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Slowing down x‑ray photons 
in a vibrating recoilless resonant 
absorber
I. R. Khairulin 1*, Y. V. Radeonychev 1 & Olga Kocharovskaya 2

Recently, an observation of acoustically induced transparency (AIT) of a stainless-steel foil for 
resonant 14.4-keV photons from a radioactive 57Co Mössbauer source due to collective uniform 
oscillations of atomic nuclei was reported [Phys Rev Lett 124,163602, 2020]. In this paper, we propose 
to use the steep resonant dispersion of the absorber within the AIT spectral window to dramatically 
reduce a propagation velocity of γ-ray and x-ray photons. In particular, we show that a significant 
fraction (more than 40%) of a 97-ns γ-ray single-photon wave packet from a 57Co radioactive source 
can be slowed down up to 3 m/s and delayed by 144 ns in a 57Fe-enriched stainless-steel foil at room 
temperature. We also show that a similarly significant slowing down up to 24 m/s and a delay by 
42 ns can be achieved for more than 70% of the 100-ns 14.4-keV x-ray single-photon pulse from a 
synchrotron Mössbauer source available at European Synchrotron Radiation Facility (ESRF) and 
Spring-8 facility. The propagation velocity can be widely controlled by changing the absorber vibration 
frequency. Achieving the propagation velocity on the order of 1–50 m/s would set a record in the hard 
x-ray range, comparable to what was obtained in the optical range.

Controlled single-photon delay lines are in high demand for storage, long-distance communication and process-
ing of quantum information. Recently, a large number of techniques to delay optical pulses, based on slowing 
down pulse propagation in the medium, were proposed (see1–16 and references therein). Most of them utilize 
temporal1–11 or spatial12–16 dispersion of the medium and are based on producing a sharp dependence of the 
refraction index on the frequency or wavevector within the transparency spectral window covering the band 
of propagating light. Electromagnetically induced transparency (EIT) is one of the prevailing paradigms in the 
field1–5,17,18. The transparency induced via coherent population oscillation6,7, Autler–Townes splitting (ATS)10,11, 
opto-mechanical induced transparency8,9, transparency induced in structured optical waveguides with coupled 
micro-cavities13,14 and in other metadevices15,16 are conceptually related to EIT.

EIT made it possible to achieve the record slow-light velocity of about 17 m/s in a nanokelvin gas of sodium 
atoms2, 90 m/s in an optically dense hot (≈360 K) rubidium gas4, and 45 m/s in an optically dense crystal of 
Pr:Y2SiO5 at a temperature of 5 K5. The observation of a 13 ms delay in the polarization rotation of light trans-
mitted through a 87Rb cell at room temperature can be interpreted as a group velocity of 8 m/s3. Slowing down 
light to 57.5 m/s in a ruby crystal at room temperature was observed via transparency induced due to coherent 
population oscillation6. All these impressive results were obtained in the optical range.

The recoilless resonant interaction of high-energy x-ray photons with atomic nuclei is similar to the interac-
tion of optical photons with atomic electrons. At the same time, it has some attractive features making it prom-
ising for development of very compact quantum photonic devices in the x-ray range. Hard x-ray photons can 
be more easily and reliably detected than optical photons and focused to nano-size spot19, as well as penetrate 
through many optically opaque materials. The synchrotron Mössbauer sources (SMS)20–24 and 57Co radioactive 
Mössbauer sources (RMS)25–31 can produce narrowband (on the order of megahertz) heralded 14.4-keV photons 
with a coherence length of about 40 m. Spectrally narrow x-ray pulses can also be produced from synchrotron 
radiation (SR) with use of a high-speed mechanical chopper32 or polarization filtering33. The respective 14.4-keV 
resonant recoilless (Mössbauer) nuclear transitions in 57Fe nuclide normally have a few orders of magnitude 
narrower linewidths at room temperature (several megahertz) than transitions of bound electrons in atoms 
(several gigahertz), corresponding to very high Q-factor on the order of 1012. Together with the high density of 
the nuclei in a solid (up to 1023 cm-3) this allows for a large resonant optical depth with a small physical length 
of the absorber (an e-fold attenuation of 14.4-keV radiation is achieved in a 57Fe foil of about 70 nm thickness). 
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These properties of the recoilless photons and nuclei are promising for the development of very compact quantum 
photonic devices in the x-ray range.

However, most approaches well suited for optical and infrared ranges are currently not feasible for hard x-ray 
radiation with a wavelength shorter than an angstrom. This is due to the fact that high quality cavities, sufficiently 
high-intensity narrowband driving lasers, radiation pulses with controllable pulse shape and duration, as well as 
dielectric spatial structures with a characteristic scale on the order of the radiation wavelength, which are widely 
used in the optical range, are currently not available in the x-ray range.

