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ABE8e adenine base editor 
precisely and efficiently corrects 
a recurrent COL7A1 nonsense 
mutation
Adam Sheriff1, Ina Guri1, Paulina Zebrowska2, Virginia Llopis‑Hernandez1, 
Imogen R. Brooks1, Stavroula Tekkela1, Kavita Subramaniam1, Ruta Gebrezgabher1, 
Gaetano Naso3, Anastasia Petrova3, Katarzyna Balon2, Alexandros Onoufriadis1, 
Dorota Kujawa2, Martyna Kotulska2, Gregory Newby4,5,6, Łukasz Łaczmański2, 
David R. Liu4,5,6, John A. McGrath1 & Joanna Jacków1*

Base editing introduces precise single-nucleotide edits in genomic DNA and has the potential to treat 
genetic diseases such as the blistering skin disease recessive dystrophic epidermolysis bullosa (RDEB), 
which is characterized by mutations in the COL7A1 gene and type VII collagen (C7) deficiency. Adenine 
base editors (ABEs) convert A-T base pairs to G-C base pairs without requiring double-stranded DNA 
breaks or donor DNA templates. Here, we use ABE8e, a recently evolved ABE, to correct primary 
RDEB patient fibroblasts harboring the recurrent RDEB nonsense mutation c.5047 C > T (p.Arg1683Ter) 
in exon 54 of COL7A1 and use a next generation sequencing workflow to interrogate post-treatment 
outcomes. Electroporation of ABE8e mRNA into a bulk population of RDEB patient fibroblasts 
resulted in remarkably efficient (94.6%) correction of the pathogenic allele, restoring COL7A1 mRNA 
and expression of C7 protein in western blots and in 3D skin constructs. Off-target DNA analysis 
did not detect off-target editing in treated patient-derived fibroblasts and there was no detectable 
increase in A-to-I changes in the RNA. Taken together, we have established a highly efficient pipeline 
for gene correction in primary fibroblasts with a favorable safety profile. This work lays a foundation 
for developing therapies for RDEB patients using ex vivo or in vivo base editing strategies.

Dystrophic epidermolysis bullosa (DEB) is a severe inherited disorder characterized by skin blistering and epi-
thelial fragility1. DEB is caused by mutations in the COL7A1 gene that encodes type VII collagen (C7)2, the main 
constituent of anchoring fibrils (AFs) which tether the epidermis to the underlying dermis3. COL7A1 mutations 
disrupt the synthesis, secretion, or processing of C7, resulting in structurally defective AFs and reduced dermal-
epidermal cohesion, which leads to blistering and poorly healing chronic wounds, often complicated by scarring. 
Recessive Dystrophic Epidermolysis Bullosa (RDEB), which is inherited in an autosomal recessive fashion, is the 
most severe form of DEB. Therapies which reverse the effects of causative COL7A1 mutations could therefore 
resolve a pressing unmet need for RDEB patients.

At present there are no curative treatments for RDEB4. Despite several early phase clinical trials involving 
gene, cell, protein, and small molecule therapies, nearly all current therapies only aim to alleviate symptoms, with 
wound care remaining the cornerstone of treatment5. Most gene therapy approaches in RDEB have focused on 
the addition of full-length COL7A1 cDNA into cells and then transplanting or injecting COL7A1-supplemented 
autologous keratinocytes (KCs), fibroblasts (FBs) or skin equivalents4. Most recently, an early phase clinical trial 
involving a topical herpes simplex virus-1 vector with a COL7A1 cargo promoted wound healing in patients 
with RDEB6.
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In contrast, gene editing approaches aim to permanently correct pathogenic mutations at the genomic level 
and thereby mitigate some of the drawbacks of gene addition therapy such as insertional mutagenesis, inac-
curate spatial–temporal gene expression and the progressive extinction of the transgene which may necessitate 
repeated therapy7–9. Recent advances in genome editing technologies now enable the installation of desired DNA 
changes with higher efficiencies and without double-stranded DNA breaks (DSBs), which cause uncontrolled 
insertion or deletion mutations at the break site and numerous undesired cellular consequences of DSBs such 
as chromosomal abnormalities and p53 activation8,10. Base editors (BEs) have the potential to reverse the four 
most common single-base substitutions at precise targets in the genome. Of note, BEs do not institute DSBs and, 
unlike CRISPR-Cas9, do not rely on homology-directed repair (HDR), therefore potentially offering greater cor-
rection efficiency in slowly dividing or post-mitotic cells such as skin FBs and KCs with fewer by-products11,12.
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Specifically, adenine base editors (ABEs) install A-T to G-C base pair changes within a confined editing 
window defined by a programmable single guide RNA (sgRNA)13. ABE is especially relevant to RDEB in which 
approximately 75% of pathogenic mutations are point mutations, half of which are targetable by ABEs14. ABEs 
are suited to reverse premature termination codon (PTC) mutations, caused by C-to-T changes, that promote 
nonsense-mediated mRNA decay15 and a complete absence of C7 expression, causing the most severe disease 
phenotypes. ABE has been shown in a previous study to correct 23.8% and 8.2% of mutated alleles in a popula-
tion of RDEB fibroblasts16, however the clinical translation of gene editing demands higher efficiencies to obviate 
selection markers for corrected cells, restore AF and facilitate efficacious ‘in-vivo’ gene editing therapy directly 
on patients’ skin. To increase the efficiency and specificity of ABE, new versions such as ABE7.10 and ABE8e 
have since been developed through directed evolution of the TadA domain13,17,18.

Here, we report ABE8e-mediated correction of the COL7A1 c.5047 C > T (p.Arg1683Ter) mutation in exon 
54 in fibroblasts derived from a patient with RDEB. We demonstrate efficient genomic DNA correction of the 
mutated allele (94.6%) which restores COL7A1 mRNA and C7 protein expression with no detectable off-target 
effects at predicted sites at the DNA level or increase in A-to-I changes on the transcriptome. When delivered 
into RDEB fibroblasts by electroporation of therapeutically relevant doses of ABE8e mRNA and a single guide 
(sgRNA), a silent bystander mutation installed within the editing window by ABE8e was diminished whilst 
maintaining efficient reversal of the c.5047 C > T mutation. This study uncovered a potential therapeutic strategy 
for RDEB which directly corrects the causative COL7A1 mutation in primary patient-derived fibroblasts with an 
efficient correction rate and a favourable safety profile. This work paves the way for therapies for RDEB patients 
using ex vivo or in vivo base editing strategies.

