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CT radiomics to predict Deauville 
score 4 positive and negative 
Hodgkin lymphoma manifestations
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18F-FDG-PET/CT is standard to assess response in Hodgkin lymphoma by quantifying metabolic 
activity with the Deauville score. PET/CT, however, is time-consuming, cost-extensive, linked to 
high radiation and has a low availability. As an alternative, we investigated radiomics from non-
contrast-enhanced computed tomography (NECT) scans. 75 PET/CT examinations of 43 patients 
on two different scanners were included. Target lesions were classified as Deauville score 4 positive 
(DS4+) or negative (DS4−) based on their SUVpeak and then segmented in NECT images. From these 
segmentations, 107 features were extracted with PyRadiomics. All further statistical analyses were 
then performed scanner-wise: differences between DS4+ and DS4− manifestations were assessed 
with the Mann–Whitney-U-test and single feature performances with the ROC-analysis. To further 
verify the reliability of the results, the number of features was reduced using different techniques. 
The feature median showed a high sensitivity for DS4+ manifestations on both scanners (scanner 
A: 0.91, scanner B: 0.85). It furthermore was the only feature that remained in both datasets after 
applying different feature reduction techniques. The feature median from NECT concordantly has a 
high sensitivity for DS4+ Hodgkin manifestations on two different scanners and thus could provide a 
surrogate for increased metabolic activity in PET/CT.

Abbreviations
AUC   Area under the curve
CMR  Complete metabolic remission
CT  Computed tomography
DS  Deauville score
FDG  18F-Fluorodeoxyglucose
FOV  Field of view
GLCM  Gray level co-occurrence matrix
GLDM  Gray level dependence matrix
GLRLM  Gray-level run-length matrix
GLSZM  Gray-level size zone matrix
IBSI  Image Biomarker Standardisation Initiative
ICC  Intraclass correlation coefficient
IQR  Interquartile range
kVp  Peak kilovoltage
MAD  Mean absolute deviation
MRMR10  Minimum redundancy maximum relevance with selection of 10 features
MRMR20  Minimum redundancy maximum relevance with selection of 20 features
MWU  Mann–Whitney U-test
NECT  Non-enhanced CT
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NGTDM  Neighboring gray tone difference matrix
NPV  Negative predictive value
p  Level of significance
PET  Positron emission tomography
PPV  Positive predictive value
RFE  Recursive feature eliminiation
RMAD  Robust mean absolute deviation
RMS  Root mean squared
ROC  Receiver operating characteristic
ROI  Region of interest
SUV  Standardized uptake value
SUVmax  Maximum SUV
SUVmean  Mean SUV
SUVpeak  Peak SUV

18F-Fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) is the standard 
diagnostic test for end-of-treatment assessment in Hodgkin  lymphoma1, which accounts for 10% of all diagnosed 
 lymphomas2. The metabolic activity in PET/CT is usually assessed with the Deauville Score (DS), a 5-point 
system to categorize FDG avidity. Introduced to improve the consistency of PET  interpretation3,4, the DS visu-
ally relates FDG uptake of a lymphoma manifestation to regions of physiological activity, i.e., the liver and the 
mediastinal blood  pool5. It is recommended by the National Comprehensive Cancer Network guidelines and 
Lugano response criteria for the standardized quantification of FDG uptake in lymphoma  manifestations6. A DS 
of 3 or less is considered an adequate, and a DS of 4 or greater is considered an inadequate treatment response. 
This cutoff is of the highest  relevance7,8.

