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Predicting the risk of osteoporosis 
in older Vietnamese women using 
machine learning approaches
Hanh My Bui1,2*, Minh Hoang Ha3, Hoang Giang Pham3, Thang Phuoc Dao4, 
Thuy‑Trang Thi Nguyen2, Minh Loi Nguyen5, Ngan Thi Vuong2, Xuyen Hong Thi Hoang4,6, 
Loc Tien Do7, Thanh Xuan Dao8 & Cuong Quang Le9

Osteoporosis contributes significantly to health and economic burdens worldwide. However, the 
development of osteoporosis‑related prediction tools has been limited for lower‑middle‑income 
countries, especially Vietnam. This study aims to develop prediction models for the Vietnamese 
population as well as evaluate the existing tools to forecast the risk of osteoporosis and evaluate the 
contribution of covariates that previous studies have determined to be risk factors for osteoporosis. 
The prediction models were developed to predict the risk of osteoporosis using machine learning 
algorithms. The performance of the included prediction models was evaluated based on two scenarios; 
in the first one, the original test parameters were directly modeled, and in the second the original 
test parameters were transformed into binary covariates. The area under the receiver operating 
characteristic curve, the Brier score, precision, recall and F1‑score were calculated to evaluate the 
models’ performance in both scenarios. The contribution of the covariates was estimated using the 
Permutation Feature Importance estimation. Four models, namely, Logistic Regression, Support 
Vector Machine, Random Forest and Neural Network, were developed through two scenarios. During 
the validation phase, these four models performed competitively against the reference models, 
with the areas under the curve above 0.81. Age, height and weight contributed the most to the risk 
of osteoporosis, while the correlation of the other covariates with the outcome was minor. Machine 
learning algorithms have a proven advantage in predicting the risk of osteoporosis among Vietnamese 
women over 50 years old. Additional research is required to more deeply evaluate the performance of 
the models on other high‑risk populations.

Fragility fractures and their consequences are the most common signs of osteoporosis, the most prevalent disease 
related to the adult skeleton. Identifying patients at high risk of fracture prior to a fracture occurring is a critical 
component of osteoporosis care. This problem continues to be a major concern for researchers and physicians 
worldwide. Despite the fact that several algorithms have been created to either identify persons with osteoporosis 
or forecast their risk of fracture, concerns remain about their accuracy and usefulness. Scientific breakthroughs, 
such as machine learning technologies, are rapidly gaining acceptance as alternative approaches for improving 
risk assessment and existing practice.

Osteoporosis is a severe condition that primarily affects postmenopausal women. The standard-of-care test 
for osteoporosis includes estimating bone mineral density (BMD) in the proximal femur, the lumbar spine, and, 
in certain cases, the forearm using dual-energy X-ray absorptiometry (DXA). The BMD is then compared to that 
of a reference group, including a sex-matched and ethnicity-matched healthy, premenopausal adult population 
(e.g., how much lower it is regarding standard deviations, or the T-score) for  diagnosis1,2. Professional organiza-
tions, such as the International Society for Clinical Densitometry, the United States Preventive Services Task 
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Force, and the International Osteoporosis Foundation, all promote screening strategies for older women, but 
determining when and how to conduct the screenings is more contentious.

The Osteoporosis Self-Assessment Tool (OST) is one of the oldest and simplest ways to identify people at risk 
of osteoporosis. This tool uses weight and age to identify men and women in various populations likely to have 
 osteoporosis3–13. For the Asian female population, prediction tools were developed by integrating the magnitude 
of the correlation between age and weight with BMD to estimate the likelihood of  osteoporosis5,14,15.

By extending the number of factors used to determine osteoporosis, 12 input parameters, such as demography, 
lifestyle, and medical history were included in the Fracture Risk Assessment Tool (FRAX)16. Similarly, other 
complex tools, including  ORAI17,  SCORE18,  ORISIS19,  ABONE20 and  MOST21, have incorporated additional 
characteristics in order to improve the performance of OST detection. Although combining numerous recognized 
risk factors was expected to improve the utility of screening tools, studies have revealed that basic tools, such 
as OST, might work as well as those with more complicated algorithms, while recent systematic reviews have 
emphasized the potential and limitations of these approaches.

