PH is formulated as the maximum possible fraction of genes associated with the same molecular pathway in 
individual disease. (B) A lineplot of disease degree versus PH value distribution in the diseasome. (C) The 
distribution of number of common genes between two disease phenotype and their average PH value in the 
cardiomyopathy-centric diseasome. (D) The GO homogeneity measure of cardiomyopathy-centric diseasome 
genes for all GO categories—cellular component (CC)(Middle), biological process (BP) (Bottom), and 
molecular function (MF) (Top). The GH for each disease term was calculated like the PH analysis. Red bars 
represent the actual diseasome histogram, and the green bars show the random control. (E) A lineplot of disease 
degree and GH value distribution for each GO category in the diseasome.
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However, these interactions were present in our human interactome and the STRING  database38 (see Supple-
mentary Figure S3). We, therefore, continued with our interactome only.

Candidate genes fill the missing links in cardiomyopathy-centric diseasome. Next, we assessed 
the role of these candidates or potential modifiers in the expansion of the cardiomyopathy-centric diseasome. 
Apart from the original 269 cardiomyopathies associations to other diseases, the inclusion of predicted candi-
date genes to cardiomyopathies leads to an additional 221 links to other diseases (see Supplementary Table S8). 
Interestingly, apart from heart-related diseases and cancers, diabetes, rheumatoid arthritis, lipodystrophy, non-
alcoholic fatty liver disease, brain disorders (like Alzheimer’s, depressive disorder, schizophrenia, and mental 
retardation) were part of cardiomyopathy associations due to the common candidate genes.

The notable candidates associated with these diseases were IL6, NOS3, MMP2, SIRT1, CAV1 and ESR2 
(Table 1). We observed that these candidates contributed to 22.62%, 11.31%, 9.76%, 5.65%, 5.65% and 5.14% of 
the new disease association with cardiomyopathies, respectively (see Supplementary Table S9). We examined 
the RNA expression of the modifier genes in the primary tissues to associate whether candidates are indeed 
expressed in the heart and other tissues. We explored the Human Protein Atlas (HPA) dataset for finding gene 
expression of candidates for this  analysis39. Except for TBL1Y, PAX5 and ESR2, most candidates showed reliable 

Figure 4.  Candidate genes: Graph illustration of the biologically relevant association of the predicted 
DIAMOnD genes and screening based on abnormal heart phenotype in the mouse. (A,B,C) Panels 
correspond to true molecular pathways hits of DIAMOnD genes of hypertrophic cardiomyopathy (A), dilated 
cardiomyopathy (B), and arrhythmogenic cardiomyopathy (C), respectively (red lines, seed genes; green lines, 
DIAMOnD genes). (D,E,F) Panels show the distribution of p-value for DIAMOnD genes where a sliding 
window of DIAMOnD genes size equal to seed genes was used for Fisher’s test for each iteration. The cut-off 
of p-value = 0.05 (green line) was chosen for selecting DIAMOnD genes in each cardiomyopathy. Red arrow 
marks the boundary of reliable DIAMOnD genes (G,H,I) Panels are Venn diagrams that project the overlap of 
DIAMOnD genes and mouse genes showing abnormal heart phenotype.
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and abundant expression in the HPA tissues (Fig. 5). The RNA expression of important candidates like IL6, NOS3, 
MMP2, SIRT1 and CAV1 was observed in the heart muscle tissue (see Supplementary Table S10).

We extended our study of candidate genes identified in cardiomyopathy to establish a connection with non-
cancer and non-heart related diseases. Our analysis predicts that IL6 is a potential gene relevant to the association 
of bipolar disorder, depressive disorder and schizophrenia with DCM. Similarly, NOS3 connects Alzheimer’s 
disease and Diabetes mellitus with HCM and DCM. On the other hand, MMP2 is implicated in the association 
of rheumatoid arthritis to HCM and DCM. SIRT1 is found to connect diabetes mellitus and non-alcoholic liver 
disease to HCM and DCM. Lastly, CAV1 is involved in relating lipodystrophy to HCM and DCM.

