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Water distribution systems (WDSs) are used to transmit and distribute water resources in cities. 
Water distribution networks (WDNs) are partitioned into district metered areas (DMAs) by water 
network partitioning (WNP), which can be used for leak control, pollution monitoring, and pressure 
optimization in WDS management. In order to overcome the limitations of optimal search range and 
the decrease of recovery ability caused by two-step WNP and fixed DMAs in previous studies, this 
study developed a new method combining a graph neural network to realize integrated WNP and 
dynamic DMAs to optimize WDS management and respond to emergencies. The proposed method 
was tested in a practical case study; the results showed that good hydraulic performance of the WDN 
was maintained and that dynamic DMAs demonstrated excellent stability in emergency situations, 
which proves the effectiveness of the method in WNP.

A water distribution network (WDN) is composed of demand nodes and supply pipelines and provides water 
to domestic and nondomestic users. WDN is managed by water distribution companies. Owing to pipe bursts, 
connection leakages, water theft, and other factors, WDNs are susceptible to significant unexpected water 
 consumption1. The British Water Industry Association proposed the concept of water network partitioning 
(WNP), which divides a WDN into several district metered areas (DMAs) to more effectively manage the  WDS2, 
an approach which has proven to be of great benefit to the control of water  leakage3–8.

Dividing a WDN into several DMAs has many benefits, including but are not limited to reducing leakage, 
reducing the flow of  contaminants9–14, optimising pressure  management15–17 and helping to repair the water 
pipe network in  emergencies18. However, WNP has some drawbacks, primarily the associated economic cost, 
deterioration of water  quality19,20 and reduced capacity to respond to abnormal  situations21,22. Further, research 
has shown that the disadvantages of WNP can be overcome by using methods such as dynamic DMAs manage-
ment and other  technologies21.

Normally, WNP is accomplished in two phases: clustering and dividing. The methods and concepts applied in 
the clustering phase include graph  theory23–31, community  structure32–34, modularity-based  algorithms35, multi-
level  partitioning36,37, spectral graph  algorithms38–40 and multi-agent  approaches41,42. The methods applied in 
the dividing phase include single-objective  programming10,17,27,43, multiple-objective  programming44–48, iterative 
 methods17,32 and heuristic  algorithms49. The above methods can perform WNP, simplify management, monitor 
sudden leakage, and control the flow rate of contaminants, but the following two limitations need to be addressed:

• Using two phases and different sets of objectives reduces the search range of the global optimal solution.
• The use of a fixed boundary causes a water pressure drop owing to the reduction of inflow in the emergency.

Integrated WNP and dynamic DMAs are solutions to the above two problems. These approaches are used 
for the integrated establishment of DMAs and dynamic management of DMA boundaries, to achieve intelligent 
and flexible WDS management. In this study, an integrated WNP and dynamic DMAs method were developed, 
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and simulating these methods in a network and proving the advantages of the method, which can maintain the 
normal operation of a network in an emergency. The contributions of this study are as follows:

• Graph neural network used for the first time in water network partitioning.
• Dynamic district metered areas are used to optimise water network management.
• A simulation shows that this method is efficient and highly resilient to emergencies.

Related works
Previous studies have focused on clustering and dividing algorithms. The former refers to clustering WDN into 
DMAs based on the attributes of demand nodes and pipeline connections, The International Water Association 
has proposed the implementation of WNP based on administrative boundaries, road conditions, and number of 
 residents2. This method is quite straightforward, but it is difficult to apply to a large WDN. In addition, a WNP 
implemented by the trial-and-error method is usually unreasonable and negatively affects water quality. Tzatch-
kov et al. introduced graph theory into WNP and proposed a WNP method based on depth-first search (DFS) and 
breadth-first search (BFS) (Fig. 1a)24, which optimized the hydraulic performance of the formed DMAs. Giustolisi 
and Di Nardo implemented genetic algorithms to accelerate the  WNP20,25. Perelman et al. proposed using DFS 
to identify tightly connected pipes and using reverse BFS to identify sparsely connected pipes to establish more 
reasonable DMA  boundaries26. Morrison et al. proposed the separation of the main network of the WDN from 
the branch  network50, and Campbell combined this idea with graph theory to achieve more reasonable  WNP29,30.