Results
Patient selection and COL7A1 mutation analysis.  The patient fibroblasts used for this study were 
selected from a comprehensive database of RDEB patients clinically examined and diagnosed at St John’s Insti-
tute of Dermatology (London, UK). We screened patients for premature termination codon (PTC) mutations 
in COL7A1 that were targetable by ABE by analyzing the region surrounding each mutation on a reference 
genome for an appropriately placed ‘NGG’ protospacer adjacent motif (PAM) site. Of the 31 RDEB point muta-
tions in COL7A1 screened, 16 (52%) were targetable by base editing, of which 7 (23%) were PTC mutations. 
For this study, we selected the c.5047 C > T mutation which converts an arginine at position 1683 into a stop 
codon (p.Arg1683Ter), as an example of a PTC mutation which engenders a truncated mRNA transcript and 
no C7 protein production (Fig. 1a). The c.5047 C > T mutation is recurrent amongst RDEB patients worldwide 
and was present in 5 patients recruited for an early phase gene therapy clinical trial6, demonstrating the global 
relevance of targeting this mutation and the opportunity to recruit participants for future clinical study. For 
the current study, fibroblasts were isolated from a patient who was a compound heterozygote for the c.5047 
C > T (p.Arg1683Ter) and c.7344 + 1 G > A (IVS95 + 1) mutations in COL7A1 (Fig. 1b). Fibroblasts are relevant 
in RDEB as they are the major secretors of C7, which is also generated by KCs. DNA was extracted from the 
RDEB patient fibroblasts (EB) and wild type fibroblasts (WT) and primers were used to amplify fragments of 
both exon 54 and intron 95 around the known mutations in COL7A1. Sanger sequencing found overlapping 
peaks in the chromatograms from patient cells compared to WT which confirmed a nonsense mutation at the 
specific loci c.5047 C > T (Fig. 1c). The impact of the mutations on C7 expression was evaluated by fluorescence 
microscopy and western blot. Fluorescence microscopy using LH7.2 antibody, which recognises the carboxy 
terminal of the C7 dimer, indicated that C7 was present in both cell lines, however, the production of C7 was 
markedly diminished in EB fibroblasts compared to WT (Fig. 1d). Quantification of relative C7 intensity from 
immunofluorescence and analysis confirmed significantly reduced C7 expression in EB fibroblasts compared 
to WT (Fig. 1e). Similarly, western blot analysis of C7 showed a band at ~ 290 kDa (full-length C7) in both the 
cell lysates and supernatant of EB fibroblasts and WT, with comparatively less C7 in the patient (Fig. 1f,g). Nor-
malized densitometry revealed that EB fibroblasts secreted around 60% of the C7 secreted by WT into the cell 
medium (Fig. 1f) and expressed approximately 50% of the C7 expressed by WT from the cell lysates (Fig. 1g). 
Although the PTC mutation on allele 1 leads to no C7 expression, residual C7 expression is maintained by the 
gene product from allele 2 which contains a donor splice site mutation, c.7344 + 1 G > A. Mutations which occur 
at the splice site, the boundary of an exon and an intron, can disrupt RNA splicing resulting in the loss of exons 

Figure 1.   Compound heterozygous mutations in patient (EB) fibroblasts lead to reduced C7 expression. (a) 
c.5047 C > T on allele 1 is a nonsense mutation which changes Arginine to a stop codon, leading to a truncated 
mRNA transcript which is degraded by nonsense-mediated decay. This typically leads to no C7 produced from 
the affected allele and the blistering phenotype. (b) Schematic of the 2 alleles of the COL7A1 gene in patient EB, 
illustrating compound heterozygosity. The c.5047 C > T mutation on allele 1 is in Exon 54 and is the mutation 
of interest. The c.7344 + 1 G > A mutation on allele 2 is in Intron 95 of the gene. (c) Sanger sequencing of DNA 
isolated from EB fibroblasts confirms the nonsense mutation in Exon 54 in comparison to wild-type sequences 
from Wild Type fibroblast (WT) controls. (d) Immunostaining for C7 reveals markedly reduced expression 
in EB fibroblasts compared to normal. Representative images taken at 40× magnification shown. Scale bar 
is 20 µm. (e) Quantification of relative immunofluorescence (IF) intensity of C7 demonstrates a significant 
reduction in C7 in EB cells compared to WT. t-test performed, p value < 0.0001. Western Blot analysis found EB 
fibroblasts secrete approximately 50% of normal levels of full length C7 into cell medium (f) and produce 50% of 
normally expressed full-length C7 in the cell lysate (g). Total protein loading was controlled using Ponceau S for 
cell lysate and cell medium. 3 technical replicates and t test performed showing significance (p value < 0.05). Full 
blots are presented in Supplementary Fig. S1b–e.
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or the inclusion of introns and an altered protein-coding sequence. The c.7344 + 1 G > A mutation results in 
in-frame exon skipping which was confirmed using RT-PCR demonstrating EB fibroblasts had transcripts of a 
shorter length in the Exon/Intron 95 region (Supplementary Fig. S1a).

ABE8e fully corrects the COL7A1 truncation in RDEB patient fibroblasts.  A bulk population 
of EB patient fibroblasts was electroporated with 5 µg sgRNA together with either 2 µg mRNA of ABE8e or 
ABE7.10, a previous-generation ABE version. Editing outcomes were interrogated using Sanger sequencing and 
high-throughput sequencing with Illumina’s Next Generation Sequencing (NGS) (Fig. 2a). The sgRNA, compat-
ible with both versions of ABE, is a single-stranded 20 nucleotide stretch of bases complementary to the genome 
proximal to the mutation. This enabled the design of a sgRNA which could be deployed to guide the ABE to 
the target site of the c.5047 C > T mutation. ABE enzymatically converts adenine bases to guanine, therefore the 
sgRNA targeted the complementary strand to reverse this mutation at position c.5047. The sgRNA was designed 
using the BE-designer online web tool19 to optimally position the protospacer so that the target nucleotide is 
within the editing window and appropriately spaced from the NGG PAM required by SpCas9 (Fig. 2b). The 
c.7344 + 1 G > A mutation had no available NGG PAM to mediate editing with wild type SpCas9. EditR20 was 
used for in silico analysis of base editing efficiency by calculating the composition of individual nucleotides 
within the sgRNA-targeted sequence. The editing efficiency of the base editor (percentage of C > T conversions) 
was calculated using the following equation: 50% is the baseline T nucleotide frequency at the mutation locus 
in EB fibroblasts.