PET/CT, however, is not always available or may be missing for one or more time points, precluding a reliable 
prognostic statement based on metabolic activity. It is also an expensive and time-consuming procedure, result-
ing in a high radiation dose for the often young  patients9. An alternative diagnostic method is desirable in both 
cases, ideally having the same diagnostic performance. Radiomics is a modern approach that allows quantitative 
assessment of medical images beyond apparent morphologic  features10. Features are extracted from a region 
of interest (ROI) by mathematical-statistical processing, resulting in many quantifiable features to character-
ize different image  properties10. Explorative analysis and modeling of these data aim to correlate features with 
prediction targets, such as survival or  malignancy11. For example, Mayerhoefer et al. were able to differentiate 
Glioblastoma from CNS Lymphoma with MR-derived radiomics and predict the survival of lymphoma patients 
with radiomics from 18F-FDG-PET  data12. Or Milgrom et al., who estimated the relapse rate of mediastinal 
Hodgkin Lymphoma by building a model with the five most predictive radiomic features from baseline PET 
scans, yielding promising  AUCs13.

Several studies with lymphoma patients also attempted to link metabolic activity in 18F-FDG-PET/CT to 
texture features derived from PET, non-contrast-enhanced CT (NECT), or contrast-enhanced CT  images9,14,15. 
For example, Ganeshan et al. suggested a link between the non-contrast-enhanced CT-derived texture parameter 
kurtosis and shorter progression-free survival of lymphoma patients in an 18F-FDG-PET/CT study, including 
patients with Hodgkin lymphoma and aggressive Non-Hodgkin  lymphoma14. In another study, Knogler et al. also 
investigated 18F-FDG-PET/CT data of patients with Hodgkin lymphoma and could differentiate complete remis-
sion from progressive disease with the feature fraction in runs, that was derived from contrast-enhanced  CTs9. 
However, a clear tendency towards one texture feature or feature class that distinctly correlates with increased 
FDG uptake has not emerged yet. This may also be related to a known drawback regarding radiomics, which is 
their lack of reproducibility, particularly between different  scanners16–18.

Therefore, this study aimed to explore if radiomic features from NECT images are linked to the metabolic 
activity of Hodgkin lymphoma manifestations and can discriminate between DS4-negative (DS 1–3) and DS4-
positive (DS4 and DS5) manifestations. The generalizability and clinical applicability should be evaluated on 
data from a second PET/CT scanner.

Materials and methods
Study population and definition of target lesion. We included a total of 75 PET/CT datasets acquired 
in 43 patients. PET/CT scans were performed between September 2015 and March 2019. Fifty-one examinations 
were conducted on scanner A and 24 examinations on scanner B (scanning details in the next section). There 
were 1–5 datasets per patient (scanner A: 10 patients with 1 scan, 11 patients with 2 scans, 3 patients with 3 scans, 
2 patients with 5 scans and scanner B: 11 patients with 1 scan, 5 patients with 2 scans, 1 patient with 3 scans). 
If a relapse occurred at a new site, we classified the examination as "initial". Overall, 26 initial and 49 interim 
examinations were included. Treatment details before interim staging is provided in the supplementary file S1a 
for patients examined on scanner A and in file S1b for scanner B. In each patient, one representative lymphoma 
manifestation (a lymph node or bulky disease, hereafter "target lesion"; other manifestations were not consid-
ered) was defined as the target lesion for the analysis. Usually, the target lesion was the one with the visually 
highest DS. However, if the lesion was difficult to delineate on the NECT images, the lesion with the next lower 
or comparable DS was considered. The volume of the lesion further had to be at least 1  cm3.

Details of the patients are summarized in Table 1. Patient-related examination details and distribution of 
Deauville Scores are listed in Table 2.
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Image acquisition. FDG-PET/CT images were acquired on two different scanners: Scanner A (Gemini TF 
16; Philips Medical Systems, Hamburg, Germany)19 and scanner B (Discovery MI; GE Medical Systems, Chi-
cago, USA)20. All Patients fasted for ≥ 6 h before 18F-FDG injection and a blood glucose level of < 190 mg/dl was 
ensured. A median activity of 250 MBq 18F-FDG (interquartile range (IQR), 233–262 MBq) was administered 
intravenously. PET scan followed after a median uptake time of 68 min (IQR, 63.5–76.5 min). PET data were 
acquired from the skull base to the proximal femora in 3D acquisition mode (acquisition time, 2–3 min per bed 
position). PET raw data from scanner A were reconstructed using 3D ordered subset expectation maximization 
(OSEM) with a time of flight analysis (BLOB-OS-TF; iterations, 3; subsets, 33; filter, ‘smooth’). PET data from 
scanner B were reconstructed iteratively with Bayesian penalized likelihood reconstruction (GE “Q.Clear”) with 
a penalization factor β of 450, which included time of flight analysis and point spread function  modeling21. Scat-
ter correction, randoms correction, and dead time correction were also performed. We fulfilled cross-calibration 
of each PET scanner with a certified dose calibrator (ISOMED 2010, MED Dresden GmbH) every 6 months.