The core of the above methods is to use graph theory to realize WNP, but WDN is complicated in real-world 
situations, and it is usually difficult to achieve good results using looped WDN. Diao et al. proposed the use of 
a community structure algorithm to cluster demand nodes with similar locations (Fig. 1b)32, and finally formed 
DMAs with similar spatial locations. Giustolisi et al. found that the demand nodes’ altitude and consumption 
will also affect WNP. It is unreasonable to implement WNP based solely on spatial locations. Thus, they proposed 
implementing a community structure algorithm and proposed a modularity-based algorithm considering the 
hydraulic performance in WNP (Fig. 1c)35. In fact, many methods are available for implementing WNP. Diao 
et al. proposed a multilevel partition algorithm for implementing WNP (Fig. 1d)32. Herrera et al. proposed a 
WNP method based on a spectral graph algorithm (Fig. 1e)38. Izquierdo et al. used multiple interacting agents 
to cooperate and compete to achieve WNP and proposed a WNP method based on a multi-agent approach 
(Fig. 1f)41.

There are one or more pipe connections between any adjacent DMAs, called boundary pipes. By choosing to 
install flow meters or valves at the boundary pipes to facilitate subsequent water conservancy monitoring and 
contaminant control, this process is called the dividing phase. Previous studies proposed some indicators to 
measure whether the results of dividing are  reasonable51–55. They also recommended the following steps:

Figure 1.  Traditional water network partitioning methods: (a) graph theory methods, (b) community structure 
algorithm, (c) modularity-based algorithm, (d) multi-level partition algorithm, (e) spectral graph algorithm, 
and (f) multi-agent approach.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19466  | https://doi.org/10.1038/s41598-022-24201-w

www.nature.com/scientificreports/

• Maintain the emergency recovery capability of the WDN.
• Maintain the water age in the WDN at an appropriate level.
• Improve uniformity between DMAs.
• Maintain the water pressure of the WDN.

The first goal helps the WDN remain stable under abnormal conditions, the second goal helps maintain 
the chlorine content in the WDN at an appropriate level, the third goal is conducive to the daily operation and 
management of WNP, and the fourth goal can ensure that the WNP does not affect residents’ daily water use. 
By optimising one or more targets and using a heuristic algorithm to speed up the optimisation process, the 
position of the flow meters in the boundary can be  determined45–47.

In recent years, some research has provided possibilities for new WNP methods. Inspired by word2vec “word 
to vector”  model56, Perozzi et al. proposed a deep  walk57, which opened the door to the era of deep learning of 
using graph neural networks (GNNs). Subsequently, Kip et al. proposed the use of graph convolutional networks 
(GCN)58 and Velickovic et al. proposed the use of graph attention networks (GAT)59, which greatly improved the 
effectiveness of GNN use. At present, GNNs have been effectively used in the fields of recommendation systems, 
financial risk control, molecular chemistry, traffic prediction, etc.60–63. They can also be used for the feature 
extraction, aggregation, and node classification of WNP. The process of using a GNN for WNP and dynamic 
boundary management is mainly composed of three logical steps: aggregate node information, integrated WNP, 
and dynamic boundary management.

Integrated WNP and dynamic DMAs
This section discusses the feasibility of integrated WNP and dynamic DMAs using a GNN. A WDN can be 
integrally partitioned through this method and can realize dynamic boundary management to cope with emer-
gencies. The steps of this method for the WDN are shown in Fig. 2.

Aggregate node information. The WDN can be regarded as a graph G that is composed of Nn demand 
nodes and Np pipes. The WNP needs to classify demand nodes with the same attributes as a DMA. These attrib-
utes include the longitude, latitude, and altitude of the demand nodes. At the same time, it is necessary to main-
tain the balance of water consumption and water pressure of each DMA, which is conducive to the daily moni-
toring and maintenance of the WDS.

The process of aggregate node information involves adding the attributes of the node itself and its neigh-
bouring nodes, then using the sum of the addition as the attribute of the node in the next graph G1 , and finally 
forming the new node attribute graph G1,G2 . . .Gk.

