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Surface roughness prediction 
of aircraft after coating removal 
based on optical image and deep 
learning
Qichun Hu*, Haojun Xu & Yipeng Chang

To quickly evaluate the surface quality of aircraft after coating removal, a surface roughness prediction 
method based on optical image and deep learning model is proposed. In this paper, the "optical 
image-surface roughness" data set is constructed, and SSEResNet for regression prediction of surface 
roughness is designed by using feature fusion method. SSEResNet can effectively extract the detailed 
features of optical images, and Adam method is used for training optimization. Experiments show that 
the proposed model outperforms the other seven CNN backbone networks compared. This paper also 
investigates the effect of four different learning rate decay strategies on model training and prediction 
performance. The results show that the learning rate decay method of Cosine Annealing with warm 
restart has the best effect, its test MAE value is 0.245 μm, and the surface roughness prediction results 
are more consistent with the real value. The work of this paper is of great significance to the removal 
and repainting of aircraft coatings.

After the coating on the aircraft is removed by laser cleaning or other technologies, it is necessary to evalu-
ate the surface quality to determine whether it meets the conditions and requirements of coating repainting. 
Surface roughness is the most used parameter to describe the surface micro-geometry, which can be used to 
evaluate surface quality 1,2. However, surface quality is often assessed by visual observation, touch of the cleaned 
surface of aircraft, and the use of roughness detector. These methods are not accurate and efficient enough to 
meet the maintenance support needs of advanced aircraft. At present, intelligent, and automatic detection is the 
mainstream development trend. The realization of intelligent and automatic detection of surface roughness is 
conducive to the rapid evaluation of surface quality and has important significance and value for the intelligent 
and automatic process of aircraft coating removal and repainting.

In recent years, there has been a lot of research work on the prediction of surface roughness based on regres-
sion analysis, machine vision and neural network. Yang et al. 3 proposed a machine vision detection method 
suitable for predicting the surface roughness of turning, which predicted the surface roughness value by using 
the ANN network based on the DEA algorithm. Bal Sundaram et al. 4 proposed a new method for sub-element 
edge surface roughness detection based on machine vision, which can measure the turning surface roughness 
online. Davim et al. 5 established a multiple linear regression equation of surface roughness with cutting speed, 
feed, and depth of cut as independent variables. Ozcelik et al. 6 established the first order and second-order 
prediction models of surface roughness based on the response surface method. Hu et al. 7 applied the BP neural 
network to the prediction modeling of the surface roughness of high-speed milling and verified the model with 
high prediction accuracy through experiments. Huang et al. 8 extracted the eigenvalues of the cutting force signal 
and proposed an online monitoring method of surface roughness based on the grey theory of bilateral best fit-
ting, which requires less data and requires no training time. Wu et al. 9 carried out envelope analysis, statistical 
calculation, and frequency normalization extraction of vibration signals, and established a surface roughness 
prediction model through artificial neural network. Although these methods have great advantages in model 
prediction accuracy, calculation speed, and data volume requirements, the specific performance of the model 
depends on empirical processing and the selected algorithm. Neural network and machine learning methods are 
mainly applied to feature extraction and parameter optimization. The roughness prediction is still obtained by 
physical calculation, and the end-to-end direct prediction is not realized, so the research of intelligent measure-
ment needs to be further in-depth.
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Deep learning is a very popular deep network learning method, which can achieve many end-to-end tasks 
and has a wide range of applications in the field of computer vision 10–12. Levi and Hassncer 13 designed a convo-
lutional neural network (CNN), after training, the model can determine the gender and directly predict the age 
after inputting a face image. Liang et al. 14 constructed SCUT-FBP5500 facial aesthetics data set and realized the 
prediction of the beauty value of facial images by improving three CNN models: AlexNet 15, ResNet18 16,17 and 
ResNet50 16,18. Inspired by these works, we propose to directly predict the surface roughness of the correspond-
ing image position based on optical image and deep learning model, to realize the end-to-end surface roughness 
prediction. The main contributions are as following:

1. The "optical image-surface roughness" dataset is constructed, and the SSEResNet regression prediction model 
for directly predicting surface roughness through optical images is proposed.

2. Compared with other CNN models, our proposed method achieved the best results.
3. The effects of different learning rate decay strategies on model training and prediction are studied.