A complete reversal in the peak at position c.5047 was visualized in the ABE8e edited (EB-ABE8e) bulk fibro-
blast line showing a genomic change at the target locus. Before editing, the proportion of T bases was 52% and the 
proportion of C nucleotides was 48%. EditR illustrates that after editing with ABE8e, the proportion of the C allele 
became 100% and the mutated T allele was reduced to 0%. This initial analysis estimates an editing efficiency of 
100%, meaning that the mutation was reversed in almost every cell in the bulk population. A shift in the peak 
at position 3 of the editing window was also observed, suggesting a bystander mutation had occurred (Fig. 2c). 
Correction of the nonsense mutation in position 8 reversed the pathogenic amino acid change and the bystander 
mutation, introduced at position 3, conferred a silent asparagine-to-asparagine amino acid change (Fig. 2d).

Off‑target DNA and RNA editing analysis on base edited RDEB fibroblasts showed a favour‑
able safety profile.  NGS was used to confirm on-target correction efficiency and found 94.6% on target 
editing in EB-ABE8e (Fig. 3a). The genome of the patient-derived fibroblasts was evaluated following editing 
by ABE8e or ABE7.10 to assess its propensity to convert A-T base pairs to G-C base pairs at off-target sites. 
Potential off-target loci were identified and ranked by CRISPOR21 software (http://​crisp​or.​tefor.​net/) according 
to the validated Cutting Frequency Determination (CFD) score22 and the 10 most likely off-target genomic loci 
to be edited were selected (Fig. S2). Interrogation using NGS of these genomic loci in EB fibroblasts following 
48 h exposure to ABE8e mRNA and sgRNA found no relevant off-target DNA editing (1% or less of G·C reads at 
positions where A·T is expected were detectable) at the 9 tested candidate off-target loci (6 genes and 3 intergenic 
regions) (Fig. 3b; Fig. S3). Testing of the remaining one predicted off-target site was not possible due to primer 
design. There was no difference in the degree of base pair conversions at off-target loci between ABE8e-treated, 
ABE7.10-treated and the untreated patient and WT conditions (Fig. 3b). Normal COL7A1 transcripts were effi-
ciently restored by ABE8e. We demonstrated 0.5% of RDEB COL7A1 RNA transcript contained the mutated 
uracil at c.5047 after treatment with ABE8e, compared to 36% without treatment (Fig. 3c). The frequency of the 
mutated nucleotide is likely under 50% in untreated cells due to nonsense-mediated decay (NMD) of the mRNA. 
To uncover any unwanted effects at the RNA level after ABE8e correction, we performed transcriptome-wide 
RNA sequencing (RNA-seq) on ABE8e-treated and untreated patient fibroblasts. We assessed the frequency of 
adenine-to-inosine RNA deamination, a naturally occurring process from endogenous cellular deaminases23. 
ABE8e treatment led to no significant increase in A-to-I changes across the transcriptome relative to untreated 
fibroblasts (Fig. 3d). The transcriptome of untreated EB fibroblasts, which were not electroporated, were com-
pared with fibroblasts treated with 5 µg sgRNA + 2 µg ABE8e (EB-ABE8e), as before, and also with fibroblasts 
treated with 1  µg sgRNA + 2  µg ABE8e. (Fig.  3e) The condition with 1  µg sgRNA + 2  µg ABE8e was termed 
EB-ABE8e medium dose and the condition with 5 µg sgRNA + 2 µg ABE8e was termed EB-ABE8e high dose to 
differentiate. 443 genes were significantly differentially expressed after treatment and heatmaps were generated 
from the log2 FPKM of the top 40 differentially expressed genes, ranked by the ToppGene tool24 (https://​toppg​
ene.​cchmc.​org/​prior​itiza​tion.​jsp), and also all 443 genes (Fig. 3e; Fig. S4). COL7A1 expression was increased 
after both treatments, with a greater increase following administration of EB-ABE8e high dose. Further analysis 
showed that ABE8e treatment of fibroblasts from the RDEB patient did not generate significant changes in the 
transcriptomic landscape relating to important cancer and metabolic pathways. (Fig. 3e; Fig. S4). Collectively, 
our findings indicate that ABE8e treatment of RDEB fibroblasts did not result in detectable off-target DNA or 
RNA editing using selected methods, despite high levels of on-target DNA editing.

Editing efficiency is base editor and guide RNA dose dependent and correlates with C7 protein 
expression.  Bystander mutations can occur within the editing window when using base editors25. Despite 
the high correction rate of c.5047 C > T mutation in COL7A1, editing with ABE8e caused a silent bystander 

editing efficiency(%) =
50− T frequency in edited cells

50
× 100

http://crispor.tefor.net/
https://toppgene.cchmc.org/prioritization.jsp
https://toppgene.cchmc.org/prioritization.jsp
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adjacent motif (PAM) site is highlighted in blue. (c) In-silico analysis of Sanger sequencing data suggested all 
alleles containing the mutation (shown in red) were corrected. Sequencing also uncovered a bystander mutation 
had been introduced in 76% of alleles (d) Correction of the nonsense mutation in position 8 reversed the 
pathogenic amino acid change from a termination codon (red) to arginine (blue). The bystander mutation, 
introduced at position 3, conferred a silent asparagine-to-asparagine amino acid change (gold). No other 
nucleotides in the protospacer were targeted.
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mutation together with correction of the pathogenic nonsense mutation. We hypothesized that the editing effi-
ciency and occurrence of the bystander mutation are proportional to the doses of ABE8e and sgRNA used in 
this study and that altering these doses could help diminish the bystander editing. We tested different doses to 
determine whether optimal conditions could be found in which the editing efficiency of the nonsense mutation 
remained at a clinically relevant level yet the bystander mutation was reduced. ABE8e and sgRNA were admin-
istered at high (5 µg sgRNA + 2 µg ABE8e), medium (1 µg sgRNA + 2 µg ABE8e) and low (0.5 µg sgRNA + 1 µg 
ABE8e) doses and Sanger sequencing analysis assessed outcomes post-editing at the mutation locus (c.5047) 