When using the process of k iterations of aggregation, each demand node contains the attributes of its neigh-
bouring nodes of order k . If k is too small, the range of aggregation will shrink excessively, and consequently, 
the neighbouring information cannot be extracted effectively. If k is too large, the attributes of nodes tend to be 
more similar, and consequently, these nodes cannot be perfectly distinguished. According to related  research64, 
k is usually 2, 3 or 4. The aggregation process at k = 2 is illustrated in Fig. 3.

Integrated WNP using GNN. According to the results obtained from aggregate node information in Sect.  
3.1, the following steps must be performed to classify nodes by using unsupervised learning and forming several 
DMAs.

• Build neural networks
• Establish the evaluation index
• Train neural networks

The proposed structure of the GNN and the training process are shown in Fig. 4.

Build neural networks. The classification neural network of the WNP is composed of three parts: the input 
layer, hidden layer, and output layer. The input layer contains the information of the nodes, including informa-
tion regarding the node characteristics and quantities. The hidden layer is composed of several layers, each of 
which is composed of several neurons, and the node parameters are iteratively optimized through training. The 
output layer is the WNP result under the ultimate network, and the evaluation index is used to evaluate the 
results of the classification. The neural network will use gradient descent to optimize the weights and bias of 

Figure 2.  Flowchart of the process for integrated WNP and dynamic DMAs.
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neurons, and then make the result of WNP as close as possible to the optimal score. After several iterations of 
optimization, the most reasonable result can be output.

Establish the evaluation index. The evaluation index Ie is an indicator measuring the pros and cons of the WNP. 
It is used to evaluate whether the WNP results are suitable for subsequent practical application, and the evalu-
ation index directly affects the results of the WNP through the neural network. WNP is evaluated based on the 
following indices:

• Resilience index Ir
• Water quality index Iq
• Aggregation index Ia
• Balance index Ib

The resilience index Ir was proposed by Todini to evaluate the resilience of a WDS under abnormal 
 conditions51.

(1)Ir =
∑nn

i=1 Qi(hi−h∗)
∑nr

r=1 QrHr−
∑nn

i=1 Qih∗

Figure 3.  Schematic of aggregate node information when k = 2.

Figure 4.  Schematic of integrated WNP using GNN.
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where nn and nr are the numbers of demand nodes and reservoirs, Qi and hi are the water demand and pressure 
head of node i , Qr and Hr are the water discharge and total head of source point r , and h∗ is the design minimum 
pressure head of the network.

The water quality index is used to evaluate the age of the water in the WDN. Water age affects the content 
of chlorine in WDNs and thus affects the quality of water. Further research shows that the installation of valves 
at the boundary pipes to close water will increase the water age at the boundary, but the impact on the overall 
water quality is not  significant9,45.

The aggregation index Ia is used to evaluate the reasonableness of WNP. Similar spatial locations of demand 
nodes in the same DMA indicate that the total length of the internal pipe sections of the DMA is shorter and the 
difference between nodes in the DMAs is smaller.

where nn and na are the numbers of demand nodes and DMAs, xi , yi , and Qi are the lateral position, vertical 
position, and water demand of node i , xj , yj , and Qj are the mean lateral position, mean vertical position, and 
total water demand of the j th DMA; and x∗ and y∗ are the mean lateral position and mean vertical position of all 
nodes. In the actual operation,x and y were aggregated results according to the connection relation of pipelines, 
which means that the two points connected by pipelines have closer x and y than before after Sect. 3.1, so as 
small as possible Ia also ensures fewer boundary pipelines.

Another indicator used to evaluate the reasonableness of WNP is the balance index Ib . Similar pressure and 
water demand values between different DMAs indicate that the daily monitoring and maintenance costs of 
DMAs are lower.

where na is the number of DMAs, Qj is the total water demand of the jth DMA, and Q is the mean water demand 
of all DMAs. The WDN evaluation index Ie is established based on Ir , Ia , and Ib:

where α , β and γ are the weights of Ir , Ia and Ib . This function is used to evaluate the training results of the GNN 
and indicate the update direction of the neural network parameters.