Machine learning models to predict risk of osteoporosis. Scientists worldwide recognize osteopo-
rosis as a significant public health issue. While therapy can reduce fracture risk by 33% to 50%22, only a small 
percentage of patients, including those who have previously experienced osteoporotic fractures, receive the 
proper diagnosis and treatment. Furthermore, accurately identifying high-risk and/or high-cost patients in a fast 
and accurate way is expected to enhance effective healthcare management, as well as enhance clinical decision-
making and to improve service planning and  policy23,24. In recent decades, machine learning models have been 
increasingly integrated into osteoporosis prediction, along with the effective uses of healthcare big data, leading 
to improvements in the quality and efficiency of healthcare planning and delivery. Additionally, early illness 
identification (through simpler intervention and treatment, for example), customized health management, and 
the efficient detection of fraudulent behavior in healthcare are some of potential  advantages25. Artificial intel-
ligence (AI) technology has been developed based on mathematical modelling over years. AI software has been 
applied to different majors, including epidemiological  survey26, drug  discovery27, and diagnostic  radiology28. At 
this point, the computer-assisted devices have been integrated to clinical routine practice to detect the abnor-
malities relating to respiratory diseases on chest X-ray  images29–31. The on-site implementation of AI softwares 
proves its advantages to minimize the diagnostic bias, overcome the burnout issues and enhance the active case 
finding in community. Codlin et al. included 12 AI softwares to predict tuberculosis on chest X-ray images into 
the independent performance evaluation, which stated that a half of the AI softwares had the higher specificity 
values than ones of an intermediate  radiologist28.

In a study by Erjiang et al.32, seven machine learning models—CatBoost, eXtreme Gradient Boosting, Neural 
Networks (NN), Bagged Flexible Discriminant Analysis, Random Forest (RF), Logistic Regression (LoR) and 
Support Vector Machines (SVM)—were implemented to derive the best fit models to differentiate between 
patients with and without osteoporosis using DXA T-scores. Ho-Pham et al. applied four machine learning 
models—artificial neural networks (ANN), LoR, SVMs and k-nearest neighborhood—to the BMD hip data of 
Australian women to identify hip  fractures33. Ou Yang et al. implemented five ML models—ANN, SVM, RF, 
K-nearest neighbors (KNN), LoR—with many features, which were categorized into different areas related to 
bone  health34. This study examined 16 input features for men and 19 input features for women in order to identify 
the relationship between the presence of certain features and risk of osteoporosis in a Taiwanese population. 
Other machine learning methods using OST to predict osteoporosis were reviewed by Ferizi et al.1.

Osteoporosis and the resulting fragility fractures are recognized as major public health issues throughout 
many developing countries, especially Vietnam. The lack of DXA equipment to diagnose osteoporosis in these 
countries requires a prediction model for individualized assessment. Ho-Pham et al. proposed a prediction model 
for individualized assessments of osteoporosis based on age and weight for men and  women14. In this study, an 
LoR model using data from a population in Ho Chi Minh City was applied to develop the tool for each gender, 
with good accuracy. The researchers developed and validated a prediction model based on age and weight to 
estimate the absolute risk of osteoporosis in the Vietnamese  population14. However, few studies have focused 
on OST-based prediction of osteoporosis in other areas in Vietnam. Our study’s primary objective was to build 
tools to assess the risk of osteoporosis from OST data in women over 50 years old in the Northern Vietnam. On 
the other hand, little is known about the performance of the model proposed by Ho-Pham et al.14 when applied 
on a new population. The Ho-Pham’s model proved its good accuracy during the internal  validation14 whereas 
its performance to predict osteoporosis during an external validation was not noticeably reported. Therefore, 
our secondary objective was to independently validate the Osteoporosis Self-assessment Tool for Asians (OSTA) 
model and the model developed by Ho-Pham et al.14 on a new population. In addition to age and weight, our 
data now include height, geographic location (urban/rural area) and blood test results of uric acid, cholesterol, 
creatinine, FT4, glucose, HbA1c, Ure, AST, TSH, calcium and GGT . In their study, Ou Yang et al. concluded that 
specific blood test parameter is relevant to the OST (e.g., creatinine) to predict osteoporosis, while others (e.g., 
TSH) were of insignificant value in predicting osteoporosis in the Taiwanese  population34. However, in contrast 
to Ou Yang et al. regarding the influence of TSH in North American patients, Jamal et al. recommended that 
patients with suspected osteoporosis based on their OST score undergoing the TSH  test34,35. Therefore, the third 
objective of our research was to validate the conclusion of Ou  Yang34 and  Jamal35 using the dataset collected at 
Hanoi Medical University Hospital as well as to discover more novel factors linked to OST results.