At the same time, a number of alternative efficient methods for controlling the resonant interaction of x-ray 
photons with nuclear ensembles have been developed (see26–47 and references therein). In particular, several 
techniques have been proposed and implemented to reduce resonant nuclear absorption accompanied by a 
decrease in the propagation velocity of x-ray photons33,34,36–38. The 25% reduction in absorption of 14.4-keV 
photons was observed via anti-crossing of the upper energy sublevels of 57Fe nuclei in a crystal of FeCO3, which 
took place at 30 K due to the temperature-induced hyperfine magnetic field adjustment34. The estimated group 
velocity was on the order of 103 m/s. The decelerated propagation of 14.4-keV photons from a 57Co-source with 
velocity down to 660 m/s at room temperature through a 57Fe absorber due to a steep dispersion accompany-
ing a quadrupole doublet structure of the 14.4-keV transition inherent to some compounds was observed in39. 
The 4.5-fold suppression of 14.4-keV collective coherent emission in the given direction from two 57Fe layers 
imbedded into a specifically designed planar cavity was reported in38 with a perspective to achieve the 15-fold 
absorption suppression in the ideal case of the single-line 57Fe absorber. Subsequently, the subluminal propaga-
tion with controlled velocity of spectrally narrow 14.4-keV x-ray pulses through a nano-sandwich x-ray cavity 
with a single 57Fe layer in the reflection geometry was observed in33. The photon group velocity estimated from 
the measured controlled delay of the reflected pulses up to 35 ns was less than 3 × 104 m/s at room temperature. 
Recently, 148-fold suppression of the resonant absorption of the 14.4-keV photons from 57Co source in the 57Fe 
absorber was achieved via acoustically induced transparency (AIT) due to collective uniform oscillations of 
atomic nuclei37. The estimated photon group velocity was 5.6 × 103 m/s.

In this paper, we propose a technique for dramatic slowing down the x-ray photons up to several meters per 
second at room temperature, which is based on a sharp dispersion accompanying the AIT spectral window. The 
possibility of decelerating a significant part of the 14.4-keV single-photon wave packet from both RMS and SMS 
in a 57Fe-enriched stainless-steel foil under currently available experimental conditions is predicted.

The paper is organized as follows. In section "Basic idea" we analyze the dispersive properties of a vibrating 
medium in the laboratory reference frame considering as an example the 57Fe nuclear absorber. We show how 
a spectral dip in resonant nuclear absorption, accompanied by a steep normal dispersion, appears due to vibra-
tion of the absorber leading to a dramatic decrease in the group velocity of a narrow-band wave packet and the 
propagation velocity of a broadband wave packet. In section "Group velocity in vibrating reference frame", we 
provide a complementary physical picture of the decrease in the group and propagation velocities using the 
reference frame co-moving with the vibrated absorber. In section "Photon waveform in the vibrating absorber", 
we derive the integral equation for intensity of the transmitted single-photon wave packet proportional to the 
time dependence of the photon detection probability (the photon waveform). In the next three sections "Slowing 
down Gaussian photons", "Slowing down Lorentzian photons", "Slowing down Lorentz-squared photons", this 
integral equation is used to determine the propagation delay and propagation velocity of the single-photon wave 
packet for various spectral shapes, namely, Gaussian, Lorentzian and Lorentz-squared. In sections "Slowing down 
Lorentzian photons" and "Slowing down Lorentz-squared photons", we also determine the optimal values of both 
the vibration frequency and the optical depth of the absorber for observing the longest propagation delay and 
slowest propagation velocity of 14.4-keV photons emitted by the 57Co radioactive source and the ESRF synchro-
tron source in a stainless-steel foil enriched with 57Fe nuclide. In section "Conclusion", we summarize the results.

Basic idea
As is well known, the propagation of a quasi-monochromatic wave packet
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spectrum of a resonant quantum transition (spectral transparency window), then it is always accompanied by 
normal and steep dispersion, described by the Kramers–Kronig relation. For this reason, various techniques 
for achieving slow group velocity differ from each other primarily by the physical mechanism that provides 
the transparency window. For example, driving a resonant transition in a three-level medium by a sufficiently 
strong field can lead to transparency for the field resonant to an adjacent atomic transition due to interference 
of the induced atomic transitions (EIT) or, in the case of a significantly stronger field, due to the disappearance 
of the atom–field interaction as a result of Autler–Townes splitting. Both mechanisms cause light slowing2,17,18.

Similarly, piston-like vibration of a resonant two-level absorber along the direction of photon propagation 
can result in AIT37,46, which should also lead to a decrease in the group velocity of photons. In order to show 
this, let us calculate the susceptibility of the vibrating medium in the laboratory reference frame. For this pur-
pose, following the references37,46, we find the resonant nuclear polarization P21 of quantum transition |1� → |2� 
induced under the action of a monochromatic Fourier constituent Eq. (2) of the field Eq. (1) at the entrance of 
the absorber, z = 0 . The two-level absorber with quantum transition frequency ω21 sinusoidally vibrates as a 
whole (piston-like) along z-axis (Fig. 1), 

where z′ is the coordinate in the vibrating reference frame, Ω, R, and ϑ are the circular frequency, amplitude, and 
initial phase of vibration, respectively. Equation (4) describes the case when the thickness of the absorber, L, is 
much less than the wavelength of sound, L ≪ 2πVsound/� (where Vsound is the speed of sound in the absorber) 
and its motion is non-relativistic,R� ≪ c.