Construction and preprocessing of dataset
Data collection. We sprayed a 20 cm × 20 cm × 1 cm aluminum alloy plate with aircraft special paint, and 
simulated the removal process of aircraft surface coating by laser cleaning instrument to obtain the experimental 
plate for collecting surface roughness. We acquired optical images of the experimental plate surface by electron 
microscopy with random magnification of 30–110 times, and ensured that these optical images contained good 
surface features. The aspect ratio of the optical image is 1920:1080. In order to meet the input settings of the 
model, the collected original image is trimmed in the center to obtain the optical image with the aspect ratio of 
224:224. Then the roughness value of the corresponding position is measured by the surface roughness tester 
and used as the label value of the corresponding optical image. And we made the "optical image-surface rough-
ness" regression prediction dataset. In this paper, a total of 10,000 optical images were collected and the surface 
roughness of 10,000 corresponding positions was measured. Figure 1 shows the dataset construction process 
and part of the original data.

Figure 1.  (a) Dataset construction process. (b) Partial original data.
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Data augmentation. Deep learning models can learn task-related knowledge from a large amount of data 
through training. In order to increase the amount of data, we use data enhancement technology to expand the 
existing datasets. Data augmentation is one of the most important machine learning methods, which is to gener-
ate more training data based on the existing training sample data. Its purpose is to make the amplified training 
data as close as possible to the real distributed data, so as to improve the detection accuracy. In addition, data 
enhancement can force the model to learn more robust features, so as to effectively improve the generalization 
ability of the model. In this paper, three data enhancement methods are adopted: flip, brightness change and 
blur. Flip is to reverse the image, which can preserve the image features while weakening the influence of special 
positions on image features. Brightness change is to make the image darker or brighter by switching the image 
to HSL channel and adjusting the L parameter. Blurring is to reduce the image resolution. Figure 2 shows the 
above data augmentation methods. After the original data is enhanced, the aspect ratio of the obtained image is 
224:224, and the amount of data has increased four times.

Deep learning methods
Design of "optical image-surface roughness" regression prediction model. The "optical image-
surface roughness" dataset constructed in this paper has the characteristics of large brightness variation and 
small and complex texture features. What we study is not the classification problem, but the direct prediction 
of surface roughness through optical images. This is a regression problem, which has higher requirements on 
the feature extraction ability of the CNN model, and a simple CNN model cannot meet our task requirements. 
Therefore, we design a CNN model for image regression prediction based on ResNet 16, which can better extract 
complex details and multi-level semantic information from images and achieve the prediction of surface rough-
ness value through optical images. We call it SSEResNet regression model. According to the parameters of 
ResNet structure used in the model, there are SSEResNet50, SSEResNet101 and SSEResNet152, as shown in 
Table 1. SSEResNet regression model consists of two parts, the lead network and the strengthen network. The 
model is shown in Fig. 3.

The lead network contains the ResNet backbone and the Squeeze-and-Excitation (SE 19) module. The strength 
network consists of the Cross Stage Partial Network (CSPNet 20) module stack. SSEResNet fuses feature maps 
output by the 3rd, 4th and 5th CSPNet modules with the feature maps output by the 1st, 2nd and 3rd modules of 
lead network. The feature maps output by each module in the lead network contains relatively low-level semantic 
information, while the CSPNet module in the strengthen network can extract feature maps containing higher-
level semantic information. Through the fusion of high-level features and low-level features, feature maps con-
taining richer semantic information can be generated. Equation (1) expresses the fusion process of feature maps.

Among them, * represents feature fusion, the specific operation is to superimpose the feature map on the 
channel dimension. Ff represents the feature map after fusion, Fl represents the feature map output by the lead 
network, Fs represents the feature map output by the strengthen network, and W is a 1 × 1 convolution operation 
to adjust the channel dimension.

(1)Ff = W(Fl ∗ Fs)

Figure 2.  Data augmentation methods.

Table 1.  SSEResNet regression model parameters.

n1 n2 n3 n4

SSEResNet50 3 4 6 3

SSEResNet101 3 4 23 3

SSEResNet152 3 8 36 3
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The structure of SE module is shown in Fig. 4a. The feature map input to SE module firstly compresses the 
features along the spatial dimension through a global average pooling layer, changing each two-dimensional 
feature channel into a real number, then reducing the feature dimension through a fully connected layer, and 
upgrading the feature dimension to the original dimension through a fully connected layer after ReLu activa-
tion. These three layers form a Bottleneck structure, which can model the correlation between channels. Then 
the normalized weight is obtained by Sigmoid operation, and finally the weight is weighted to the features of 
each channel by a Scale operation.