To further support identified candidate genes, we analysed disease tissue-specific RNA-seq datasets from 
the ENA repository (see "Methods" Section). However, we could not find disease tissue-specific data for many 
diseases. So we considered only diseases whose data was available as the case studies. IL6, NOS3, MMP2 and 
SIRT1 were implicated in these diseases. The results showed that most candidate genes are expressed in the tissues 
of interest. We could not find sufficient expression of IL6 in our datasets, so we ignored it. Our results revealed 
that NOS3 is expressed in both Alzheimer’s and DCM. Similarly, SIRT1 was expressed in HCM, non-alcoholic 
fatty liver disease and Diabetes mellitus. Further, MMP2 expression was observed in HCM and rheumatoid 
arthritis (Fig. 5).

NOS3 (Nitric Oxide Synthase 3) produces the gasotransmitter nitric oxide (NO) that is implicated in vas-
cular smooth muscle relaxation through a cGMP-mediated signal transduction  pathway40. Polymorphisms in 
the NOS3 gene have been implicated in dilated  cardiomyopathy41. SIRT1 (Sirtuin 1), a crucial multi-functional 
protein mainly expressed in the endocrine tissues, is involved in controlling DNA repair, tissue regeneration, 
cell survival, inflammation, signalling, and  circadian42. Its deficiency leads to progressive dilated cardiomyo-
pathy in adult  mice43. Also, PPARα-Sirt1 complex attributes to cardiac hypertrophy and failure by suppressing 
the ERR transcriptional  pathway44. MMP2 (Matrix Metalloproteinase 2) protein is known to degrade collagen, 
elastin, fibronectin, gelatin, and laminin and has both proinflammatory and anti-inflammatory roles in numerous 
 tissues45. Its expression is altered in skeletal muscle during heart failure and diabetic cardiomyopathy in  rats46,47.

We observed that NOS3, SIRT1 and MMP2 are prominent candidate genes. Further, these genes can be 
subjected to experimental validation. Similarly, this approach paves the way for candidate genes in a larger 
tissue-specific disease association studies.

Discussion
Cardiomyopathies are important age-related diseases. Genetic, environmental and dietary factors contribute 
to disease severity; however, much remains to be discovered. Here, we applied an integrative systems biology 
approach to analyse human genetic, molecular interactome and transcriptome data to elucidate the molecular 
players involved in cardiomyopathy-centric diseasome. In cardiomyopathy research, no such attempts have been 
made previously involving genetic connectivity, protein interactions and tissue expression. Our cardiomyopathy-
centric diseasome connected to many pathophysiological diseases from neurological, musculoskeletal, metabolic 

Table 1.  A representative disease-disease association of predicted candidate genes that are screened based on 
mouse phenotype genes.

S. No Disease A Disease B Candidate genes

Hypertrophic cardiomyopathy Alzheimer’s disease NOS3

1 Alzheimer’s disease Dilated cardiomyopathy NOS3

2 Dilated cardiomyopathy Non-alcoholic fatty liver disease SIRT1

3 Hypertrophic cardiomyopathy Non-alcoholic fatty liver disease SIRT1

4 Dilated cardiomyopathy Rheumatoid arthritis IL6, MMP2, IL2RA

5 Dilated cardiomyopathy Diabetes mellitus NOS3, IL6, SIRT1, IL2RA

6 Dilated cardiomyopathy Lipodystrophy CAV1

7 Dilated cardiomyopathy Schizophrenia IL6, ESR2

8 Hypertrophic cardiomyopathy Depressive disorder IL6, ESR2

9 Hypertrophic cardiomyopathy Diabetes mellitus NOS3, IL6, SIRT1,IL2RA

10 Hypertrophic cardiomyopathy Schizophrenia IL6, ESR2

11 Hypertrophic cardiomyopathy Parkinson disease IL6

12 Hypertrophic cardiomyopathy rheumatoid arthritis IL6, MMP2, IL2RA

13 Dilated cardiomyopathy Parkinson disease IL6

14 Hypertrophic cardiomyopathy Lipodystrophy CAV1

15 Dilated cardiomyopathy Unipolar depression IL6

16 Hypertrophic cardiomyopathy Mental depression IL6

17 Hypertrophic cardiomyopathy Intellectual disability RAC1

18 Dilated cardiomyopathy Bipolar disorder IL6

19 Dilated cardiomyopathy Intellectual disability RAC1

20 Hypertrophic cardiomyopathy Bipolar disorder IL6
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and neoplasms. These associations are constructed using datasets of already reported genetic studies and hence 
could play a significant role in deciphering drug-toxicity, off-target binding and/or novel targets in such diseases.