The induced resonant polarization in the nuclear absorber can be represented within the model of electric-
dipole field-matter interaction (see26,30,31,37,46 and references therein): P21 = faNd12ρ21 , where ρ21 is the induced 
coherence of the resonant nuclear transition, fa is the Lamb-Mössbauer factor accounting for the probability of 
recoilless absorption, N is the concentration of resonant nuclei, and d12 = d∗21 is the effective dipole moment of 
the resonant nuclear transition |1� ↔ |2� . With an effective dipole moment, this model correctly describes the 
magnetic-dipole interaction of 14.4-keV photons with 57Fe nuclei25,26,30. Motion of the absorber leads to shifting 
its quantum transition frequency, ω21, relative to the spectral line of the motionless source due to the Doppler 
effect. The respective transition frequency of the moving absorber is ω̃21 = ω21 + k0 v , where v = dz/dt is the 
velocity of the absorber in the laboratory reference frame. As a result, the master equation for coherence ρ21 
induced by the monochromatic Fourier constituent of the incident field Eq. (1), has the form

where n12 = ρ11 − ρ22 is the population difference between the states |1� and |2� and γ21 is the half-width at half-
maximum (HWHM) of spectral line of the resonant transition, and the relation � ≪ ω21,ω is assumed. Since 
the considered x-ray field is too weak to change the populations of the states |1� and |2� , we assume below that 
n12 = 1 . Solution of Eq. (5) can be searched in the form

Then Eq. (5) for the amplitude of coherence, σ21, reads as

where p = k0R is the modulation index of the absorber’s quantum transition frequency due to its vibration. Using 
the Jacobi-Anger expansion, e±ip sin φ =

∞
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±inφ (where Jn(p) is the n-th Bessel function of the first kind) 
one can find from Eq. (7) the amplitude of the induced resonant coherence σ21 as

 where

So, according to Eqs. (6) and (8), the monochromatic incident field E(ω, z)e−iωt induces nuclear coherence 
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frequency, ω + q� , q ∈ Z, q �= 0:
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is the nuclear coherence induced at the frequency of the monochromatic field, ω , and

 is the nuclear coherence induced at the combination frequency, ωq = ω + q� due to the absorber vibration.
According to Eqs. (11), (12), the polarization with a comb-like spectrum transforms the incident monochro-

matic field into a multi-frequency field inside the absorber. The amplitudes of the central spectral component and 
sidebands of the nuclear response are determined by the modulation index p . As can be seen from Eqs. (11), (12) 
and was shown in31,40–42,47, at some values of the modulation index (for example, at p = 1.84 ), the amplitudes of 
the central component and several sidebands of the nuclear response are comparable. This makes it possible to 
transform the incident monochromatic or quasi-monochromatic radiation Eq. (1) into a sequence of ultrashort 
pulses, which was theoretically studied in40,41,47 and experimentally implemented in31,42.

The case of AIT with preserving spectral-temporal characteristics of γ-ray photons was realized in37 at other 
values of the modulation index (see also46), namely at

corresponding to the amplitude of the absorber vibration

For these values, J0(pi) = 0 in Eqs. (11) and (12). If the absorber vibration frequency is large enough, � ≫ γ21 , 
then in the case of the near-resonant monochromatic field, |ω21 − ω| ≪ � , all other terms in sums of Eqs. (11) 
and (12) are negligible since ηn ≈

(

γ21
n�

)2 − i γ21n� , n  = 0 (see also supplemental material in37). In other words, the 
nuclear response both at the frequency of the incident monochromatic field, ω , (Eq. (11)) and at the combination 
frequencies, ωq , (Eq. (12)) is vanishing, i.e. the medium becomes transparent, preserving the spectral-temporal 
characteristics of the field.

Now consider the dependence of the nuclear response at the frequency of the incident monochromatic field, 
ω , Eq. (11), for an arbitrary absorber vibration frequency, � , and for a certain vibration amplitude, R = R1 , cor-
responding to the modulation index p = p1 (the nuclear response at the combination frequencies, Eq. (12), will 
be considered afterwards). In this case, the nuclear susceptibility, χ21(ω) , follows from Eq. (11) according to the 
relation P21 = faNd12ρ

(0)
21 = χ21(ω)E(ω, z)e

−iωt and reads as

According to Eq. (15), the hilly-like response spectrum of the vibrating absorber at the frequency of the 
monochromatic field, ω , (Fig. 2) is the result of a weighted sum of Lorentzian contours separated by the vibration 
frequency, � . The imaginary part of the nuclear susceptibility, Eq. (15), has a dip centered at the nuclear transi-
tion frequency ω21 between two absorption peaks shifted at the absorber vibration frequency, ±� , forming the 
AIT spectral window (Fig. 2, red line). The depth and width of the AIT spectral window is determined by the 
ratio between the absorber vibration frequency, � , and the absorber transition halfwidth, γ21 , similar to the 
transparency window induced due to Autler-Townes splitting by a strong driving field with frequency �48. At 
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Figure 1.   (Color online) Energy scheme of 14.4-keV photon propagation through the vibrating absorber 
used in the experiment37. Recoilless 14.4-keV photons (λ0 = 2πc/ω0≈0.86 Å) resonantly interact with transition 
|1� ↔ |2� of 57Fe nuclei when propagating through the single-line 57Fe absorber. They are resonantly absorbed 
in motionless absorber (black lines). Harmonic vibration of the absorber as a whole (piston-like vibration) with 
circular frequency Ω, amplitude R, and initial phase ϑ along the photon propagation direction (marked in red) 
leads to periodic temporary variation in |1� ↔ |2� transition frequency ω21(t) (dashed red curves) due to the 
Doppler effect. It modifies the interaction of photon with absorber and can result in AIT (see Fig. 2 and text). 
The axis z labels the laboratory reference frame, red axis z’ labels reference frame of the vibrating absorber, and 
Δz = z−z’.
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large vibration frequency, � ≫ γ21 , the width of the AIT spectral window tends to 2� and is much larger than 
t h e  nu c l e a r  t r a n s i t i o n  l i n e w i d t h .  I n  t h i s  c a s e ,  t h e  A I T  i s  n e a r l y  p e r f e c t , 
Im{χ21(ω)} ≈ 2χ0

∞
∑

n=1

J2n
(

p1
)

γ 2
21

/

(n�)2 ≪ χ0.