PET/CT scanning and reconstruction details are summarized in Table 3.

Image analysis. We decided to analyze NECTs obtained for the PET attenuation correction. Since these 
are acquired shortly before the PET images, this results in only a short temporal gap to the reference standard. 
Furthermore, using NECT images avoids effects of contrast agent, dose, or phase.

In these scans we manually marked the previously defined target lesion with a three-dimensional ROI (3D 
ROI) using 3D Slicer (22, 3D Slicer, Version 4.10.0, http:// www. slicer. org). The evaluation was carried out indepen-
dently by two readers [Reader 1: S.N.N., Reader 2: L.J.J.] (reader 1: board-certified radiologist with over nine years 

Table 1.  Details of the patient population. Details of the included patients. Percentages of the patients are 
listed per scanner and may not total 100 due to rounding. IQR interquartile range. *Patients with relapse at a 
different site (if a relapse occurred at a new site, we classified the examination as "initial").

Scanner A Scanner B

Underlying disease Hodgkin’s disease (all patients)

Number of patients 26 (100%) 17 (100%)

Median age (years) 23 (IQR: 16–39) 36.5(IQR: – 22.25 to 52.25)

Sex 15 (58%) female, 11 (42%) male 7 (41%) female, 10 (59%) male

Median weight (kg) 64.5 (IQR: 55–92.5) 74 (IQR: 62–92)

Relapse
(different site)* 2 patients (8%) 3 patients (18%)

Table 2.  Patient-related examination details and distribution of Deauville Scores. Details of the patient-related 
examination details and the distribution of the Deauville Scores. Percentages of the scans are listed scanner-
wise and may not total 100 due to rounding. IQR interquartile range.

Scanner A Scanner B

Number of scans 51 (100%) 24 (100%)

Median scans per patient 2 (IQR: 1–2) 1 (IQR: 1–2)

Median blood sugar (mg/dl) prior 
to PET 92 (IQR: 81–100) 94 (IQR: 85–103)

Median applied acitivity of F-18-
FDG (MBq) 247.5 (IQR: 196.5–258.75) 255 (IQR: 205–264.5)

Median uptake time (min) 68 (IQR: 64.75–81) 65 (IQR: 62–70)

DS4-positive DS4-negative DS4-positive DS4-negative

Total 23 (45%) 28 (55%) 13 (54%) 11 (46%)

  Initial scans 15 (29%) 1 (2%) 10 (42%) 0 (0%)

  Interim scans 8 (16%) 27 (53%) 3 (13%) 11 (46%)

Target lesion Deauville score (DS)

DS 1 0 (0%) 0 (0%)

DS 2 25 (49%) 10 (42%)

DS 3 3 (6%) 1 (4%)

DS 4 4 (8%) 5 (21%)

DS 5 19 (37%) 8 (33%)

Median  SUVmax 3.58 (IQR: 1.89–7.62) 6.07 (IQR: 2.32–10.23)

Median  SUVpeak 2.63 (IQR: 1.62–5.88) 3.65 (IQR: 1.84–6.68)

Median size  (mm3) 3093.8 (IQR: 869.4–6873.6) 4218.1 (IQR: 1516.4–8390.4)

http://www.slicer.org
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of experience, reader 2: radiology resident with more than four years of experience). The readers were required to 
delineate as much of the target lesion as possible while keeping a minimum distance of 1–2 pixels from the edge.