Significance of the study. The findings of this study would provide valuable evidence to strengthen the 
potentials of machine learning algorithms for use as decision making support tools in the context of the widely 
osteoporosis screening. The study would also present the supportive findings to promote the digital transforma-
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tion of medical diagnosis in Vietnam. Additionally, the covariates which showed the significant contribution to 
the risk of osteoporosis would be pointed out and might be a valuable consideration for governmental policy 
makers in Vietnam.

Methods
Data source and participants. The data were retrospectively collected from the database of the health 
information system of the Hanoi Medical University Hospital from July 2018 to February 2021. The eligible 
population included women aged 50 years and older who underwent BMD testing at the study site and did not 
have metabolic bone disease (i.e., hypothyroidism, hyperthyroidism, Paget’s disease of bone, osteomalacia, renal 
osteodystrophy, osteogenesis), cancer with evidence of bone metastasis, chronic kidney failure requiring hemo-
dialysis, history of a salpingectomy, bilateral femur surgery or were taking supplemental phosphonate, fluoride 
or calcitonin. We included in the prediction model the age, weight, height, blood test results and geographical 
factors of each patient. All of the indicators were collected by the time the participants had been registered by 
the doctors.

Measurement. Physical index. Anthropometric measurements, including weight (kilograms) and height 
(meters), were measured following the Anthropometric Indicators Measurement  Guide36. After participants 
removed their shoes, the Tanita WB-380H digital scale was used to measure their weight and height (they had 
been requested previously to wear light clothing). The measurements were repeated twice and then averaged.

Bone mineral density. We recorded the BMD values for all participants at different anatomical sites, including 
lumbar vertebrae (L1–L4) and the left and right femoral neck. The measurement was conducted using a Discov-
ery Ci DXA system (Hologic, USA, 2019) using the parameters for the Japanese female population as a reference 
for our Asian  population37,38. We converted the BMD values into T-scores, which we then transformed into cat-
egorized outcomes following the guidance of the World Health  Organization39. Specifically, the outcomes were 
defined as follows: (1) T-scores of ≥  − 1.0 indicated normal BMD, (2) T-scores between − 1.0 and − 2.5 indicated 
osteopenia, and (3) T-scores of ≤  − 2.5 indicated  osteoporosis39.

Model development. We built four ML models based on LoR, SVM, RF, and NN. Each model was trained 
using two scenarios: (1) the original test indices and (2) the outliers of the test indices. In the first scenario, the 
models used the patient’s test parameters directly, whereas in the second scenario the patient’s test parameters 
were considered normal or abnormal prior to inclusion in the model. The thresholds for detecting the normal 
features were listed in Table 1.

All 4 models were built using scikit-learn software in Python 3.7. The LoR model was created to compare 
with the model by Ho-Pham et al., with the addition of the new features mentioned above. During each training 
section of the LoR, SVM, RF, NN models, the validation dataset was randomly split out from 20% of the train-
ing set to evaluate the performance of the models. The training was stopped after 100 epochs. The model that 
provided the best AUROC was applied for further analysis.