If the absorber vibration frequency is on the order of the nuclear transition linewidth, � ∼ γ21 , the AIT win-
dow becomes narrower than 2� (Fig. 2, red line), whereas the resonant nuclear absorption (the imaginary part 
of the absorber susceptibility at ω = ω21 in Eq. (15)) increases and strongly depends on the absorber vibration 
frequency. For this reason, it is convenient to introduce an effective resonant optical depth (effective Mössbauer 
thickness) of the vibrating absorber,

 generalizing the usual resonant optical depth (Mössbauer thickness) of the motionless absorber,

According to Eqs. (15), (16), the effective resonant optical depth can be expressed as

As shown in Fig. 2 by blue line, the dispersion of the nuclear resonant transition (the real part of susceptibil-
ity in Eq. (15)) is normal and almost linearly depends on the frequency with a steep slope over most of the AIT 
spectral window. In the case of a sufficiently small absorption of the field inside the AIT window, T(eff )a ≪ 1 , 
the slope of the dispersion curve determines the group velocity of a narrowband wave packet, the spectral width 
of which is much less than the width of the AIT window. The corresponding condition is � ≪ � , where � is 
the HWHM of the field spectrum. In the case of a large absorber vibration frequency, � ≫ γ21 , the narrowband 
wave packet can be essentially broader than the absorber linewidth, γ21 ≪ � ≪ � . In the case � ∼ γ21 , the 
narrowband wave packet should meet the condition � ≪ γ21.

The group velocity of the narrowband wave packet resonant to the nuclear transition, ω0 = ω21 , follows from 
Eqs. (3) and (15) with accounting for ε(ω) = 1+ 4πχ21(ω),

where σ0 = 4πω21d
2
21

/

(c�γ21) = 2.56× 10−18cm2 is the cross-section of the resonant 14.4-keV transition of 
57Fe nucleus, assumed to be naturally broadened, γ21

/

(2π) = 0.56 MHz . Below we consider the absorber in the 
form of a stainless-steel foil at room temperature. In this case, the typical value of the Lamb-Mössbauer factor 
is fa = 0.75.

As follows from Eq. (19), the group velocity of the narrowband wave packet does not depend on either the 
optical depth or physical thickness (see also Fig. 4d below), but only on the nuclear parameters and the con-
centration of nuclei. The minimum group velocity is achieved at maximum concentration of 57Fe nuclei, N  . 
Therefore, we consider hereinafter a stainless-steel foil Fe70Cr19Ni11, with 95% of 57Fe in iron fraction30,37,49,50 
corresponding to N ≈ 5.5× 1022cm−3 . In this case, the term before the sum in Eq. (19) equals 4.5 × 108. Accord-
ing to Eq. (18), the transparency condition T(eff )a ≪ 1 limits the absorber vibration frequency in an optically 
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Figure 2.   (Color online) Absorption (red curve, right axis) and dispersion (blue curve, left axis) of the vibrating 
resonant absorber at the frequency of the monochromatic field, ω , according to Eq. (15) in the laboratory 
reference frame for p = p1 = 2.4 and �

/

γ21 = 3 . The black dashed curve (right axis) is the absorption line of 
the motionless absorber plotted according to Eq. (15) for p1 = 0 . The black dashed curve here also represents 
the incident wave packet with Lorentz spectrum of the HWHM � = γ21.
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deep absorber, Ta > 1 , to approximately � ≥ 3γ21 . Thus, for � = 3γ21 , the group velocity of a narrowband wave 
packet, � ≪ �, γ21 is vg ≈ 12 .4 m

/

s . Increase in the frequency of the absorber vibration leads to increase in 
the group velocity. However, the group velocity remains significantly less than the speed of light, approaching 
the latter only at �

/

γ21 > 104.
The group velocity of propagation of the narrowband wave packet through the absorber of thickness L can 

also be characterized by the group delay, τg , at the exit from the absorber relative to the transmission time, L
/

c , 
in free space,

Following Eqs. (18)–(20), the group delay can be estimated as

As follows from Eq. (21), due to the AIT condition T(eff )a ≪ 1 , the group delay of the narrowband wave packet 
cannot exceed the decay time of the resonant nuclear transition, namely, τg ≪ (2γ21)

−1.
Now let us consider the nuclear response to the incident monochromatic field at the combination frequencies, 

ωq = ω + q� , q ∈ Z, q �= 0 , Eq. (12). The nuclear susceptibility χ(q)
21 (ω) at the combination frequency ωq follows 

from Eq. (12) according to the relation P(q)21 = faNd12ρ
(q)
21 = χ

q
21(ω)E(ω, z)e

−iωqt and reads as

Comparison of Eq. (22) with Eq. (15) shows that the nuclear response appearing at the combination fre-
quencies is comparable to the nuclear response at the frequency of the incident field and hence should be taken 
into account in the case of relatively small vibration frequency � ∼ γ21 . The field appearing at the combination 
frequencies can distort the shape of the transmitted narrowband wave packet in such a way that the resulting 
propagation velocity and propagation delay may differ from the group velocity and group delay.