Figure 3.   Assessment of effects of mutation correction on the transcriptome and genomic landscape. (a) NGS 
analysis of the on-target site found ABE7.10 corrected 12.4% of mutated alleles whereas ABE8e treatment led 
to 94.6% correction. Statistical difference and error bars were calculated using the Wald method. (b) 9 of the 
10 predicted most likely sites for off-target editing across the genome were interrogated using NGS, illustrating 
negligible off-target editing activity following ABE7.10 and ABE8e treatment at all 9 sites. Error bars were 
calculated using the Wald method. (c) 0.5% of EB COL7A1 RNA transcripts contained the nonsense mutation 
at c.5047 after treatment with ABE8e, compared to 36% without treatment. 3 technical replicates performed. 
Significance calculated using paired t-test (p = 0.0013) (d) ABE8e treatment led to no increase in A-to-I changes 
across the transcriptome (e) A heatmap generated from the log2 FPKM of the top 40 differentially expressed 
genes using the clustermap function of Python’s seaborn library, (version 0.11 https://​seabo​rn.​pydata.​org/​gener​
ated/​seabo​rn.​clust​ermap.​html) is shown. Untreated EB fibroblasts were compared with fibroblasts treated with 
5 µg sgRNA + 2 µg ABE8e (EB-ABE8e), as before, and to fibroblasts treated with 1 µg sgRNA + 2 µg ABE8e. The 
condition with 1 µg sgRNA + 2 µg ABE8e was termed EB-ABE8e Medium dose and the condition with 5 µg 
sgRNA + 2 µg ABE8e was termed EB-ABE8e High dose. COL7A1 expression, highlighted in red, was increased 
after both treatments, with a greater increase following administration of EB-ABE8e High dose.

https://seaborn.pydata.org/generated/seaborn.clustermap.html
https://seaborn.pydata.org/generated/seaborn.clustermap.html
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and the nucleotide in position 3 affected by bystander editing (c.5052). We confirmed 100% mutation correction 
with the high dose, along with a 98% bystander mutation at c.5052. Switching to the medium dose maintained 
100% correction yet reduced the bystander mutation to 56%. Using the low dose, the editing efficiency was 64% 
while the bystander mutation was reduced to 2%. Of note, ABE7.10 had a lower editing efficiency of 8% but cre-
ated no bystander mutation (Fig. 4a). As a more sensitive measure, NGS analysis of treatment outcomes was also 
employed. This analysis showed that decreasing the high dose to the medium dose led to only a slight decrease in 
editing correction at the treatment locus from 94.2 to 91.6% but resulted in a large decrease in bystander editing, 
from 75.5 to 49.2%. The low dose engendered a correction of 45.9% of mutated alleles and 20.1% conversion of 
the bystander base. ABE7.10 had an efficiency of 10.8%, with bystander editing below 5% (Fig. 4b,c). Western 
blots of protein collected from the cell medium and lysate of cells treated and untreated with ABE8e detected 
differential concentrations of a ~ 290  kDa band, corresponding to full-length C7 (Fig.  4d,e). Densitometric 
analysis of western blots showed RDEB cells treated with the highest dose of ABE8e expressed significantly 
greater quantities in the cell lysate compared to untreated EB fibroblasts, an increase of approximately twofold 
(Fig. 4d). There was no significant difference in the C7 levels between WT and EB cells corrected by the highest 
dose of ABE8e. Treatment at the highest and medium doses also led to elevation of C7 levels in the cell medium 
to similar levels in WT (Fig. 4e). In cells treated with the low dose and ABE7.10, expression levels of C7 in the 
cell medium and lysate were largely unchanged (Fig. 4d,e). This can be attributed to the modest gene correction 
efficiency by the low dose of ABE8e and ABE7.10.

Collagen VII deposition is present in 3D skin equivalents generated using base edited with 
ABE8e RDEB patients derived fibroblasts.  Encouraged by these findings, we tested if RDEB fibro-
blasts, following base editing with ABE8e, can re-express C7 in 3D human skin equivalents (HSEs). The 3D HSE 
model comprises combined tissue culture of keratinocytes and fibroblasts, generated as previously reported26. 
After 20 days of maturation, the HSEs were harvested, and we used histology to examine the expression of C7 
and the basal keratinocyte marker keratin 14 (K14) (Fig. 5a). Relative fluorescence intensities of the two proteins 
were quantified and normalised to the cell number. Quantification analysis revealed that HSEs constructed with 
untreated EB fibroblasts produced the lowest C7 intensity whereas HSEs composed of ABE8e edited fibroblasts 
significantly increased C7 expression akin to wild type HSEs (Fig. 5b). There was no significant difference in 
K14 intensity between HSEs composed of untreated and EB-ABE8e treated fibroblasts, therefore controlling 
for keratinocyte C7 production (Fig. 5c). There was a significantly greater intensity of K14 expression in WT 
compared to the EB-ABE8e HSE (Fig. 5c).

Discussion
The treatment of rare inherited diseases such as RDEB could be revolutionized by the ability to reverse the root 
genetic cause, potentially providing one-time cures. Our gene editing data indicate that base editing of COL7A1 
using ABE8e is extremely efficient and can improve skin function in this blistering skin disease. Base editors 
such as ABE are recently-developed gene editing tools capable of precisely installing point mutations without 
causing double stranded cleavage or relying on HDR and a donor DNA template13,27. Here, we achieved 94.6% 
correction of alleles harboring one of the most recurrent COL7A1 mutations that causes RDEB using ABE8e18. 
ABE8e performed significantly better than ABE7.10 which only corrected 12.4% of mutated alleles. This better 
gene editing performance was expected as the deaminase in ABE8e was enhanced through phage-assisted non-
continuous and continuous evolution18 to introduce eight additional mutations in the TadA* domain. In our 
study, ABE8e engendered markedly higher levels of correction in primary fibroblasts than has been achieved in 
previous work using CRISPR-Cas9 or older versions of ABE16. ABE8e therefore appears to be a powerful tool 
for correcting pathogenic COL7A1 point mutations.

By demonstrating successful treatment of almost every cell in a bulk population of patient-derived fibroblasts, 
this work has advantages for clinical translation. First, antibiotic or fluorescence-based selection markers were 
not required to enrich for corrected primary cells, as in previous studies28. Secondly, the high efficiency also 
obviated the need to generate patient-derived induced Pluripotent Stem Cells (iPSCs) to isolate purely corrected 
clones, reducing the time and costs required and avoiding concerns related to tumorigenicity and immunogenic-
ity when deploying iPSCs clinically26.

After ascertaining correction of the mutation in the genome, targeted RNA sequencing confirmed that 
mutated COL7A1 transcripts had been replaced by wild-type transcripts following treatment with ABE8e. This 
correction was also evident in the proteins expressed by the cells measured by western blot and histology of 3D 
human skin equivalents. These observations give promise that the levels of genomic DNA correction achieved 
using ABE8e in our study will be sufficient to generate AF formation in vivo as previous studies suggest as little 
as 26% of normal C7 levels are required for such architectural recovery28. The structural restoration of AF, how-
ever, will be determined in our future work alongside the correction of patient-derived cells with other COL7A1 
mutations to promote its wider applicability. A key limitation of base editing remains its restriction to correcting 
transition point mutations and its strict PAM site requirements10. Insertion and deletion mutations in COL7A1, 
however, could be corrected by employing complementary gene editing tools such as prime editors which also 
do not cause DSBs29. Furthermore, a suite of BEs which now recognise non-NGG PAM sites can be utilised to 
target a wider range of COL7A1 mutations in future work.