For hyperparameter tuning, Bayes search (with k-fold cross validation) was done for all models. For the 
LoR model, the solver type (Liblinear, newton-cg) and the regularization parameter C (from 1e−6 to 100 with 
log-uniform) were examined. For the SVM model, the kernel type (polynomial, radial basis function, sigmoid 
or linear), the regularization parameter C (from 1e−6 to 100 with log-uniform), and degree (from 1 to 4) for 
the polynomial kernel function were examined. For the RF model, the number of trees (from 100 to 500), and 
the maximum depth of the tree (from 3 to 11) were considered. For the NN model, the number of hidden layers 
(from 5 to 20), the solver (Adam, stochastic gradient descent), the maximum number of iterations (from 500 
to 100), and the parameter alpha (from 1e−6 to 100 with log-uniform) were examined. All models were con-
structed with a balanced class weight. For each set of hyperparameters, fivefold split was repeated several times. 

Table 1.  Thresholds for detecting normal features.

Blood test Normal values

Acid uric (mmol/L) 202.3–416.5

Cholesterol (mmol/L)  < 5.2

Creatinine (mmol/L) 62–106

FT4 (pmol/L) 11.5–22.7

Glucose (mmol/L) 4.11–5.89

HbA1c (%) 4.8–5.9

Ure (mmol/L) 2.76–8.07

AST (U/L)  < 40

TSH (mU/L) 0.55–4.78

Calcium (mmol/L) 2.2–2.55

GGT (U/L) 8–61
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We adopted the hyperparameter set that yielded the best result on the hold-out data. The hyperparameters of 
four models were listed in Table 2.

Data analysis. The area under the receiver operating characteristic curve (AUROC) was calculated for the 
test sets in each training process using the BMD as a reference, and the mean values of the AUROC were com-
pared. The Brier score, precision, recall and F1-score were additionally calculated to evaluate the performance to 
predict osteoporosis of included prediction models. To compare the performance of our machine learning mod-
els and the OSTA tools, the OSTA score was calculated as 0.2[Weight

(

kg
)

− Age
(

year
)

] on the test set. Then, the 
labels were generated by comparing the score to − 4 to classify patients as high risk. In addition, each model was 
processed 20 times with different random seeds. The metrics were calculated and averaged over all independent 
runs. In the LoR model, we determined the probability of osteoporosis according to the equation for women 
published by Ho-Pham et al.14. The labels on test set were created by comparing these number to 0.195. After 
that, the AUROC was also calculated and compared. The significance of all features was estimated by the Per-
mutation Feature Importance of sklearn and then plotted using Python 3.7. In the Figs. 4, 5, 6, 7, 8, 9, 10 and 11, 
the horizon axis represented the decreases in the contribution to the osteoporosis prediction of each feature in 
the dataset. The larger the number was, the more the factor reduced the noise affecting the results, and therefore 
the more it contributed to whether the sample was properly classified. In addition to the Permutation Feature 
Importance, we used a chi-squared test to calculate the relationship among random features. This measurement 
can eliminate attributes that are more likely to be label-independent (osteoporosis or no osteoporosis) and were 
therefore irrelevant to the classification. The p-value in each table was calculated based on the chi-squared test. 
We chose the threshold of 0.05 for a type I error rate. The features with a p-value of ≥ 0.05 were independent 
of the labels, and they did not significantly contribute to the outcome of the prediction. Those with p-values 
of < 0.05 indicated a significant relationship to the prediction results. A p-value of < 0.01 indicated important 
features that directly affected the model’s classification.

Ethical considerations. All the procedures conducted in this study aligned with the Ethical Review Board 
of the Hanoi Medical University (IRB approval No. HMUIRB563; Date: October 22, 2021). The study was 
approved by the Ethical Review Board of the Hanoi Medical University with the protocol number and the date 
of the IRB approval as mentioned above. The waiver of the informed consent was provided by the Hanoi Medical 
University ethics committee. All of the participants’ study data were masked. All the methods were carried out 
strictly following relevant guidelines and regulations.