It should be noted that existing sources of 14.4-keV radiation considered below have the linewidths compara-
ble to or larger than the linewidth of the 57Fe absorber (as shown in Fig. 2 by black dashed line). This means that 
in the most interesting case of a relatively low absorber vibration frequency promising the slowest group velocity, 
the group velocity and group delay model itself can be invalid for such relatively broadband wave packets. The 
real propagation velocity and propagation delay of the broadband wave packet in the vibrating absorber can dif-
fer from the group velocity and group delay of the narrowband wave packet. Nevertheless, as shown above, the 
steep resonant dispersion within the AIT window remains the basic physical mechanism of slowing down and 
delaying the incident wave packet once the major part of its spectrum is inside the AIT window.

Group velocity in vibrating reference frame
As shown in31,37,42,46,47, the transition from the laboratory reference frame to the reference frame co-moving with 
the vibrating absorber ultimately gives the same results, but significantly simplifies calculations and allows for 
more transparent interpretation of the discussed effects. Indeed, in the vibrating reference frame, the absorber 
becomes motionless and has the Lorentzian spectral line of the resonant quantum transition with a HWHM γ21 
and a central frequency ω21 (Fig. 3),
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/
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Figure 3.   In the vibrating reference frame, real (blue curve, left axis) and imaginary (red curve, right axis) parts 
of the resonant susceptibility Eq. (23) of the motionless absorber as well as the power spectral density of the 
resonant, ω0 = ω21 , relatively broadened, �G = γ21 , incident wave packet with Gaussian spectral profile Eq. (36) 
(black dashed line) under �

/

γ21 = 3 and p = p1 = 2.4 . The vertical black bars represent Fourier constituents 
with maximum amplitude at the frequencies ωn = ω0 + n� . In the case of a narrowband incident wave packet, 
the vertical black bars can be attributed to the discrete spectral components of the frequency-modulated field, 
having very narrow profiles. In the case under consideration, the plus- and minus-first broadened sidebands 
(black dashed line) are in the region of steep normal material dispersion.
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The resonant susceptibility Eq. (23) immediately follows from Eq. (15) at p1 = 0 or from the well-known 
master equation for the nuclear coherence, ρ21 , of the two-level system, induced by the monochromatic field,

However, in the vibrating reference frame, the incident field Eq. (1) becomes frequency-modulated, 
E(t, z′ = 0) = A(t, z′ = 0) exp [−iω0t + ik0R sin(�t + ϑ)] , which directly follows from substituting Eq. (4) into 
Eq. (1) and neglecting the harmonic modulation in the slowly varying amplitude of the quasi-monochromatic 
field (for more details, see47). Using Jacobi-Anger expansion, this frequency-modulated incident field can be 
represented as a set of partial wave packets with the carrier frequencies ω0 + n� , n ∈ Z and slowly varying 
amplitudes A(t, z′ = 0)J−n(p)e

−inϑ,

Their broadened spectral contours overlap (Fig. 3), forming a hilly-like resulting spectrum. Each Fourier 
constituent of the resulting spectrum is the superposition of contributions from all spectral contours,

where ωn = ω0 + n� is the carrier frequency of the n-th wave packet (the central frequency of the n-th spectral 
contour) and S

(

ω, z′
)

= 1
2π

∞
∫
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A
(

t, z′
)

eiωtdt is the spectral contour of the slowly varying amplitude of the par-

ent wave packet.
In the case of a narrowband wave packet, namely � ≪ γ21,� , the well-defined spectral components with 

narrow contours (the black vertical solid bars in Fig. 3) are separated by the frequency of the absorber vibration, 
� . Their amplitudes and the corresponding spectral phases are determined by the Bessel function of the first 
kind, J−n

(

p
)

 , where n is the number of a spectral component, and the initial phase of the absorber vibration, ϑ . 
For the resonant incident field, ω0 = ω21 , its spectral components in the vibrating reference frame are arranged 
symmetrically with respect to ω21 , whereas at p = p1 the amplitude of the resonant spectral component is zero. 
If � > γ21 , other components are in the range of relatively small resonant absorption (determined by 
Im

[
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(vib)
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]

 in Eq.  (23)) and steep slope of the resonant normal dispersion (determined by 
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/
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 in Eq. (23)) (Fig. 3). The latter leads to a decrease in the group velocities of the spectral 
components.