Safety, alongside efficiency, is a critical requirement for targeted therapies for RDEB. A major limitation for 
gene editing strategies thus far has been concerns relating to off-target editing which could cause genotoxicity 
or oncogenic transformation. Base editors have been shown to exhibit off-target activity both in the genome 
and the transcriptome, therefore we characterized these changes in treated and untreated cells. Analysis of 9 
off-target genomic loci predicted to most likely be edited found no significant changes in the ABE8e-treated 
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cells. The nature of ABEs to target the transcriptome has been recognised previously30 and our study uncovered 
443 differentially expressed genes following ABE8e treatment. Of note, there were no significant discrepancies 
relating to important cancer and metabolic pathways when comparing base edited to non-edited RDEB fibro-
blasts. Furthermore, transcriptome wide analysis determined there was no increase in A-I changes following 
editing meaning it is possible differential expression changes were induced by cell culture, which has been found 
to significantly alter gene expression signatures31. Mutations introduced into the TadA domain of ABE8e have 
been shown to further decrease its RNA editing profile which can be incorporated into future translational 
work32. Nevertheless, our results, together with previous studies, demonstrate encouraging safety data for the 
use of ABEs in the clinic12,33–35.

WT

EB
Untreated

EB-ABE8e
high dose

EB-ABE8e
med. dose

EB-ABE8e
low dose

EB-
ABE7.10

c.5047

WT EB

270 KDa

150 KDa

Cell medium

high med. low
EB-ABE8e

Secreted C7
290 kDa

EB-ABE7.10

c.5052

a

d e

b

c

β-actin50 KDa

Cell lysate

WT EB

270 KDa
150 KDa

C7 290 kDa

high med. low

EB-ABE8e
EB-ABE7.10

EB c.5047 on-target locus

EB c.5052 bystander locus

WT EB High
Med

.
Low

ABE 7.1
0

0.0

0.5

1.0

1.5
Cell Medium 

EB-ABE8e

N
or

m
al

is
ed

C
7

le
ve

ls

WT EB
High

Med
.

Low

ABE 7.1
0

0.0

0.5

1.0

1.5

N
or

m
al

is
ed

C
7

le
ve

ls

Cell Lysate 
ns

EB-ABE8e

Ponceau S



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19643  | https://doi.org/10.1038/s41598-022-24184-8

www.nature.com/scientificreports/

Other adenine nucleobases in the editing window of ABEs are liable to be converted to guanine in addition 
to the target base, an effect known as ‘bystander editing’25,36. We discovered bystander editing had occurred 
after treatment based on genomic DNA sequencing. Although this bystander edit does not cause a change in the 
coding sequence of COL7A1, we sought to reduce the bystander effect to maximize the clinical applicability of 
our approach. By adjusting the doses of the ABE8e and sgRNA, the bystander editing was reduced to just 20.1% 
of alleles with 49.2% correction of the mutation. Other work has pioneered methods of reducing bystander 
editing aside from reducing concentrations of ABE8e and sgRNA. Very recently, combinatorial engineering 
has generated ‘NG-ABE9e’, an adenine base editor which recognises an ‘NGN’ PAM site and exhibits a seven 
to fourfold reduction in bystander editing from ABE8e, whilst maintaining comparable efficiency37. A version 
which includes the ‘D108Q’ mutation in the ABE8e coding sequence also reduces any bystander deamination 
of cytosine38. Novel ABE versions can be included in our future studies to preclude bystander editing without 
compromising efficiency. Furthermore, to obviate cumbersome experimental screening of different base editors, 
machine learning algorithms can predict base editing outcomes across the protospacer sequence and therefore 
the degree of likely bystander editing. 3 robust algorithms are the ‘BEHive10’39, ‘DeepBaseEditor13’40 and the 
’BE-DICT’41 prediction tools which will prove useful during ongoing work.

Base editing with a high dose of adenine base editor did not generate numerous off-targets single-nucleotide 
polymorphisms (SNPs), consistent with other studies17,35,38,42–44. Naturally, some off-target edits may not have 
been detected using our strategy and future work will use whole-genome sequencing and specific oncogene panel 
screening prior to clinical translation45,46.

We selected mRNA instead of plasmid DNA as the form to deliver base editors because its rapid but transient 
expression has been reported to decrease bystander and off-target editing, circumvent the risk of plasmid DNA 
random integration in the genome, and result in better overall editing efficiency47–50. Clinical translation of gene 
editing therapies using an in vivo mRNA (mRNA) system for DEB is also ideal. mRNA has gained traction as 
a class of therapeutic agent to target various diseases, with one option for therapeutic delivery of mRNAs being 
the use of lipid nanoparticles (LNPs). Notably, lipid nanoparticle-mRNA vaccines are in widespread clinical use 
for COVID-19, marking a milestone for mRNA therapeutics51–55. Therefore, our future work testing the delivery 
of ABE8e mRNA in combination with LNP technology for RDEB has great potential. mRNA-based gene editing 
therapeutics can be produced in an inexpensive and scalable manner through synthetic manufacturing making 
it an attractive platform to develop novel, cost-effective treatments for RDEB and additional inherited disorders 
affecting skin and other organs.

Materials and methods
Ethics statement.  All methods were carried out in accordance with the Declaration of Helsinki. The gene 
editing studies were approved by HRA and Health and Care Research Wales (HCRW) Approval (IRAS project 
ID: 288555).