Figure 3.  The structure of SSEResNet regression model.
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The structure of CSPNet module is shown in Fig. 4b. The feature map input to CSPNet module is first down 
sampled by a 3 × 3 convolution with a stride of 2, and then integrated into P0 and P1 by a 1 × 1 convolution opera-
tion. P1 is superimposed with P0 after passing through n Resblock modules with Bottleneck structure. Finally, 
the superimposed feature map is further adjusted through a 1 × 1 convolution layer.

In this paper, the number of output channels is set to 1, and a regression model with output real value can 
be obtained through network training, which can be used to predict the surface roughness of the input optical 
image. We use a sigmoid function to normalize the output of the fully connected layer and convert the predicted 
value of the output to [0,1] interval. The sigmoid function value is calculated by Eq. (2). Where x is the output 
of the fully connected layer.

Model training strategy. Adam optimization algorithm. In this paper, Adam optimization algorithm is 
used to optimize the model in the training process. ADAM 21 (Adaptive Moment Estimation) is a first-order 
optimization algorithm that can replace the traditional stochastic gradient descent process. It can iteratively 
update the weights of the network based on the training data, which is essentially RMSprop 22 with a momentum 
term. The learning rate of each parameter is dynamically adjusted by using the first moment estimation and the 
second moment estimation of the gradient. Its advantage is that after offset correction, the learning rate of each 
iteration has a certain range, which makes the parameter change more stable. Equation (3) expresses the calcula-
tion method of Adam.

Among them, the last two formulas are the first-order moment estimation and the second-order moment 
estimation of the gradient, which can be dynamically adjusted according to the gradient. The formula in the 
second line is the correction of the moment estimation, which can be approximated as an unbiased estimation 
of the expectation. The first formula is a dynamic constraint on the learning rate α, with a clear range. Parameter 
t is the number of iterations, ε can keep the denominator from being zero, ε = 1× 10−9 , β1 = 0.9,β2 = 0.999.

(2)f (x) = 1

1+e−x

(3)
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Figure 4.  The structure of SE and CSPNet module. (a) SE module. (b) CSPNet module.
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Learning rate decay method. In this paper, the learning rate decay method is used to iteratively train the model, 
mainly including equal interval adjusted learning rate (StepLR), given interval adjusted learning rate (Multi-
StepLR), cosine periodic adjusted learning rate (CosineAnnealingLR) and CosineAnnealing with warm restart。

StepLR sets the learning rate of each parameter group to the initial learning rate decayed by gamma every 
step size epoch. We set step size to 30, gamma = 0.1.

MultiStepLR can be manually set in which epochs with gamma as the adjustment coefficient to decay the 
learning rate. In this paper, the 30th and 80th epochs are set to decay the learning rate with gamma = 0.1.

CosineAnnealingLR uses the cosine method to decay the learning rate. The decay process is like the cosine 
function. Equation (4) is its calculation method, where T max is the maximum decline period. The introduction 
of the warm restart operation can make the change of the learning rate no longer simply decrease but have a 
certain fluctuation. The changing trend of the learning rate is shown in Fig. 5.

Experiments and Results
Experimental environment and parameter settings. Table 2 shows the experimental environment of 
this paper. Batch size = 32, Max epoch = 100, and the weight of the last epoch is taken as the model training result. 
When using Adam optimization algorithm, learning rate = 0.001, momentum = 0.9.

Comparative experiments of different models. In this paper, the prediction performance of three 
SSEResNet regression models on three datasets of different sizes by using a simple gradient descent (GD) 
optimization algorithm is compared first. The experimental conditions are the original dataset without data 
enhancement, a fixed learning rate of 0.0025, 100 epochs and other same parameter configurations. In this paper, 
mean square error (MSE) loss is used to replace the previous cross-entropy loss used for classification tasks, as 
an evaluation index of the experiment. MSE is suitable for regression tasks and is calculated by Eq. (5). Where yi 
represents the true value and pi represents the predicted value. Table 3 shows the experimental results of different 
SSEResNet regression models on different datasets.

From the experimental data in Table 3, it can be seen that the model needs to match the dataset of appropri-
ate size to achieve good results, and the deeper the network layer, the larger the dataset is needed for the model. 