However, both the resonant absorption and the slope of the resonant dispersion of nuclei depend on the 
frequency and, therefore, are different for different spectral components. Both become smaller for ±(n+ 1) 
spectral component compared to ±n spectral component (Fig. 3). As a result, according to Eq. (3), Eq. (20), 
Eq. (23), the n-th quasi-monochromatic spectral component experiences its own group delay due to the slope 
of the material dispersion,

Its own attenuation is determined by the absorber optical depth at frequency ω21 + n�:

Comparison of Eq. (27) with Eq. (21) allows to assume that in the case of a narrowband wave packet and an 
optically thin absorber, the group delay, τg , of the wave packet in the laboratory reference frame (Eq. (21)) is the 
weighted average of group delays of the spectral components, τ (n)g  , in the vibrating reference frame. As follows 
from Eqs. (28) and (19), the same correspondence is present between the effective resonant optical depth of the 
absorber in the laboratory reference frame, T(eff )a  , and the absorber optical depths T(n)

a  , in the vibrating reference 
frame. This assumption will be verified in section "Slowing down Gaussian photons".

At the same time, in the case of an optically deep absorber, Ta > 1 , and a low vibration frequency, � ∼ γ21 , 
this correspondence should vanish. Indeed, during propagation, the most intense and slowest plus- and minus-
first narrowband spectral components (the vertical black bars in Fig. 3) are absorbed much stronger than other 
components. In the laboratory reference frame considered in section "Basic idea", this is equivalent to the gen-
eration of sidebands ρ(q)21  in the nuclear response (see Eq. (12)) and the appearance of a forward scattered field 
at the corresponding frequencies. As a result, the envelope of the wave packet may be reshaped. As follows from 
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Fig. 3, the reduction of the slowest ±1 spectral components due to absorption will lead to a smaller pulse delay 
compared to the group delay, since the relative contribution of the ±2,±3, ... spectral components, located on the 
less inclined nuclear dispersion, increases. The larger Ta , the smaller the ±1 spectral components and the smaller 
the pulse delay. This means that, in contrast to the group velocity independent of the absorber optical depth, 
the propagation velocity even for a narrowband wave packet must be higher than the group velocity estimated 
in the previous section and must increase with increasing the absorber optical depth (see also Fig. 4 below).

In the case of an incident wave packet with a broader linewidth typical for x-ray sources, different Fourier 
constituents of its spectrum (Fig. 3, black dashed line) experience different phase incursion and absorption 
depending on the spectral-temporal characteristics of the incident field, which corresponds to the group velocity 
dispersion and nonuniform absorption over the spectral contour. This difference increases at lower frequencies 
of the absorber vibration, which also leads to a change in the envelope of the transmitted wave packet and, can 
cause a change in the propagation velocity and delay. However, if a major part of the incident pulse spectrum 
in the vibrating reference frame is located in the range of normal nuclear dispersion (Fig. 3, blue line with a 
positive derivative), this dispersion ultimately leads to slowing down the pulse or, at least a significant part of it.

Thus, in the vibrating reference frame, the basic mechanism of photon slowing down is the same as in the 
laboratory reference frame, namely, it is a steep dispersion of the resonant nuclear transition, which can be 
accompanied by the above-mentioned effects. The correspondence between these reference frames is that the 
normal resonant dispersion at the frequency of the transparent nuclear transition for a single-frequency field 
in the laboratory reference frame is equivalent in the vibrating reference frame to the normal dispersion on the 
wings of the opaque nuclear transition for a set of spectral components of the transformed field, symmetrically 

Figure 4.   Characteristics of the relatively broadband Gaussian single-photon pulse (Eq. (36), where 
�G = γ21 ) at the output from the vibrating absorber. (a) The moment (in nanoseconds) of formation of the 
pulse maximum, τd , according to Eq. (34), (b) the normalized peak intensity of the transmitted pulse, αpeak , 
according to Eq. (33), and (c) the reciprocal propagation velocity, 1

/

v , according to Eq. (35), as functions of the 
normalized absorber vibration frequency, �

/

γ21 , and the resonant optical depth, Ta (see (17)) of the absorber 
plotted using numerical integration of Eq. (33). (d) The propagation velocity, blue line, of the same wave packet 
as a function of the resonant optical depth, Ta , at the fixed absorber vibration frequency, �

/

γ21 = 3 , calculated 
using Eq. (35) and numerical integration of Eq. (33). Yellow, green and red stars in (a) mark the lines of constant 
group delay, τg = 7.6 ns , 20 ns , and 30 ns , respectively, estimated for a narrowband pulse, �G ≪ γ21 , by Eqs. 
(40), (21). Yellow and green circles in (b) mark the lines of constant peak intensity of the transmitted pulse, 
α
(an)
peak = 0.92 and 0.8 , respectively, estimated for a narrowband pulse, �G ≪ γ21 , by Eqs. (43), (18). Green and 

yellow dashed lines in (c) correspond to the group velocities, vg = 54 m/s , and vg = 107 m/s , respectively, of the 
narrowband pulse, �G ≪ γ21 estimated by Eq. (19). On all panels, the black dashed lines mark the boundary 
Ta =

(

�
/

γ21
)2 + 1 (see Eq. (41)), approaching to which from the right and bottom in (a)–(c) and from the left 

in (d) invalidates the group velocity model. Other parameters of the absorber are presented after Eq. (19).
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detuned from the frequency of the nuclear transition to the region of low absorption. Different attenuation of 
the field spectral components due to different absorption in the vibrating reference frame is equivalent to the 
appearance of sidebands in the laboratory reference frame.