Train neural networks. In the neural network training stage, the model parameters are iteratively optimized 
until the expected result is obtained or Ie converges. In each iteration of the optimisation process, the changes 
in the hidden layer node parameters lead to different WNP results and thus affect Ie . The partial derivative of Ie 
is obtained by the compound function chain derivation rule, and the iteration direction and the step size of the 
parameter of the nodes at each hidden layer are calculated by back propagation.

Integrated WNP takes the Ie values of the WNP targets and minimizes the negative impact of the WNP on 
the WDN. Compared with traditional two-step WNP, integrated WNP is more reasonable in terms of bound-
ary pipes positions, and boundary closure has less impact on the WDN. Thus, it is more suitable for subsequent 
dynamic DMA boundary management.

Dynamic DMA boundary management. In the traditional WNP, boundary pipes no longer change 
state once the division is complete. This causes an overall water pressure drop in the DMAs when a sudden situ-
ation occurs that consumes a large amount of water. Giudicianni et al. proposed the creation of a dynamic WNP 
method that allows a fixed DMA boundary to be opened in  emergencies48; that is, multiple DMAs are combined 
into a large DMA, which overcomes the shortcomings caused by WNP.

When a node in the DMAs bursts with a large amount of water, the optimal strategy is to open some bound-
ary pipes near the node. In contrast opening a pipe that is far away from the abnormal node costs more energy 
and may not obtain good results. This means that each boundary pipe needs to be analysed and classified into 
three categories: normally open, normally closed, and dynamic.

This paper proposes a dynamic method of managing the boundary pipes of DMAs. By calculating the influ-
ence factor IF of the boundary pipes, the threshold values and boundary pipe states were set. Furthermore, 
dynamic pipes with higher impact factors are preferentially opened during emergencies.

where m is the statistical range (for any point, the k vertices near it are considered in the IF calculation), Qi is the 
water demand of node i , and Li is the shortest pipe length from the statistical point to node i.

Experimental study
This method was tested on a medium-sized WDN in Hanoi, C-town and E-town65. The Hanoi network is a part 
of the total Hanoi water distribution network, which includes 31 water demand nodes, and 50 pipes, as shown in 
Fig. 5a. The C-town network was used as a real water network in “The Battle of the Water Calibration Network”, 
containing 388 nodes, 429 pipes, one reservoir, and seven tanks, as shown in Fig. 5b. The E-town network is a 
large water network for supplying water to 400,000 people. It consists of five water sources, 11,063 water demand 

(2)Ia =
∑na

j=1

Qj

√

(xj−x∗)
2
+(yj−y∗)

2

∑nn
i=1 Qi

√

(xi−xj)
2
+(yi−xj)

2
#

(3)Ib =

√

na−1
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j=1 (Qj−Q)
#
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nodes, and 13,896 pipes, as shown in Fig. 5c. The model used the PyTorch framework to implement an improved 
form of WNP and simulated the hydraulic performance using EPANET 2.

Case study on integrated WNP. To partition the water network of C-town to facilitate management and 
leakage control, the differences in the number of boundary pipes Nb were compared, boundary pipes with flow 
meters Nf  , boundary pipelines with valves Nv , and the minimum pressure head hmin , mean pressure head hmean , 
and other indicators between the WDN before and after the partition. The simulation results of WNP are shown 
in Table 1 to illustrate its impact on the hydraulic performance of the WDN.

According to Fig. 5, WDNs were divided into 3, 7, and 170 DMAs respectively. IF of each boundary pipe were 
calculated, and installed flow meters on the boundary pipes with IF values greater than 0.12, and installed valves 
on the remaining boundary pipes. The simulation shows that all nodes meet the h∗ = 20m , and the partitioned 
Hanoi ’s water network ( hmin = 26.72m , hmean = 56.21m , Ir = 0.68 , and Ie = 1.65 ), C-Town’s water network 
( hmin = 21.78m , hmean = 56.58m , Ir = 0.69 , and Ie = 1.64 ), and E-Town’s water network ( hmin = 21.81m , 
hmean = 45.74m , Ir = 0.65 , and Ie = 1.61 ) met the daily needs. These values show that the water networks after 
partitioning with GNN-WNP had better resilience and evaluation indices than WNP based on graph theory 
(GT-WNP)49 and community structure method (CS-WNP)32, DMAs based on GNN-WNP had fewer boundary 
pipes, which means that using this method to set up DMAs requires less cost; compared with the Ir of the water 
network without partitioning, that of this network is only 5.5% lower averagely.