(4)αt = αmin +
1

2
(αmax − αmin)

(

1+ cos

(

Tcurrent

Tmax

π

))

(5)MSE = 1

n

n
∑

i=1

(

pi − yi
)2

Figure 5.  The change trend of learning rate using cosine annealing with warm restart.

Table 2.  Experimental environment.

Operating system Graphics card PyTorch CUDA

Windows 10 Nvidia GTX 2080 1.1 10.0
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This is because the shallow model has insufficient feature extraction and limited image processing ability on 
large datasets, while the deep model is easy to over-fit on small datasets. Considering the training time and the 
prediction performance of the model, the SSEResNet101 regression model and the dataset of 8000 images were 
selected in this paper for the subsequent comparison experiment with other models.

In this paper, four optimization methods are compared, and then the SSEResNet101 model is compared with 
another seven CNN backbone networks. Using SSEResNet101 regression model, the Adam optimization method 
is tested under the same conditions as other three optimization methods commonly used in deep learning, which 
are SGD, Momentum and RMSprop. The experimental conditions are a fixed learning rate of 0.0025, 100 epochs 
and other identical parameter configurations. MSE loss, mean absolute error (MAE) and R-Square (R2) are 
selected as the evaluation indexes. Equations (6) and (7) are the calculation methods of MAE and R2, respectively. 
Where yi is the mean of the label values. When the predicted value is equal to the label value, MAE is equal to 0, 
and the greater the error, the greater the MAE value. The value range of R-Squared is [0,1]. If the result is 0, the 
model fitting effect is poor; if the result is 1, the model is completely fitted. The larger the R-Squared, the better 
the model fitting effect. Table 4 shows the experimental results of different optimization methods.

The experimental data in Table 4 show that the Adam optimization method has better performance than 
the other three optimization methods both without and with data enhancement. Compared with Momentum, 
RMSprop and traditional SGD algorithm, Adam integrates the advantages of Momentum and RMSprop. Among 
them, the advantage of Momentum is that it can accelerate the learning of parameters with the same gradient 
direction, and reduce the update of parameters with the change of gradient direction, so that parameters in the 
same direction can converge quickly. RMSprop is an adaptive learning rate optimization algorithm. The advantage 
of RMSprop is that in the early training stage, the learning rate is large, which can accelerate the convergence of 
the model, while in the later training stage, the learning rate is small, which is beneficial to suppress the model 
oscillation and avoid skipping the optimal solution. Therefore, we use Adam optimization method to conduct a 
comparative experiment between SSEResNet101 and seven other CNN backbone networks. The experimental 
conditions are fixed learning rate of 0.0025, 100 epochs and other identical parameter configurations. Table 5 
shows the experimental results of the regression prediction models.

The experimental data in Table 5 show that the MSE loss and MAE values of the model are reduced after 
data enhancement, which indicates that the data enhancement operation effectively improves the performance 
of the model. This is because the data enhancement operation generates many similar but different training 
samples by making a series of random changes to the training images, thus enlarging the scale of the training 
dataset. In addition, these random changes make the model less dependent on some attributes in the training 
samples, thus improving the generalization ability of the model. Compared with other CNN models, the MSE 
and MAE values of our model are the smallest, and the R2 value is the largest. After using data enhancement, 
the MSE of our model is only 0.0285, 0.0097 less than ResNet101 and 0.0032 less than SEResNet101. Meanwhile, 
SEResNet101 was also 0.0065 smaller than ResNet101. These comparison results show that both SE module 
and CSPNet strengthen module play an important role in improving the prediction ability of the model. This is 
because the SE module mines the correlation of features among channels, and the CSPNet strengthen module 

(6)MAE = 1

n

n
∑

i=1

∣
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Table 3.  Experimental results of different SSEResNet on different datasets.

SSEResNet50 SSEResNet101 SSEResNet152

6000 images 0.0361 0.0365 0.0382

8000 images 0.0375 0.0354 0.0368

10,000 images 0.0391 0.0362 0.0357

Table 4.  Experimental results of different optimization methods.

optimization methods

Unused data augmentation Used data augmentation

R2 MAE(μm) Test MSE R2 MAE(μm) Test MSE

SGD 0.8936 0.5213 0.0516 0.9071 0.4691 0.0469

Momentum 0.9375 0.3521 0.0378 0.9539 0.3224 0.0324

RMSprop 0.9542 0.3412 0.0362 0.9687 0.3169 0.0318

Adam 0.9789 0.3214 0.0313 0.9861 0.2929 0.0285
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assists in extracting deep semantic information. After feature fusion and mapping with shallow semantic infor-
mation, richer semantic information can be obtained. Under the joint action of these two modules, the model 
can better extract the detailed features of optical images, and then learn the mapping relationship between these 
features and surface roughness.