Primary fibroblast culture.  Primary patient fibroblasts (EB fibroblasts) isolated from punch biopsies, 
were obtained from the cell bank at St. John’s Institute of Dermatology. EB fibroblasts were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM), (Gibco), supplemented with 10% Fetal Bovine Serum (FBS), (Gibco), and 1% 

Figure 4.   Altered doses of ABE8e and sgRNA treatment illustrate a dose-dependent relationship for bystander 
editing and protein restoration. (a) ABE8e and sgRNA were administered at high, medium and low doses 
and Sanger sequencing analysis performed post-editing to assess outcomes at mutation locus (c.5047) and 
the nucleotide in position 3 affected by bystander editing (c.5052). High dose = 5 µg sgRNA + 2 µg ABE8e, 
Med. dose = 1 µg sgRNA + 2 µg ABE8e, Low dose = 0.5 µg sgRNA + 1 µg ABE8e, ABE7.10 = 1 µg sgRNA + 2 µg 
ABE7.10. (b) NGS analysis of treatment outcomes at the c.5047 mutation locus found decreasing the High dose 
to Medium led to only a slight decrease in editing correction from 94.2 to 91.6%. The low dose engendered a 
correction of 45.9% of mutated alleles which was higher than ABE7.10 with an efficiency of 10.8%. Statistical 
difference and error bars were calculated using the Wald method. (c) NGS analysis of bystander editing at the 
c.5052 locus found that decreasing the ABE8e dose from High to Medium led to a large decrease in bystander 
editing, from 75.5 to 49.2%. Decreasing the ABE8e dose further resulted in 20.1% conversion of the bystander 
base, with ABE7.10 treatment causing 12.2% bystander editing. Statistical difference and error bars were 
calculated using the Wald method. (d) Western blots of protein collected from lysate of cells untreated and 
treated with different doses of ABE8e detected differential concentrations of a 290 kDa band, corresponding 
to full-length C7, using a polyclonal C7 antibody. Densitometric analysis of Western blots normalised to WT 
expression found EB cells treated by the highest dose of ABE8e expressed significantly more C7 in the cell lysate 
compared to untreated EB fibroblasts. There was no significance difference in C7 expression between the WT 
and the ABE8e High dose conditions nor between any of the untreated EB fibroblasts and the ABE8e Medium 
dose, Low dose and ABE7.10 conditions. N = 4 for WT, EB and ABE8e High dose conditions. N = 3 for ABE8e 
Medium dose and N = 2 for ABE8e low dose and ABE7.10 conditions. Representative blot shown. Significance 
found using the T-test. Cropped blots shown, full blots displayed in Supplementary Fig. S5a,b,e Western blots 
of cell medium collected from untreated and treated cells and probed by the polyclonal C7 antibody detected a 
290 kDa band corresponding to secreted full-length C7. Densitometric analysis normalised to WT expression 
levels found EB cells treated by the highest and medium doses of ABE8e secreted similar C7 levels to Wild 
Type fibroblasts (WT) and more than untreated EB cells. EB fibroblasts treated with the low dose of ABE8e 
engendered a marginal increase in C7 whereas expression after ABE7.10 treatment was largely unchanged. n = 1. 
Full blots of C7 and Ponceau staining displayed in Supplementary Figs. S5c and S5d.

◂
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penicillin/streptomycin, (Invitrogen). The fibroblasts were grown at 37 °C and 5% CO2 and routinely passaged 
using TrypLE™ Express (Gibco) as a gentle trypsin replacement enzyme to detach and dissociate the cells.

sgRNA design.  The sgRNA targeting the c.5047 C > T mutation of the COL7A1 gene were designed using 
the CRISPR RGEN guide-RNA designer tool for base editing19 (http://​www.​rgeno​me.​net/​be-​desig​ner/). The 
guides were manufactured as synthetic sgRNA chemically modified molecules by Synthego and Invitrogen.
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Figure 5.   Histology and expression of collagen type VII (C7) and keratin 14 (K14) in skin constructs 
containing either untreated EB, ABE8e treated or Wild Type fibroblasts (WT) in combination with control 
keratinocytes. (a) Staining for C7 using LH7.2 monoclonal antibody reveals that gene editing of EB fibroblasts 
with the high dose of ABE8e base editor restored C7 expression at the dermal–epidermal junction in skin 
equivalent cultures created with healthy control keratinocytes. Images of skin constructs cryosections 
have been taken under bright light (H&E staining) or fluorescent microscope (C7 and K14 expression in 
immunofluorescent staining with DAPI showing nuclei); scale bars measuring 50 µm. (b) Quantification of 
C7 intensity normalised by cell number found a significant increase in C7 intensity between untreated EB and 
EB-ABE8e and no significant difference in C7 intensity between WT and treated cells. t-test performed. (c) 
Quantification of K14 intensity normalised by cell number found no significant difference between WT and 
untreated EB or untreated EB and EB-ABE8e however there was a significance difference between WT and 
EB-ABE8e K14 intensity. t-test performed.

http://www.rgenome.net/be-designer/
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Base editors.  ABE7.10 mRNA was obtained from Dr. Anastasia Petrova at the UCL GOS Institute of Child 
Health. ABE8e was obtained from Dr. David Liu’s lab at the Broad Institute of Harvard and MIT and used in 
the preliminary base editing experiment to compare the editing efficiency between both ABEs. ABE8e mRNAs 
included full substitution of uracil for N1-methylpseudouridine, co-transcriptional 5’ capping with the Clean-
Cap AG analog resulting in a 5’ Cap1 structure, and included a 120 nucleotide polyA tail. For the follow up gene 
editing experiments to correct the mutations, ABE8e mRNA synthesised by TriLink was used.

Electroporation.  The Neon™ Transfection System MPK5000 (Invitrogen) was used to electroporate the 
fibroblasts with the base editor and sgRNA. The base editing reagents (sgRNA and ABE) for each condition 
were prepared in a separate well of a 96-well plate and made up to a total volume of 10 μl with TE buffer. 1 × 106 
Fibroblasts were pelleted (1200 rpm, 5 min), and resuspended in 100 μl Resuspension Buffer R (Neon kit) per 
condition just before electroporation. 100 μl of the cell suspension was mixed with the base editing reagents, 
taken up in a 100 μl Neon™ tip ensuring there is no bubble at the top, placed in the pipette holder containing 3 ml 
of Buffer E2 (Neon kit) and electroporated at Voltage = 1500 V; Width = 20 ms; # pulses = 1 pulse.

DNA/RNA isolation.  Genomic DNA was isolated using the QIAamp DNA Mini Kit (Qiagen) and RNA 
was isolated using the RNeasy Kit (Qiagen) according to manufacturer’s protocols. The DNA and RNA were 
eluted with 40 μl of elution buffer AE and RNase-free water respectively at the end of the extraction process. The 
concentration and purity of the nucleic acid was measured on a NanoDrop 1000 Spectrophotometer (Thermo 
Scientific) at the A260/A280 absorbance ratio appropriate for nucleic acids.

PCR amplification.  The relevant DNA fragment containing the mutations of interest was amplified using 
polymerase chain reaction (PCR). 50–100 ng of DNA were used as starting material for all PCR amplifications. 
A PCR master mix was made using AmpliTaq GoldTM 360 DNA polymerase (Applied Biosystems), GC buffer 
(Applied Biosystems), primers at 10 mM concentration (Invitrogen) and nuclease-free water (Synthego). The 
following primers used for NGS analysis are listed in Table 1.