Figure 1 shows an example of a 3D ROI.

Defining the Deauville scores. To achieve reproducible results, we determined the final DS using the 
qPET  approach23. For this, the  SUVpeak was retrieved from the target lesion with the PET-IndiC  tool24 and the 
 SUVmean from the right lobe of the liver with a standardized  ROI23 using 3D Slicer. The relevant cutoff was 
between DS3 and DS4 and defined by a qPET value of 1.323: lesions equal or above were classified as DS4-
positive, lesions below as DS4-negative.

Radiomic feature extraction. Radiomic features were extracted using PyRadiomics (Version 3.0)25,26, fol-
lowing the instructions of the Image Biomarker Standardisation Initiative (IBSI)27. The settings used for feature 
extraction can be found in the supplementary file S2a, the IBSI reporting guidelines and the checklist in the 
supplementary file S2b.

We extracted all 18 first-order features (energy, total energy, entropy, kurtosis, maximum, minimum, mean, 
median, interquartile range (IQR), skewness, range, mean absolute deviation (MAD), robust mean absolute 
deviation (RMAD), root mean squared (RMS), variance, uniformity, 10th percentile and 90th percentile); fur-
thermore, 14 shape features as well as all second- and higher-order features (24 Gy level co-occurrence matrix 

Table 3.  Scanner and PET/CT scanning details. CT scanning parameters used for examinations on the two 
different PET/CT-scanners included in the study. kVp peak kilovoltage, mAs milliampere-seconds.

Scanner A Scanner B

PET/CT model name Gemini TF 16 Discovery MI

Manufacturer Philips medical systems GE medical systems

CT detector rows 16 64

kVp 120 120

mAs (automated tube current modulation) 50–100 50–100

Gantry rotation time (s) 0.5 0.5

CT matrix 512 × 512 512 × 512

CT field of view (mm) 436 × 436–688 × 688 500 × 500–700 × 700

Pixel spacing 0.8515625/0.8515625–1.34375/1.34375 0.9765625/0.9765625–1.367188/1.367188

Spacing between CT slices − 1.5 − 2.78

Slice thickness (mm) 3.00 3.75

CT kernel Body Body

Patient position Supine, head first Supine, head first

PET Scintillator material Lutetium–Yttrium Oxyorthosilicate (LYSO) LYSO

PET photomultiplier technology Conventional photomultiplier tubes Silicon photomultipliers (SiPM)

PET time of flight capability Yes Yes

PET reconstruction BLOB-OS-TF; iterations, 3; subsets, 33; filter, 
‘smooth’ “Q.Clear” with penalization factor β of 450

Figure 1.  Illustration of ROI placement. (a–c) A 20-year-old female patient with the initial diagnosis of 
Hodgkin’s lymphoma. Image a shows an example slice of a 3D ROI segmenting a lymphoma manifestation in 
the upper mediastinum. PET/CT (b,c) show this manifestation to be FDG-positive. Readers were required to 
include as much lymphoma manifestation as possible while keeping a distance of 1–2 pixels from the edge. A 
slight misalignment is also visible in (b), which we corrected when we copied the segmentation mask from the 
CT to the PET images.
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(GLCM) features, 14 Gy level dependence matrix (GLDM) features, 16 Gy level run-length matrix (GLRLM) 
features, 16 Gy level size zone matrix (GLSZM) features, and five neighboring gray tone difference matrix 
(NGTDM)  features25).

Statistical analysis. The statistical analysis involved several steps. We tested all features scanner-wise for 
their diagnostic performance to evaluate if and which similarities exist between both datasets (single feature 
diagnostic performance). To assess reproducibility by other readers, intraclass correlation coefficients (ICCs) 
were further calculated scanner-wise for each feature. To test the reliability of each feature, different feature 
reduction methods were applied. Statistical analysis was performed using R (version 4.2.1, R Foundation for 
Statistical Computing)28. A p-value < 0.05 was generally considered to indicate statistical significance. If not oth-
erwise stated, the reading by S.N.N. was considered.