Results
Figure 1 presents the procedure of sample collection, model development of the study. The initial dataset included 
1951 participants. The training dataset was created from 80% of initial dataset and the testing dataset was split 
out from the remaining 20% of the initial data.

Table 2.  The hyperparameters of four models.

Methods First scenario Second scenario

LoR

Solver Liblinear Liblinear

C 0.001 0.014

Penalty l2 l2

Best_score_ 0.788 0.790

SVM

Kernel Poly rbf

Degree 1

C 100 4.196

Gamma Scale Scale

Best_score_ 0.786 0.789

RF

n_estimators 500 100

Max_depth 5 6

Best_score_ 0.787 0.789

NN

Solver Adam Adam

Alpha 98.130 2.433

Hidden_layer_sizes 11 12

Max_iter 574 746

Best_score_ 0.786 0.789
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Tables 3 and 4 present the statistical distribution of the dataset. The models were trained on a dataset of 1560 
patients (80% of the initial data) and tested on a dataset of 391 patients (20% of the initial data). In the blood test 
data of 1,951 female patients over 50 years of age, the percentage of patients with abnormal levels of uric acid, 
FT4, AST, urea, calcium and GGT were quite low at 4.87%, 2.31%, 3.95%, 3.48%, 2.82% and 1.33%, respectively. 
However, the corresponding numbers of cholesterol, creatinine, glucose, HbA1c and TSH were quite high, at 
23.12%, 33.67%, 19.84%, 10.71% and 19.43%, respectively. The proportion of patients in urban and rural areas 
was similar, at 49.72% and 50.28%, respectively. The proportion of patients with diagnosed osteoporosis in the 
dataset was 28.91%.

Figure 1.  The diagram of the study procedure.

Table 3.  The statistical distribution of the data in the second scenario.

Blood test
Normal bone density (n = 1378, 71.092%)
Normal–abnormal (%)

Decreased bone density (n = 564, 28.908%)
Normal–abnormal (%)

Acid uric 95.674–4.326 93.794–6.206

Cholesterol 76.640–23.360 77.482–22.518

Creatinine 67.484–32.516 63.475–36.525

FT4 97.477–2.523 98.227–1.773

Glucose 81.471–18.529 76.950–23.050

HbA1c 89.690–10.310 88.298–11.702

Ure 97.621–2.379 93.794–6.206

AST 96.395–3.605 95.213–4.787

TSH 97.621–2.379 96.277–3.723

Calcium 97.909–2.091 95.390–4.610

GGT 98.414–1.586 99.291–0.709

Location 51.622–48.378 48.404–51.596



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20160  | https://doi.org/10.1038/s41598-022-24181-x

www.nature.com/scientificreports/

Table 4.  The statistical distribution of the data in the first scenario.

Blood test
Normal bone density (n = 1378, 71.092%)
Mean (standard deviation)

Decreased bone density (n = 564, 28.908%)
Mean (standard deviation)

Age (years) 60.863 (7.373) 70.420 (8.393)

Weight (kg) 53.998 (7.018) 48.666 (7.665)

Height (cm) 152.047 (5.381) 147.753 (6.107)

Acid uric (mmol/L) 110.976 (155.049) 105.158 (157.538)

Cholesterol (mmol/L) 2.441 (2.787) 2.273 (2.739)

Creatinine (mmol/L) 34.466 (32.128) 38.957 (35.689)

FT4 (pmol/L) 3.253 (6.829) 2.736 (6.240)

Glucose (mmol/L) 3.239 (3.236) 3.606 (3.449)

HbA1c (%) 1.495 (2.740) 1.764 (2.941)

Ure (mmol/L) 2.350 (2.862) 2.671 (3.213)

AST (U/L) 15.111 (26.893) 18.649 (50.252)

TSH (mU/L) 0.520 (2.952) 0.405 (1.603)

Calcium (mmol/L) 0.755 (1.097) 0.865 (1.122)

GGT (U/L) 4.304 (20.567) 5.697 (43.397)

Figure 2.  The ROC curves in the first scenarios.
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Figures 2 and 3 present the results of the first and second scenarios, respectively. While the lines labeled DHY-
LoR, DHY-SVM, DHY-RF and DHY-NN represent the ROC curves of four machine learning models—LoR, 
SVM, RF and NN—applied to the Hanoi Medical University Hospital’s dataset, the grey and yellow lines indicate 
the LoR method from Ho et al.’s study and the OSTA tools.