Sanger sequencing.  The PCR products were purified from unincorporated primers and dNTPs using 
illustraTM ExoProStarTM (Cytiva). The reaction was heated at 37 °C for 30 min, 80 °C for 15 min, and held 
at 10 °C using the Veriti Thermo cycler. Samples were sequenced externally (SourceBioScience) and the result 
chromatograms were analyzed using SnapGene viewer. Editing efficiency was analysed using EditR software20 
(http://​basee​ditr.​com/).

NGS genomic DNA on‑target site analysis.  The same DNA samples used in the Sanger sequencing 
method were subjected to high-throughput sequencing (Next-Generation Sequencing, NGS) with sequence-
specific primers with NGS overhang, overhang shown in bold in Table 1. All sequencing runs were performed on 
a MiSeq instrument (Illumina Co), using MiSeq Reagent Kit v2 nano (500 cycles) following the manufacturer’s 

Table 1.   Primers used for NGS analysis.

Target Primer NGS primer sequence (5’–3’)

On-target
C7_53_NGS_fwd CGT​CGG​CAG​CGT​CAG​ATG​TGT​ATA​AGA​GAC​AGCTG​CTG​CTC​AGA​CCC​TTC​TC

C7_54_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​GCC​TTC​AGA​TGC​GTG​TGT​GC

Off-target

1OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CGA​GAT​GAT​AGG​GAG​GCA​AAG​

1OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​TGT​TTG​TGG​TGG​ACT​CGG​C

2OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CAA​ACT​CCC​CTG​CTG​ACC​TC

2OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​CCC​TCC​CTG​CAG​ATT​CCA​AG

3OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​GCG​TCT​GTA​GAG​CCG​ATA​CC

3OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​CCC​ACT​TTT​CCC​AGG​CAT​T

4OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​GGG​GGA​TGA​GGG​CAG​AAT​TT

4OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​TTT​GGG​GGT​CCA​GGA​GGA​AT

5OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​TGG​TTC​CCG​GTT​GTC​TAT​GG

5OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​GAG​TCT​TGT​GGA​AGG​TCT​TTA​

6OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CTA​CTC​AGG​AGG​CTG​AAG​C

6OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​AGG​GCA​GGT​GAA​AGG​AAG​GC

7OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CTC​ATA​ACT​CCC​ACA​ACA​GG

7OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​AGC​CAG​CAA​CAT​TGA​CCT​CT

10OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CCC​AGA​GGA​TCA​CCT​TTC​CC

10OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​CAA​CCC​TGA​GAG​ACA​GGT​GC

11OT_NGS_fwd TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​TCA​CAC​CCA​GAA​ATG​GAG​CC

11OT_NGS_rev GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACAG​AGG​CAA​GGG​AAA​CTT​AGG​CAA​

http://baseeditr.com/
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protocol. The sequences were obtained in fastq format with demultiplexing performed automatically. Sequence 
annotation to the human genome (hg38) was done in Bowtie256, obtaining the .sam files. Converting .sam files 
to .bam and sorted bam files was undertaken using SAMtools57 (http://​www.​htslib.​org/). The counts of the indi-
vidual base reads against genome positions for further calculations was executed using Pysamstats (https://​
github.​com/​alima​nfoo/​pysam​stats). A 23-nucleotide window corresponding to the protospacer sequence and 
the PAM site was selected for each sample. A detailed analysis of reads was then performed at position 8 in the 
protospacer, which corresponded to the position of the mutation on a positive strand, and at position 3 on the 
positive strand, which corresponded to the bystander mutation detected earlier using Sanger sequencing. Cus-
tom Python scripts (see Github repository) were used to calculate the editing efficiency and off-target sequence 
analysis. Graphs were created with the use of the Matplotlib library for creating graphs for the Python program-
ming language and its numerical extension NumPy, and the data visualization library Seaborn.

The efficiency of the editing “on-target c.5047”, chr3: 48,580,586 was calculated as follows:

The frequency of the “silent bystander c.5052”, chr3: 48,580,581 was calculated as follows:

Normalization required for dose-dependent experiment results NGS sequencing (due to artifact G reads at 
pos. 48,580,581 for EB control:

NGS genomic DNA off‑target site analysis.  Amplicons containing the 23-nucleotide sequence of a 
potential off-target were amplified as above. The 10 most likely genome-wide off-target sites to be edited were 
computed using CRISPOR software21. Out of the initial 10 off-targets suggested, OT9, on the Y chromosome, 
could not be interrogated as patient EB is female, therefore the list of 10 was extended by an additional 1). 
OT8 could not produce an amplicon of the correct size due to the reagents selected for NGS (Next-Generation 
Sequencing), therefore it was also omitted from analysis. For the 9 remaining off-target amplicons, positions 3 to 
9 of the protospacer (shown underlined in supplementary Fig. 2 (Fig. S2)), which corresponds to the extended 
putative editing window, were analyzed as described above for the on-target site.

To compute 95% confidence intervals for each correction, bystander and off-target activity, which are shown 
in figures, we used Wald method, a commonly used approximation for binomial confidence intervals. We used 
this method to estimate errors because the experiments and sequencing of DNA was performed in one repetition. 
We are aware that this error estimation method does not capture their other sources.

Transcriptomic analysis.  Total mRNA was isolated using standard methods. RNA-Sequencing librar-
ies were prepared by KAPA RNA Hyper + RiboErase HMR Kit (Roche Corp.) according to the manufacturer’s 
standard protocol. The quality of the library was checked by TapeStation electrophoresis (Agilent Technologies). 
Libraries were then sequenced on the NextSeq 500/550 instrument (Illumina Co) with High Output Kit v2.5 
following the manufacturer’s protocol. Image processing, base calling and demultiplexing were made by Next-
Seq Control Sofware (Illumina Co). FASTQ-formatted sequences were analysed for quality control by FASTQC 
open-source software http://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/. Reads with quality scores 
below 24 were excluded. The HISAT2 software58 as used to align reads to the human reference genome (Hg38). 
SAMtools software were used to convert .sam to .bam files and the featureCounts algorithm was used to count 
the mapped readings (from .bam file). This general purpose read summary function assigned genomic traits (or 
meta-traits) to the mapped reads which were generated from RNA sequencing. The featureCounts algorithm 
performed transcript assembly, quantification of expression as fragments per kilobase of transcript per mil-
lion mapped reads (FPKM) values, and normalization. Normalized FPKM values were used for the differential 
expression analysis, which was performed using an ‘edger’ R script. The clustermap function from Python’s 
seaborn59 library (https://​seabo​rn.​pydata.​org/​gener​ated/​seabo​rn.​clust​ermap.​html, version 0.11) was used to cre-
ate the heatmap. The clustermap uses hierarchical clustering60 implemented in the scipy library61. Candidate 
genes which were differentially expressed between the ABE8e-treated cells and the untreated cells were then 
selected and the ToppGene tool24 was used to prioritize and rank those genes based on functional similarity to 
the training gene list (which was obtained from GeneCard tool). The output of the Database for Annotation, 
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Visualization, and Integrated Discovery (DAVID) bioinformatics tool revealed that these genes are members of 
40 pathways. A p-value of < 0.05 was used to indicate statistical significance.