Next, the experiment focused on the influence of the aggregate node information process on WNP. The 
aggregate node information parameter k = 3 was the most suitable for WNP (Fig. 6). This is because the 3-order 
attribute balanced the antagonistic relationship between the aggregation of attributes in each DMA and the 
separation of attributes between different DMAs.

In addition, the experiment focused on the influence of the number of DMAs on WNP. Using more DMAs 
is conducive to locating the leak location. However, in this case, more boundary pipelines were closed, which 
affected the hydraulic performance. Comparing the Ir and Ie values of different numbers of DMAs (Fig. 7), the 
hydraulic performance of the WDN dropped sharply when there were more than 3, 7, and 170 DMAs, meaning 
that using 3, 7, and 170 DMAs were suitable choices.

The main disadvantage of fixed DMAs is that the emergency capability of the WDN is reduced because of 
the closure of boundary pipes. When an emergency occurs (such as a large amount of water being used by fire-
fighting equipment), regional water inflow restrictions lead to a decrease in overall water pressure and affect 
regional water use. Therefore, this study explores the possibility of using dynamic DMA boundary management 
to overcome the disadvantages of fixed WNP.

Case study on integrated WNP and dynamic DMAs. The dynamic DMAs evaluate the daily status 
and emergency response status of the boundary pipes by calculating IF , and the IF of the boundary pipes of 
C-town are shown in Fig. 8. IF mainly refers to the impact of the pipes on the capacity of the WDS to recover 
from abnormal situations during the opening or closing conversion process. Different measures were taken for 
different pipes, divided into the following three categories:

• Install flowmeters in boundary pipes with high IF values.
• Install fixed valves in boundary pipes with low IF values.
• Install dynamic valves in boundary pipes with medium IF values.

Figure 5.  The water network structure and partitioning results (a) Hanoi ’s water network (b) C-Town’s water 
network (c) E-Town’s water network.
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Table 1.  Main characteristics and hydraulic performance after WNP.

Nb Nf Nv hmin (m) hmean (m) Ir Ie

Hanoi’s water network

Unpartitioned – – – 29.09 57.43 0.72 –

3 DMA (k = 3) 4 2 2 26.72 56.21 0.68 1.65

3 DMA (k = 5) 4 2 2 26.36 55.02 0.67 1.59

2 DMA (k = 3) 3 2 1 27.75 56.47 0.70 1.50

4 DMA (k = 3) 6 4 2 24.78 55.67 0.64 1.51

GT-WNP 5 3 2 25.40 56.19 0.67 1.07

CS-WNP 5 3 2 25.14 55.84 0.66 1.22

C-Town’s water network

Unpartitioned – – – 22.07 57.69 0.73 –

7 DMA (k = 3) 10 6 4 21.78 56.58 0.69 1.64

7 DMA (k = 5) 10 6 4 21.74 56.04 0.68 1.62

5 DMA (k = 3) 7 4 3 21.79 56.93 0.71 1.48

9 DMA (k = 3) 16 8 8 19.51 54.95 0.66 1.54

GT-WNP 13 9 4 16.12 56.55 0.67 1.07

CS-WNP 14 9 5 20.93 56.56 0.68 1.45

E-Town’s water network

Unpartitioned – – – 21.82 47.02 0.70 –

170 DMA (k = 3) 1451 863 588 21.81 45.74 0.65 1.61

170 DMA (k = 5) 1477 872 605 22.00 46.13 0.63 1.54

160 DMA (k = 3) 1369 835 534 21.40 46.05 0.68 1.46

180 DMA (k = 3) 1541 907 634 19.83 43.94 0.60 1.53

GT-WNP 1498 890 608 16.09 46.63 0.63 1.01

CS-WNP 1531 913 618 18.11 44.17 0.65 1.41

Figure 6.  Influence of the aggregate node information process on WNP.