Tables 5 and 6 present the performance of included prediction models in the first and second scenarios respec-
tively. The model developed by Ho-Pham et al.14 still showed predictive significance using the Hanoi Medical 
University Hospital dataset (AUROC = 0.823 and AUROC = 0.828). In both scenario, the LoR, SVM, RF, and 
NN provided clinically significant AUROC values (above 0.8) and outperformed the model of Ho-Pham et al.14. 
The study findings also showed that the OSTA score (AUROC = 0.654 and AUROC = 0.656) had no predictive 
relevance among the Northern population in Vietnam.

Besides the AUROC values, several metrics were also calculated to compare the performance of the machine 
learning models. The precision, recall and F1-score of our models were calculated at the cut-off point determined 
by Youden’s index. The resultant cut-off value was lower or equal to − 4 for the OSTA model. Overall, our machine 

Figure 3.  The ROC curves in the second scenario.

Table 5.  The performances of the models in the first scenario.

Model AUROC Brier score Precision Recall F1 score

LoR 0.832 (0.797–0.857) 0.146 0.545 0.742 0.628

SVM 0.831 (0.797–0.856) 0.147 0.544 0.742 0.628

RF 0.854 (0.825–0.881) 0.137 0.572 0.763 0.653

NN 0.832 (0.791–0.853) 0.147 0.550 0.746 0.633

Ho-Pham et al. 0.823 (0.781–0.851) 0.149 0.489 0.813 0.610

OSTA 0.654 (0.606–0.702) 0.205 0.722 0.353 0.473
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learning models performed significantly better than two remaining models on the dataset of the Hanoi Medical 
University Hospital.

Figures 4, 5, 6, 7, 8, 9, 10 and 11 present the significance of the various features in the two scenarios. The 
figures illustrate that the most important predictors of osteoporosis were age and physical condition (height, 
weight). Although other features, including blood tests and geographical factor, did have an impact on the pre-
dicted results, it was not significant in either scenario.

Tables 7 and 8 present the relationship among random features and their outcomes in the first and second 
scenarios respectively. In the first scenario, when the initial blood test results were taken into account, the only 
insignificant factor was the participants’ geographical location, and the remaining features were significant in 
the prediction. In the second scenario, abnormal thresholds of uric acid, cholesterol, creatinine, FT4, HbA1c, 
AST, GGT, TSH, and geographical location did not affect the results of the model. This can be explained by the 
very low percentage of patients with abnormalities laboratory results (as mentioned in the previous section) and 
the small difference in the prevalence of osteoporosis among urban and rural people.

Table 6.  The performances of the models in the second scenario.

Model AUROC Brier score Precision Recall F1 score

LoR 0.837 (0.801–0.863) 0.147 0.549 0.738 0.629

SVM 0.836 (0.803–0.862) 0.147 0.552 0.739 0.632

RF 0.845 (0.807–0.875) 0.142 0.577 0.758 0.655

NN 0.837 (0.800–0.862) 0.149 0.550 0.737 0.629

Ho-Pham et al. 0.828 (0.784–0.862) 0.150 0.506 0.826 0.627

OSTA 0.656 (0.621–0.711) 0.206 0.744 0.365 0.489

Figure 4.  Feature importance for LoR in the first scenario.
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Discussion
Studies have demonstrated the utility of machine learning methods to automatically interpret BMD datasets. 
While osteoporosis significantly contributes to the health-related burdens in Vietnam, machine learning might 
provide solutions to the challenge of widening the range of osteoporosis screening. We developed and evaluated 
four different machine learning tools to detect the absolute risk of osteoporosis in Vietnamese women over age 
50. In addition, we evaluated the performance of other published tools that were developed for use in Vietnamese 
and Asian women as well as analyzed the potential contribution to osteoporosis prediction of different predictors.