Single feature diagnostic performance. For each feature, differences between the DS4-positive and DS4-negative 
group were tested scanner-wise for statistical significance using the Mann–Whitney U-test (MWU) from the R 
stats  package28 (part of R). We further determined the diagnostic performance of each feature to classify a lesion 
as DS4-positive or DS4-negative with the receiver operating characteristic (ROC) curve analysis using the pROC 
 package29 (Version 1.18.0). The resulting areas under the curve (AUCs) were rated as follows: 0.70–0.80 accept-
able, 0.80–0.90 excellent, 0.90–1.00 outstanding diagnostic  performance30.

Interreader agreement. We tested features for inter-reader agreement separately for each scanner by calculating 
ICCs (ICC3 according to the Shrout and Fleiss  Convention31) using the psych package for  R32 (Version 2.2.5). 
For this, we considered the readings from S.N.N. and L.J.J..

Feature reduction. We applied different methods to reduce the number of features in both datasets separately 
by dropping features with a correlation of more than 95% using the Hmisc package for  R33 (Version 4.7.1), apply-
ing the minimum redundancy maximum relevance method from the praznik package for  R34 (Version 11.0.0) 
selecting 20 (mrmr20) and 10 (mrmr10) features and with the recursive feature elimination (rfe) from the caret 
package for  R35 (Version 6.0.93).

Ethics approval and consent to participate. The study was conducted according to the guidelines of 
the Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Charité 
Berlin (protocol code [EA1/104/19] and date of approval [5-14-2019]). Informed consent was obtained from all 
subjects involved in the study.

Results
Single feature diagnostic performance. Considering the results of the MWU test, 41 features from 
the dataset of scanner A and eight from the dataset of scanner B showed a significant difference between DS4-
positive and DS4-negative lesions. Four of these features overlapped: mean, median, RMS, and 90th percentile.

Considering the ROC analysis, 32 features from the dataset of scanner A and 19 from the dataset of scanner 
B showed an AUC of at least 0.7. Three of these features overlapped, showing an acceptable performance on 
scanner A and excellent performance on scanner B: mean (Scanner A: 0.75, B: 0.83), median (Scanner A: 0.75, 
B: 0.84), and RMS (Scanner A: 0.76, B: 0.83). ROC curves of these features are presented in Fig. 2. Table 4 offers 
a summary. Supplementary Tables S3 and S4 provide the full results of the MWU test (S3a,b) and ROC analysis 
(S4a,b) for scanners A and B.

Interreader agreement. Of all features from the dataset of scanner A, 25 showed an ICC below 0.8. Con-
sidering the dataset of scanner B, this accounted for 26 features. 21 features overlapped. A full list of features with 
an ICC below 0.8 is given in the supplementary Table S5.

Feature reduction. Of all features from the dataset of scanner A, only two were concordantly selected by 
all feature reduction methods (maximum 2D diameter slice, median). On scanner B, only flatness and median 
were selected by all methods. The results of all feature reduction methods are provided in the supplementary 
Tables S6a (Scanner A) and S6b (Scanner B).