Photon waveform in the vibrating absorber
All factors contributing to the photon propagation velocity are naturally taken into account in the temporal 
form of intensity (the photon waveform) at the exit from the absorber. In this section we calculate the intensity 
of spectrally broadened wave packet, Eq. (1), transmitted through the vibrating absorber. It is the intensity that 
is measured in the experiment and is used to determine the pulse delay in the medium. As is well-known and 
shown in26,31,37,42,46,47,51, for a weak field, in vibrating reference frame, the susceptibility of the absorber Eq. (23) at 
the frequency ω determines both the phase incursion and the amplitude of a monochromatic Fourier constituent 
at an arbitrary depth z′ in the absorber according to the Beer–Lambert–Bouguer law,

which directly follows from the wave equation cdE(ω, z′)
/

dz′ = i2πω21χ
(vib)
21 (ω)E(ω, z′) , where n12 = Const . 

For the case of frequency comb (see Eq. (26)), Eq. (29) turns to

where Sin(ω) ≡ S
(

ω, z′ = 0
)/

A0 is the spectral contour of the incident field in Eq. (26), normalized by its maxi-
mum value, A0 . Then the total field can be obtained by integrating Eq. (30) over ω,

Substitution of Eq. (4) into Eq. (31) and neglecting the harmonic modulation in the slowly varying ampli-
tude (for more details, see47) gives the field in the laboratory reference frame, which differs from Eq. (31) by 
exp

[

−ip sin (�t + ϑ)
]

 . Thus, the intensity of the field, I(t, z′) ∝
∣

∣E(t, z′)
∣

∣

2 , is the same in the laboratory and 
vibrating reference frames. At the exit from the absorber, the intensity Iout(t) ≡ I(t, L) is

More detailed derivation of Eqs. (31) and (32) can be found in31,37,46,47.
As discussed above, the strongest slowing down in the AIT medium is expected for radiation having the 

smallest available spectral width. In the case of the 14.4-keV transition of 57Fe, the existing sources of narrowband 
resonant radiation suitable for AIT are 57Co radioactive Mössbauer sources25–31 and synchrotron Mössbauer 
sources20–24. Their minimum emission linewidth is close to the 57Fe absorption linewidth. In this case, both RMS 
and SMS can produce in a given direction only a sequence of single photons separated in time20–31,37–39,42. In 
the experiment, a single-photon wave packet Eq. (1) or Eq. (31) is formed as a result of measuring the number 
of the detected 14.4-keV photons per unit of time (i.e., count rate) as a function of time starting from a certain 
moment associated with the beginning of the single-photon wave packet. In the case of RMS 57Co, this moment 
is the detection of 122-keV photon that heralds the population of the emitting 14.4-keV state in the source. In 
the case of SMS, this moment is the emission time of SR pulse from the storage ring. The time dependence of 
the photon count rate is proportional to the time dependence of the photon detection probability, as well as to 
the intensity of the single-photon wave packet, Eq. (32). It is also called the photon waveform.

In the case of the vibrating 57Fe absorber, the initial vibration phase ϑ in Eq. (4) and the beginning of the 
single-photon wave packet can be matched31,42,46,47 or can be independent37,46. In the former case, the intensity 
of the single-photon wave packet transmitted through the AIT absorber is described by Eq. (32). The latter 
case is naturally realized with RMS due to stochastic emission of the radioactive source as well as with SMS if 
the absorber vibration frequency is not a multiple of the SR pulse repetition rate. In this case, the intensity in 
Eq. (32) should be averaged over the absorber initial vibration phase, ϑ . Then if the carrier frequency of the 
14.4-keV single-photon wave packet is in resonance with the 57Fe absorber transition, ω0 = ω21 , Eq. (32) can 
be written in the form

 where δ = ω − ω21 is the detuning of the Fourier constituent, ω , from the resonance, and I0 = cA2
0

/

(8π) . It 
should be noted that according to Eq. (25), the transmitted intensity, Eq. (33), constitutes a weighted average of 
the intensities of the single-photon wave packets A(t, z′ = 0)e−inϑ e−i(ω21+n�) t after their independent transmis-
sion through the motionless absorber.

Below equation (33) is solved numerically, as well as analytically, under certain approximations discussed in 
section "Slowing down Gaussian photons". It determines the waveform of the transmitted photon, as well as the 
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output peak intensity, αpeak ≡
〈

Iout
(

t(out)max

)〉

ϑ0

/

I0 = Max
[

�Iout(t)�ϑ0
/

I0
]

 , and the moment when the output 
peak intensity occurs, t(out)max .

The output peak intensity αpeak characterizes the absorption of the single-photon wave packet Eq. (33), 
transmitted through the absorber of length L . It should be noted that in experiments with a 57Fe absorber, the 
propagation of γ-ray or x-ray photons through the absorber is also accompanied by the non-resonant attenuation 
due to photoelectric effect. Therefore, the intensity Eq. (33) of the single-photon wave packet should be estimated 
as 
〈

I
(exper)
out (t)

〉

ϑ
= �Iout(t)�ϑ exp {−µL} , where µ is the linear photoelectric absorption coefficient. Below we 

consider a stainless-steel foil with µ ≈ 5 × 104 m−153 and thickness below 1 µm. In this case, the difference between 
the experimentally measured intensity, 

〈

I
(exper)
out (t)

〉

ϑ
 , and the considered below intensity 〈Iout(t)〉ϑ in Eq. (33), 

is less than 5%.
The moment t(out)max  determines the corresponding propagation delay, τd , of the pulse relative to the propaga-

tion time, L/c , in free space,

where t(in)max is the time of the maximum intensity at the absorber entrance. The corresponding propagation velocity 
of the single-photon wave packet in the medium is defined as

As discussed above and will be shown below, the propagation velocity and propagation delay of the single-
photon wave packet emitted by the x-ray sources can differ from the group velocity and group delay.