We built four machine learning prediction tools that demonstrated promising performance across two sce-
narios. The AUROC of the four tools indicated a good ability to predict the risk of osteoporosis, with all values 
reaching above 0.81. The findings of our study in both scenarios were higher than the ones recorded in the study 
by Erjiang et al. that applied DXA as a testing  reference32. The NN model was the most accurate prediction tool 
in both the first scenario of this study and the one by Erjiang et al.32. Compared to the study by Ulivieri et al.40, 
the NN model in our study performed better. The ANN in Ulivieri’s study showed good discrimination, with 
an AUC of 0.8 by external  validation40. Machine learning approaches were also applied to develop geological 
prediction models which provided the triage solutions to predict an occurance of rockburst during underground 
rock  excavations41,42. We also figured out that the averaged AUROC values of the four tools in our study were 
higher than ones of FRAX models which were calculated at 0.796 and 0.768  respectively43. The FRAX models 
were evaluated by Fan et al. to predict postmenopausal osteoporosis in  202043.

Similarly to our methods, the indices (precision, recall, F1-core) were estimated to evaluate the performance 
of machine learning  algorithms41,42. Ullah et al. developed Extreme Gradient Boosting (XGBoost) model with 
support from K-means clustering and an enhanced stochastic neighbour embedding (SNE) Based t-SNE algo-
rithm to predict the risk of  rockburst42. The XGBoost was then evaluated by the estimation of precision, recall and 
F1-score42. In addition, Wojtecki et al. applied 16 machine learning models to forecast the risk of rockburst caused 
by  tremors41. The recall, precision, and F1-score were also applied to assess the accuracy of included  models41.

We included the OSTA and prediction model of Ho-Pham et al.14 in our study and conducted the external 
validation with the aim of validating the models in a new population. The predictive values of OSTA in our study 
were drastically lower than the figures of Bui et al. for all anatomical  sites3 and Chen et al. at femoral  neck44. 

Figure 5.  Feature importance for LoR in the second scenario.
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While the minimum AUC values estimated in the latter studies were 0.709 and 0.830 for OSTA respectively, our 
findings showed a value of only 0.6427 and 0.6814 in two  scenarios3,44. The prediction model developed by Ho-
Pham et al. proved its good discrimination ability through external validation by our study, with AUC values 
above 0.8 in both two  scenarios14. However, the model of Ho-Pham et al. presented the higher estimated Brier 
scores in our external validation than the one calculated in the internal  validation14 which indicated the predic-
tive accuracy of the model decreased during our external validation. The difference of estimated Brier scores 
between two validations might be due to the difference of fixed threshold. The values were at 0.195 and 0.04 for 
the internal validation conducted by Ho-Pham et al.14 while the cut-off used in our study was determined by 
Youden’s index. Findings by both  internal14 and external validation suggest promising applications of the tool if 
applied for community-based screening campaigns.

We also applied Permutation Feature Importance using the included machine learning models in both sce-
narios to examine the findings of both Yang et al. and Jamal et al., which described potential predictors of osteo-
porosis prediction in the Vietnamese  population34,35. Our findings proved that age, weight and height strongly 
contributed to the risk of osteoporosis, while other predictors were less influential. Our conclusions were further 
supported by the findings of Ou Yang et al., which found that measured values of age, height and weight in a 
group with decreased BMD were significantly higher than in a group with normal  BMD34. However, our findings 
contrasted with those of Jamal et al., which showed no significant correlations between abnormal test results and 
risk of  osteoporosis35. This can be explained by the very low percentage of patients with abnormal laboratory 
tests and the small difference in the prevalence of osteoporosis in urban and rural people.