Figure 5.  Tissue expression of candidate candidates: Overview of the tissue specific RNA expression of 
the candidate genes in cardiomyopathy-centric diseasome. (A) The protein-transcript per million (pTPM) 
expression values of candidate genes across major tissue into GTEx dataset of the Human Protein Atlasdatabase. 
In the heatmap, values are log2 transformed with green color showing abundant transcripts while pink color 
depicting extremely low expressed transcripts. Red arrows point to important candidates observed in the 
study. Heart muscle tissue is highlighted with red box. (B) A violinplot shows the expression of NOS3 gene 
in Alzheimer’s and dilated cardiomyopathy. Transcript per million (TPM) of NOS3 derived from Brain and 
heart tissues (PRJEB28518 and PRJNA494688) were used. (C) Tissue specific expression of SIRT1 gene in 
hypertrophic cardiomyopathy and Diabetes mellitus. Expression of SIRT1 (TPM) was derived from dermal 
endothelial and heart tissues (PRJNA352990 and PRJNA358470). (D) MMP2 gene expression in rheumatoid 
arthritis and hypertrophic cardiomyopathy from SRP009315 and PRJNA352990 datasets.
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Our analysis revealed that the molecular players in a specific disease are generally clustered (i.e. form disease 
modules) supported by means of PH and GH assessment. Such genes carry out similar functions or are part of 
similar cellular processes. Notably, based on PH and GH assessment, disease genes were far more homogenised 
than the random control, suggesting a bona fide clustering of such genes involved in a disease. We expanded 
cardiomyopathy involved (seed) genes using DIAMOnD and assessed for biological relevance using the molecular 
pathways dataset (MSIgDB). Additionally, the mouse phenotype dataset helped to screen candidate (potential 
modifier) genes using IPMC phenotype data for heart-related abnormalities. Our analysis identified a set of 
candidate genes across different cardiomyopathies (HCM, DCM and ACM). We looked at the prominent dis-
eases associated with these candidates. Our structured enquiries highlighted the notable candidates involved in 
linking cardiomyopathies to non-alcoholic fatty liver disease, diabetes mellitus, rheumatoid arthritis, as well as 
brain disorders like Alzheimer’s, bipolar disorder, mental retardation, schizophrenia, and depressive disorders.

Tissue-specific transcriptome datasets could be of vital use in discovering candidate genes. We used HPA 
and ENA RNA-seq) data to associate candidate genes from cardiomyopathy to other diseases. Interestingly, we 
found that the majority of the genes were abundant in major tissues, including heart muscle. We showed that 
NOS3, CAV1 and SIRT1 are expressed in the cardiomyopathies as well as other non-cancer and non-heart related 
diseases. Such clues arising from diseasome network analysis can benefit in drug repurposing studies and assist 
in finding possible off-targets and hidden genetic overlaps between cardiomyopathies and other co-morbidities.

In summary, unlike previous studies that provide a limited description of cardiomyopathies from the purview 
of the diseasome network, the current study focuses on the key molecular entities involved in these heart diseases. 
Our integrative network-driven approach predicts and highlights the prominent candidate (potential modifier) 
genes that associate cardiomyopathies with Alzheimer’s disease, rheumatoid arthritis, diabetes and non-alcoholic 
fatty liver disease. Our approach demonstrates the power of network study to find such novel candidate genes. 
Furthermore, this study points to the molecular candidates that can be a target for developing effective thera-
pies against cardiomyopathies, apart from providing us with the molecular markers for such genetic disorders. 
Additionally, similar work can be performed for other disease-centric networks as well.

Limitations of the study. This study strongly relies on disease genes association data as well as human 
interactome data. The primary limitation of this study is the incompleteness of initial data. Further, each dataset 
may contain noise, which may remain in the outcome even after processing. Methods employed for this very 
challenging problem of automated full-text analysis in large-scale data are limited in accuracy. Further, this study 
is predictive in nature, and experimental validation (such as cell assay, RNAseq) is beyond the scope of the cur-
rent study. Nevertheless, cardiomyopathy-centric diseasome and candidate genes prediction would facilitate a 
comprehensive understanding of cardiomyopathies.