Discussion
The results of the present study show that the first-order feature median has a high sensitivity for DS4+ mani-
festations on two different scanners (scanner A: 0.91, scanner B: 0.85). This feature could be easily applied on 
NECT images to estimate relevant metabolic activity when a PET scan is unavailable. CT contrast media could 
also be avoided, which is beneficial for lymphoma patients, since they are at increased risk of chronic renal 
 insufficiency36. Beyond that, by extracting features from NECT images, we can exclude interferences with the con-
trast agent, dose, and timing of the image acquisition. Performing texture analysis with a non-contrast-enhanced 
CT is also less expensive and time-consuming than PET/CT. It would further limit radiation dose and is accessible 
country-wide9. Ganeshan et al. also attempted to extract prognostic information from non-contrast-enhanced CT 
scans of patients with Hodgkin’s lymphoma and aggressive Non-Hodgkin lymphoma complementary to interim 
FDG-PET/CT. They identified kurtosis associated with shorter progression-free survival of lymphoma patients, 
with analysis limited to first-order  features14. Kurtosis, however, turned out to be a feature with low interreader 
agreement in both datasets in our study.
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Figure 2.  ROC curves of the three first-order features mean, median, and root mean squared (RMS), that 
concordantly distinguished Deauville score 4-positive and -negative lymphoma manifestations on both 
scanners. Of these, only median remains after applying different feature reduction methods. The left row shows 
the AUCs of Scanner A, and the right row the AUCs of Scanner B.
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Reproducibility of radiomics is a general concern, restraining the implementation of radiomic signatures into 
clinical  routine37. Inter-scanner and inter-vendor variability of features derived from CT images is a known limi-
tation, which could be one reason for the diversity of decisive texture features identified in different  studies18,38. 
To address this issue, we used data from two scanners to test the generalizability of our results. The first-order 
feature median derived from NECT concordantly had a high sensitivity for DS4+ manifestations on both scan-
ners, indicating cross-scanner applicability.

Interestingly, even in NECT images, the feature median that ultimately describes the density of a lymphoma 
manifestation differentiated between DS4-positive and DS4-negative lesions, thereby showing constantly higher 
values in DS4-positive manifestations (numerical results of the radiomics analysis are provided in the supple-
mentary Table S3; S3a for scanner A and S3b for scanner B). In their approach, Giesel et al. related lymph node 
density in Hounsfield units in NECT to malignancy in a broad PET/CT study investigating various malignant 
entities (lung cancer, malignant melanoma, prostate cancer, gastroenteropancreatic neuroendocrine tumors) 
using different PET-tracers (18F-FDG, 68Ga-DOTATOC, 68Ga-labeled prostate-specific membrane antigen), but 
without including patients with Hodgkin’s  disease39. They found that CT density correlated with 18F-FDG uptake, 
68Ga-DOTATOC uptake, and 68Ga-PSMA uptake and suggested a Hounsfield scale to differentiate benign from 
malignant lymph nodes. Shao et al. investigated a lymph node/aorta density ratio in patients with non-small 
cell lung cancer undergoing preoperative 18F-FDG-PET/CT, pointing out a correlation between lymph node 
metastases and lymph node  density40. Flechsig et al. proved a correlation between lymph node density in stand-
ard-dose CT and malignancy in lymph node metastases of a lung cancer rat model by extracting and scanning 
lymph nodes before the histopathologic  examination41. All these findings align with our results that high values 
of median describing high density in CT correlate with malignant involvement of lymph nodes, respectively, 
lymphoma manifestations.

Our study has some limitations. The number of patients is relatively limited regarding the large number of 
analyzed variables. Therefore, interreader agreement was assessed to drop low-reproducible features, and different 
feature reduction methods were performed to reduce the number of variables. It would also have been desirable 
to obtain data from a more consistent patient population with a consistent therapy regimen and identical time 
points of PET/CT. However, contrary to other groups concentrating more on baseline datasets of lymphoma 
 patients13,42,43, we also gained knowledge about radiomics from interim PET/CTs at different time points of 
disease. Our results should be verified in larger, more consistent patient populations examined on CT scanners 
from additional vendors to affirm median as a robust feature across scanners and should be validated externally 
according to  Shahzadi44 supporting clinical applicability.

The first-order texture feature median describing lesion density derived from NECT concordantly has a high 
sensitivity for DS4+ Hodgkin manifestations on two different scanners. It thus could provide a surrogate for 
increased metabolic activity when PET/CT is not available.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to an IRB deci-
sion which was made in the interest of ensuring patient confidentiality but are available from the corresponding 
author on reasonable request.
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