There is no disagreement about the exceptional utility of DXA to detect the risk of osteoporosis in facility-
based settings. However, there are existing barriers that prevent DXA from being widely implemented in smaller 
centers. The use of DXA requires significant operation costs, which might result in financial burdens at the 
national level. To interpret DXA outputs requires highly skilled practitioners who frequently work at tertiary 
hospitals rather than primary care centers. Moreover, due to its limited mobility, DXA is not suitable for mobile 
screening events that can promote access to care for people living in remote areas. However, prediction models 
possess the ability to overcome these challenges through operative advantages. Prediction models could play a 
role as primary screening tools in the community, in which high-risk subjects could be identified and referred for 

Figure 6.  Feature importance for SVM in the first scenario.
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DXA screening at tertiary hospitals. The smaller number of at-risk patients undergoing DXA scans will reduce 
the medical cost for both individuals and the government. Moreover, the junior practitioners can be rapidly 
trained to apply the models during their clinical routine practice at primary care centers. In light of their high 
mobility, the integration of predictive models will enhance community-based mobile osteoporosis screening.

However, there are existing challenges to incorporating the machine learning model. Firstly, the machine 
learning models are prone to be deployed as laptop computers or Cloud-based systems that require an internet 
connection and certain technical maintenance for regular use. This will create technical equipment issues in 
the case of the mobile screening events. Secondly, the use of the machine learning models might depend on 
the acceptance of doctors. The disagreement regarding the clinical conclusions between doctors and machine 
learning model researchers can limit the application in clinical routine practice. Thirdly, the incurred cost to re-
evaluate the findings of from machine learning model studies might need analyzing to understand the realistic 
benefit compared to the potential savings. Lastly, the display language might be worth considering if the machine 
learning models are to be applied on populations of ethnic minorities.

There are limitations to be considered in our study. Firstly, the validation was not performed on specific 
anatomical sites (e.g., femoral and lumbar vertebrae), where the speed of bone degeneration might be differ-
ent from aging. Secondly, an external validation was not conducted to investigate the performance of machine 
learning models on other populations. Thirdly, the analysis data was collected at one facility, which can limit 

Figure 7.  Feature importance for SVM in the second scenario.
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extrapolation. Lastly, the analysis was not conducted on a subpopulation with comorbidities, which can increase 
the risk of osteoporosis.

Conclusion
The dramatic operating cost and the requirement of highly-skilled practitioners have been limited the widely 
integration of DXA as well as the access-to-care at community level. Machine learning methods have demon-
strated its potential to support practitioners in screening for osteoporosis risk in communities. Although there 
were limitations of validation method and extrapolation, our findings proved the outstanding performance 
of four machine learning tools to predict osteoporosis among women over age 50. The findings of this study 
also introduced the decision support techniques which might contribute as primary indicator for community-
based osteoporosis screening. To overcome the operating challenges, the tools might be developed as portable 
computer-assisted devices which might work more flexibly and economically than DXA machines. In addition 
to the accuracy, there are positive benefits for both in terms of cost-effectiveness and preventive strategies for 
the policy makers to consider. Additional research should be conducted to further investigate the performance 
of machine learning models on other specific populations.

Figure 8.  Feature importance for RF in the first scenario.
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Figure 9.  Feature importance for RF in the second scenario.
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Figure 10.  Feature importance for NN in the first scenario.
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Figure 11.  Feature importance for NN in the second scenario.

Table 7.  The relationship among various features and the outcome in the first scenario.

Features in the first scenario P-value

Age 0.00000

Weight 0.00000

Height 0.00000

Uric acid 0.00000

Calcium (CalciTP) 0.01294

Cholesterol (Choles) 0.02913

Creatinine (Crea) 0.00000

FT4 0.00000

Glucose (Gluco) 0.00006

HbA1c 0.00002

Ure 0.00004

AST 0.00000

GGT 0.00000

TSH 0.00090

Location 0.35881
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Data availability
The raw data supporting the conclusions of this study are available upon the request for independent result 
evaluations from interested parties. The datasets used and/or analyzed during the current study available from 
the corresponding author on reasonable request.
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