Methods
Statement on data. Authors from this study reporting experiments on human data, human genome data 
and/or the use of human tissue samples confirm that all experiments were performed in accordance with the 
relevant guidelines and regulations.

Data sources and processing. Publicly available gene and disease association data were downloaded from OMIM 
(v2018) (https:// data. omim. org/), ClinVar (2020) (https:// ftp. ncbi. nlm. nih. gov/ pub/ clinv ar/), HumSaVar (2020) 
(https:// www. unipr ot. org/ docs/ humsa var. txt) and DisGeNet (2020) (https:// www. disge net. org/ downl oads) 
 datasets48–50. From the OMIM dataset, only ‘(3)’ marked diseases were selected for curated data. Similarly, in 
DisGeNet, diseases with a score above 0.4 were considered. HUGO Gene Nomenclature Committee (HGNC) 
gene symbols were assigned to each gene for a consistent and accurate  name51. Synonymic or alternative gene 
names were reduced to the HGNC gene primary symbol, as reported in HGNC (June 2020 release). All disease-
gene datasets were merged and manually curated for a comprehensive non-redundant disease-gene data. Simi-
lar diseases, disease sub-types or the same disease with different names were merged (e.g. d-2 hydroxyglutaric 
aciduria and l-2 hydroxyglutaric aciduria were merged and named hydroxyglutaric aciduria) using fuzzy-wuzzy 
module in python. MeSH 2020 (2020) (https:// www. ncbi. nlm. nih. gov/ mesh/), GARD (2020) (https:// rared iseas 
es. info. nih. gov/), and Literature  data29 were integrated to categorise diseases. The category names were assigned 
according to significant organ systems based on MeSH 2020, and similar types were merged, thus restricting the 
number of the category to 12. A different ‘multiple’ group was created to cater to diseases belonging to multiple 
categories. The dominant type was assigned if a disorder was part of many categories. In the case of multiple 
dominant categories, it was assigned to the ‘multiple’ category. For human interactome construction, PPI data 
(HPRD, MINT, and IntAct) were integrated with other interactions (e.g. protein complex and kinase substrate) 
from CORUM and Phosphositeplus as well as transcription factors from the TRRUST  database52–57. For check-
ing biasness analysis of interactome HuRI, BioPlex3 and STRING datasets were  used36–38. Custom python and R 
scripts were used for the analysis (available at http:// caps. ncbs. res. in/ downl oad/ cardi omyo_ disea some).

Diseasome construction and network analysis. A bipartite network was constructed from the previous disease-
gene data with diseases as one category of nodes and genes as another type. A disease-gene pair was linked if 
the gene was part of that disease. The diseasome was constructed by projecting the bipartite network on disease 
nodes. Further cardiomyopathy-centric diseasome network was obtained by retaining only those diseases in 
which at least one cardiomyopathy gene was common. Network analyses like degree distribution of diseases and 
distribution of genes in disease were carried out in the networkx module of python. Random networks (disea-
some) were generated by shuffling the genes in the original diseasome. For each disease, an equivalent number 
of randomly shuffled genes were assigned and diseasome was constructed based on the common shared genes 

https://data.omim.org/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
https://www.uniprot.org/docs/humsavar.txt
https://www.disgenet.org/downloads
https://www.ncbi.nlm.nih.gov/mesh/
https://rarediseases.info.nih.gov/
https://rarediseases.info.nih.gov/
http://caps.ncbs.res.in/download/cardiomyo_diseasome
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between two diseases. Statistical significance of cardiomyopathy-centric diseasome was calculated from 10,000 
trial of random networks. Normal distribution was used for calculating z-score and p-values. Network visualiza-
tion was made using Gephi.

Molecular pathways and gene ontology homogeneity (PH and GH) of cardiomyopathy‑centric diseasome. In 
accordance with a previous  study29, we calculated each disease’s PH and GH homogeneity in the cardiomyopa-
thy-centric diseasome. For PH, we used the MSigDB  dataset58. Each disease’s pathways homogeneity (PH) was 
measured as the maximum fraction of genes in the same disease with the same pathways. It is defined as :

wherein ni denotes the number of genes in the disorder i that are associated with any pathway, and nji the number 
of genes with a specific pathway j . We also created the random control PH, where the same number of genes 
were picked randomly from the MSigDB dataset, and pathway homogeneity was measured for them. We iterated 
this 10,000 times and used all diseases k with perfect pathway homogeneity (where PH = 1) for the statistical 
significance. The normal distribution test statistics was performed to calculate z-score:

Similarly, gene ontology homogeneity analysis was applied to diseasome using the above approach. GO for 
disease genes were obtained from the UniProt database. This analysis mapped 4923 out of 4995 disease genes 
through UniProt primary gene retrieval. GH was calculated separately for biological process (BP), molecular 
function (MF), and cellular component (CC).