Figure 7.  Influence of the number of DMAs on WNP.
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The WDN of C-town is simulated to determine the boundaries of DMAs and the opening or closing schemes 
of dynamic boundary pipes under different conditions. The IF values of the DMA boundary pipes changed most 
rapidly between 0.07 and 0.12. Therefore, flow meters were installed in the boundary pipes with IF values higher 
than 0.12, fixed valves were installed in the boundary pipes with IF values lower than 0.07, and dynamic valves 
were installed in the boundary pipes with IF values between 0.07 and 0.12.

The dynamic DMA configuration scheme for three emergencies (small, medium, and large fires) simulated 
in the WDS of C-town is shown in Table 2. Comparing the dynamic DMAs and the fixed DMAs, both networks 
maintained effective operation in the case of the small fire without opening the boundary dynamic pipes; hmean 
= 54.21 m and Ir were reduced by 6.9% compared to the unpartitioned layout.

In the case of the medium fire, the dynamic WNP maintained normal operation and the fixed WNP fell into 
an abnormal situation. Compared with the unpartitioned water network, the Ir values of the dynamic and fixed 
DMAs decreased by 9.6% and 12.3%, respectively, and the hmean values of the dynamic and fixed WNP were 
52.37 m and 51.72 m, respectively.

In the case of the large fire, the resilience of the dynamic DMAs was much stronger than that of the fixed 
DMAs. Compared with the unpartitioned water network, the Ir values of the dynamic DMAs and the fixed 
DMAs decreased by 13.7% and 26%, respectively, and the hmean values of the dynamic and fixed WNP were 
50.15 m and 42.56 m.

Thus, the dynamic DMAs were shown to have significantly stronger resilience under emergency conditions 
than fixed DMAs.

Ethical approval. The manuscript is conducted within the ethical manner advised by the journal.

Conclusion
This paper presents a new method which can realize integrated WNP using dynamic DMAs. This method is based 
on graph neural network technology, which is often used for the classification of graph data; influence evaluation 
technology, which is often used for data importance ranking; and hydraulic simulation, which is often used for 

Figure 8.  Weights of C-Town’s pipes.

Table 2.  Main characteristics and hydraulic performance of fixed DMAs and dynamic DMAs in different 
emergency situations.

Nf Nv hmean hmin Ir

Unpartitioned – – 57.69 22.07 0.73

Small fire

Unpartitioned – – 54.33 21.29 0.68

Fixed 6 4 54.21 21.29 0.68

Dynamic 6 4 54.21 21.29 0.68

Medium fire

Unpartitioned – – 53.54 17.56 0.67

Fixed 6 4 51.72 15.98 0.65

Dynamic 7 3 52.37 15.54 0.67

Large fire

Unpartitioned – – 52.29 14.37 0.66

Fixed 6 4 42.56 9.52 0.54

Dynamic 7 3 50.15 13.23 0.63
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the rationality assessment of water network partitioning. A framework of integrated WNP and dynamic DMAs 
was developed based on PyTorch to apply the described method to a simulated medium-sized water distribu-
tion network called C-town, and used general indicators (such as Ir ) to verify the rationality of the partition. 
Through the simulation, the impact of different model parameters on WNP was compared based the hydraulic 
performance of dynamic DMAs with that of fixed DMAs. The simulation results show that partitioning the water 
network using a graph neural network can provide an excellent, interpretable, and fast solution. Furthermore, 
this method provides a reliable basis for dynamic DMA boundary management and proves that dynamic DMAs 
have far better hydraulic performance than fixed DMAs in emergencies.

Future work will focus on solving the problem of DMA interactivity. Specifically, when DMAs in the water 
network are connected in a loop. Therefore, a single boundary pipe does not only affect the two DMAs connected 
to it. Evaluating the hydraulic impact of the boundary pipes on the overall network will help to determine the 
optimal plan under emergency conditions and improve the efficiency of boundary dynamic operations.

Data availability
Data can be shared upon request from the corresponding author.

Received: 21 July 2022; Accepted: 11 November 2022
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