To calculate the mean % A to I change over the entire transcriptome, we used REDItools v1.362 to quantify the 
% edit in each sample. This tool removes all nucleotides from the analysis, except adenosine, and then removes 
all adenosines with read ranges less than 10 to avoid errors due to low trying. The items with mapping or read-
ing of the quality score below 25 were then removed. The number of adenosines converted to inosine in each 
sample was then calculated and divided by the total number of adenosines in the data set after filtering to obtain 
a percentage of adenosine edited to inosine in the transcriptome.

Cell culture and protein extraction.  Fibroblasts were seeded at 1 × 105 density in a 6 well plate initially 
in DMEM medium with 10% FBS. After 24 h, the cells were gently washed with PBS, and grown in Opti-MEM 
(+ 1% P/S), (Gibco) supplemented with 50 µg/ml ascorbic acid (5% v/v) for an additional 48 h. The supernatant 
was collected, diluted 1:4 with ice-cold acetone, and stored at − 20 °C overnight. Supernatant was cleared of any 
cell debris by centrifuging at 500 rotational centrifugal force (RCF) for 5 min and transferred to a new falcon. 
Supernatant proteins were collected by centrifugation at 13,000 rpm for 10 min. Following centrifugation, the 
supernatant was discarded, and the pellet was dried on ice for 10–15 min, without letting it to fully dry. The pellet 
was then dissolved in 100 μl sample buffer by vortexing and boiled at 95 °C for 10 min. To extract protein from 
the cells, the well was washed with 1 × PBS (Gibco) before adding 100 μl lysis buffer (1% β-mercaptoethanol, 1% 
Proteinase Inhibitor Cocktail (Calbiochem), 25% 4X NuPAGE LDS sample buffer (Invitrogen) and 75% H2O). 
The cells were scraped and left in a 4 °C cold room for 30 min. The lysis extract was collected in a 1.5 ml tube, 
centrifuged at 13,000 rpm for 2 min to remove cell debris, and the supernatant was transferred to a fresh 1.5 ml 
tube and boiled at 95 °C for 10 min. All protein samples were stored at − 20 °C.

Protein quantification.  The Pierce™ BCA (bicinchoninic assay) Protein Assay Kit (Thermo Scientific) was 
used according to the manufacturer’s instructions to quantify the total amount of protein in each sample and 
normalise the amount of sample loaded into the gel. The only deviation from the original protocol was halving 
the reaction volume to prevent spillage due to overflow in the wells. The absorbance was measured using the UV/
Vis setting on the FLUOstar Omega Microplate Reader (BMG LABTECH) and used to quantify the amount of 
protein present in each sample.

Western blot.  Normalized samples were loaded into a 4–20% Sodium Dodecyl Sulphate Polyacrylamide 
Gel (Bio-Rad), along with Spectra™ Multicolour High Range Protein Ladder (Thermo Scientific) and run at 80 V 
for 70–80 min. Following Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE), the pro-
teins were transferred onto a PVDF membrane (Bio-Rad) using the Turbo Transfer (Bio-Rad) at 25 V for 10 min. 
The total protein was visualized using reversible Ponceau Solution staining (Sigma-Aldrich). The membrane 
was then incubated with a rabbit anti-collagen VII polyclonal primary antibody (Bio-Rad, VPA00854) diluted 
1:1000 in 5% Bovine Serum Albumin (BSA) in TBS-1% Tween (TBS-T, Bio-Rad) overnight at 4 °C. Secondary 
anti-rabbit antibody, conjugated with polyclonal horseradish-peroxidase (HRP) (Dako) diluted 1:2000 in 5% 
BSA in TBS-T, was incubated for 30 min at room temperature. β-actin mouse primary antibody (SantaCruz 
Biotechnologies) diluted 1:1000 in 5% BSA in TBS-T and goat anti-mouse conjugated with polyclonal HRP 
(Dako) was used as a housekeeping gene for protein normalization in the cell lysate samples. SuperSignal™ West 
Femto Maximum Sensitivity Substrate (Thermo Scientific) was used as a substrate before imaging using iBright 
equipment (Applied Biosystems). Quantification of the bands was done using ImageJ software63 (version 1.53t, 
https://​imagej.​nih.​gov/​ij/) and normalized against β-actin or Ponceau S.

Immunofluorescence.  Fibroblasts were plated on round 13 mm coverslips at a density of 10,000 cells/cm2 
in a 24-well tissue culture plate and grown for 48 h. Once ~ 60% confluent, the cells were washed with 1 × PBS 
and fixed with 4% paraformaldehyde for 20 min at room temperature (RT). Subsequently, the cells were permea-
bilized for 20 min at RT with 0.2% TritonX-100 (Merck). The coverslips were incubated with a primary antibody 
diluted in 5% BSA in PBS overnight at 4 °C. The following day, the cells were washed three times with 1 × PBS, 
incubated with the respective donkey anti-rabbit (Alexa Fluor 488), goat anti-mouse (Alexa Fluor 488) or goat 
anti-mouse (Alexa Fluor 594) secondary antibody for 2 h at RT, and washed again three times with 1 × PBS. The 
coverslips were then mounted on glass slides using mounting medium that contains 4′,6-diamidino-2-phenylin-
dole (DAPI) nuclear stain (Vectashield) and imaged using an BX53M industrial microscope (Olympus).

3D skin equivalents.  3D human skin equivalents (HSEs) were generated similarly to methods described 
previously64.

Data availability
Gene expression datasets generated and analysed during the current study are available in the Gene Expression 
Omnibus (GEO) repository, GSE211876 https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​1876 All 
other datasets are available from the corresponding author on reasonable request.

Code availability
The code used in this article was deposited in GITHUB repository (https://​github.​com/​LabGiB/​base_​editor_​
offta​rget).

https://imagej.nih.gov/ij/
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