Candidate gene prediction and screening. The DIAMOnD algorithm was used on previous human interactome 
data to predict new candidate genes. The DIAMOnD algorithm uses hypergeometric distribution for new genes 
 prediction32. It is defined by Ghiassian et al. as:

where N is network of proteins containing a small number (s0) of seed proteins associated with a particular 
disease and p

(

k, ks , ks0
)

 is probability that a protein with a total of k links has exactly ks links to seed proteins. To 
assess whether a particular protein has more connections to seed proteins than expected under null hypothesis, 
cumulative probability p− value(k, ks) is calculated as:

The DIAMOnD algorithm iteratively ranks all the proteins in the network. Therefore, in order to set a limit 
on the number of potential DIAMOnD genes, a strategy is required to define the boundary for accurate predic-
tions. We used the MSIgDB pathways for independent biologically relevant  associations58. We retrieved the 
biological pathways significantly enriched with seed genes (Fisher’s exact test and FDR corrected using BH). 
Next, we assessed if these pathways were also enriched in a statistically significant manner with the DIAMOnD 
genes (p-value < 0.05).

Next, mouse genes affecting the heart were used as screening for candidate genes. For this, the mouse cardio-
vascular abnormality phenotype dataset was downloaded from the International Mouse Phenotypic Consortium 
(IMPC), and non-heart specific phenotypes genes were dropped from further  analysis59. To compare with can-
didate genes, mouse genes were first mapped to human orthologs from the HGNC  dataset51. Overlapping genes 
between the candidates and the mouse orthologs were considered genuine potential candidates.

Tissue specific expression of candidate genes. Tissue-specific RNA expression data was downloaded from Human 
Protein Atlas (https:// www. prote inatl as. org/)39. From this, only the GTEx dataset was used to ascertain candi-
date gene expression. We considered protein-transcript per million (pTPM) value greater than two as a cut-off 
for the presence of a gene in the tissue of interest. We also looked at the expression of candidates in the disease 
tissues. For this disease-specific RNA-seq datasets were downloaded from the ENA browser (https:// www. ebi. 
ac. uk/ ena/ brows er/ home). FASTQ format RNA-seq data of study Project IDs Alzheimer’s (PRJEB28518), DCM 
(PRJNA494688), HCM (PRJNA352990), non-alcoholic fatty liver disease (PRJNA558102), diabetes mellitus 
(PRJNA358470) and rheumatoid arthritis (SRP009315) were downloaded. The raw sequences were first sub-
jected to quality check using FastQC tool kit version 0.11.8. The pre-processed reads were aligned against human 
reference transcripts version 38 Ensembl release 96 using fast aligner Salmon version 2.7.3a60. Downstream 
analysis was carried out in the R 3.4 package.

(1)PHi = max j

(

nji

ni

)

(2)z − score =

∑k
i PHi

ori
− µ

∑k
i PHi

rand

σ
∑k

i PHi
rand

(3)p
(

k, ks , ks0
)

=

(

s0
ks

)(

N−s0
k−ks

)

(

N
k

)

(4)p− value(k, ks) =

k
∑

ki=ks

p(k, ki)

https://www.proteinatlas.org/
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
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Visualization of network and transcriptomic data. Gephi tool was used for network visualization. The circos 
plot was constructed using Circos software. The Heatmap and Violin plot were generated using python packages 
matplotlib and seaborn.

Quantification and statistical analysis. The statistics used in the study is described in the individual 
method sections above.

Data availability
This paper presents an analysis of existing, publicly available data. All codes are available at the following link 
http:// caps. ncbs. res. in/ downl oad/ cardi omyo_ disea some. Any additional information required to re-analyse the 
data can be acquired from the authors.
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