Influence of learning rate decay strategy on model training and prediction effect. In this paper, 
we also study the effect of different learning rate decay strategies on the model during training. The MSE loss 
curves of validation set, which is trained on the dataset of 8000 images by using StepLR, MultiStepLR, Cosine-
AnnealingLR and CosineAnnealing with warm restart, are shown in Fig. 6.

The experimental results in Fig. 6 show that the learning rate attenuation method of CosineAnnealing with 
warm restart has the best convergence effect, and the MSE loss is the smallest. The CosineAnnealingLR method 
has the second-best training effect, and StepLR has the worst training effect. CosineAnnealing with warm restart 
can make the learning rate decline to a certain value, warm restart, return to the initial value, and then conduct 
a new round of decline. Such a learning rate adjustment method can make the model that converges to the local 
optimal solution, jump out of the local optimal solution, and continue to update the model until the model 
reaches the global optimal solution.

To more intuitively show the effect of surface roughness prediction based on optical images and deep learn-
ing regression models, we plot the validation results of the test set as a point plot of the predicted values of the 
regression model and the true label values, as shown in Fig. 7.

The experimental results in Fig. 7 show that the surface roughness predicted by the regression model for opti-
cal images is close to the real value, which indicates that the regression model we designed has a good prediction 
effect and can directly and accurately predict the surface roughness of optical images. Especially, the prediction 
effect of the learning rate attenuation method of CosineAnnealing with warm restart is the best, its test MAE 
value is 0.245 μm, and the prediction result of surface roughness is more consistent with the real value.

Table 5.  Experimental results of “optical image-surface roughness” regression models.

The values of three regression evaluation indexes

Unused data augmentation Used data augmentation

Test MSE MAE(μm) R2 Test MSE MAE(μm) R2

VGG1623 0.0560 0.5131 0.8850 0.0512 0.4618 0.9110

ResNet5016,18 0.0483 0.4452 0.9039 0.0443 0.4023 0.9419

ResNet10116,24 0.0410 0.3982 0.9288 0.0382 0.3611 0.9685

ResNet15216,25 0.0392 0.3716 0.9500 0.0368 0.3424 0.9734

EfficientNet-B0 26 0.0461 0.4040 0.9327 0.0425 0.3795 0.9510

SEResNet10119 0.0346 0.3497 0.9572 0.0317 0.3102 0.9753

CSPDarkNet5320 0.0354 0.3511 0.9577 0.0321 0.3140 0.9744

Ours 0.0313 0.3214 0.9789 0.0285 0.2929 0.9861

Figure 6.  MSE loss curves of validation set for different learning rate decay strategies.
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Conclusion
In this paper, the prediction of surface roughness of aircraft after coating removal based on optical image and 
deep learning is studied. First, we use laser cleaning technology to remove the coating of the experimental speci-
mens sprayed with aircraft coatings, and get the experimental specimens used to evaluate the surface roughness. 
Then, an electronic microscope is used to collect optical images randomly magnified by 30–110 times, and the 
roughness values of the corresponding optical images are obtained by a surface roughness tester as labels. The 
dataset of "optical image-surface roughness" is made and three data augmentation methods are used to enhance 
the data. The experimental results show that the data enhancement operation is effective in improving the per-
formance of the deep learning model. In this paper, the SSEResNet101 regression prediction model is designed 
by the method of feature fusion, to better extract the detailed features of optical images. The experimental results 
show that SSEResNet101 has excellent model performance.

We also study the effect of different learning rate decay methods on model training and prediction perfor-
mance. The results show that the CosineAnnealing with warm restart method has the best training effect and 
testing effect, the test MAE value is 0.245 μm. The SSEResNet101 regression prediction model designed in this 
paper can predict the surface roughness directly through optical images, so that it can quickly determine whether 
the surface with removed coating on the aircraft meets the roughness requirements of repainting.

Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the corresponding author (email address: kgdhuqichun@163.com).

Figure 7.  Point plot of predicted and actual surface roughness values of SSEResNet101 regression model. (a) 
Using StepLR. (b) Using MultiStepLR. (c) Using CosineAnnealingLR. (d) Using CosineAnnealing with warm 
restart.
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