Slowing down Gaussian photons
L e t ’s  f i r s t  c on s i d e r  t h e  m o d e l  G au s s i a n  1 4 . 4 - k e V  s i n g l e - p h ot on  w av e  p a c k e t 
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−t2�2
G
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2
)

e−iω0 t , with spectral profile

The rapidly decreasing spectral wings of the Gaussian spectrum Eq. (36) make it possible to obtain an analyti-
cal solution of Eq. (33), 

〈

I
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〉

ϑ

/

I0 , in the case of a relatively narrowband wave packet, �G ≪ γ21 . Expansion 
of the absorber susceptibility in Eq. (33) in the Taylor series by (δ − n�)

/

γ21 (i.e., in the vicinity of the central 
frequency ωn of the n-th spectral component) to the linear term of the imaginary part and the constant term of 
the real part can be written as

This is equivalent to assumption of the linear dispersion of the absorber on the scale �G and uniform (as a 
whole) absorption of the contour Sin(δ − n�) of the n-th spectral component. In other words, in this approxima-
tion, the corresponding partial wave packet An(t, z

′)e−i(ωn t−k0z
′) of the sum given by Eq. (25) propagates with 

group velocity v(n)g ≃ L
/

τ
(n)
g  (see also Eq. (27)) determined by the slope of the nuclear dispersion at frequency 

ωn , and is absorbed as a whole with the absorption coefficient T(n)
a

/

2 (see also Eq. (28)), as a narrowband wave 
packet. In Fig. 3 this approximation corresponds to vertical black bars. In this case, one can write the intensity 
Eq. (33) of the transmitted single-photon wave packet Eq. (36) in the form,

The maximum of function Eq. (38) corresponds to the moment of the pulse peak formation, t(out)max  , which, 
according to Eq. (34), determines the photon propagation delay t(out)max ≃ τd (since t(in)max = 0 ). Equating the time 
derivative of Eq. (38) to zero gives the relation

Solution of Eq. (39) coincides with the group delay Eq. (21), and verifies our assumption in section "Group 
velocity in vibrating reference frame" about the weighted average,
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 provided two conditions are fulfilled: (1) the absorber vibration frequency is high enough and/or the absorber 
optical depth is small enough to provide sufficiently low absorption for the plus- and minus-first frequency 
components, T(1)

a ≪ 1 or

 and (ii) the group delay of the plus- and minus-first spectral components, which primarily determines the delay 
of the single-photon wave packet, is less than the duration of the incident wave packet, τ (1)g �G ≪ 1 , or

The condition given by Eq. (41) corresponds to the condition T(eff )a ≪ 1 and allows neglecting the 
absorption of spectral components. The condition given by Eq. (42) limits the spectral width of the inci-
dent wave packet taking into account the vibration frequency and optical depth of the absorber. At this 
condition, the group delays of the strongest plus- and minus-first partial wave packets in sum of Eq. (25), 
A0 exp

(

−t2�2
G

/

2
)

J∓1

(

p1
)

e∓iϑ e−i(ω0±�) t , after passing through the absorber do not exceed their durations. 
Thus, according to Eqs. (27) and (28), conditions Eqs. (41) and (42) are sufficient for the validity of Eq. (40) and 
the assumption in section "Group velocity in vibrating reference frame", since the plus- and minus-first spectral 
components are the strongest and closest to resonance.

The relations given by Eq. (41), Eq. (42) limit the range of the parameter values at which the propagation of 
the Gaussian wave packet through the AIT-medium is well characterized by the group velocity Eq. (19), v ≃ vg , 
and group delay Eq. (21), τd ≃ τg , and may be described within the model of the AIT spectral window in the 
laboratory reference frame (see section "Basic idea"). In this parameter area, the peak intensity of the transmitted 
single-photon wave packet, following from Eqs. (38) and (40), is

Equation (43) constitutes the Beer–Lambert–Bouguer law for a resonant absorber that has become transpar-
ent due to AIT.

Let’s now consider the propagation delay, τd , propagation velocity, v , and output peak intensity, αpeak , of the 
relatively broadband, �G = γ21 , Gaussian 14.4-keV wave packet, Eq. (36), in the vibrating 57Fe absorber, obtained 
by numerical integration of Eq. (33), for various absorber optical depths and vibration frequencies (Fig. 4). The 
absorber is the discussed above stainless-steel foil Fe70Cr19Ni11 95% enriched with 57Fe nuclei having the natural 
linewidth, γ21

/

(2π) = 0.56 MHz , of the 14.4-keV resonant transition. For comparison, in Fig. 4, we also plotted 
analytical estimates for the group delay according to Eq. (21), group velocity according to Eq. (19), and peak 
intensity according to Eq. (43) of the narrowband Gaussian pulse.

As indicated by the relations in Eqs. (41) and (42), these analytical estimates can be considered only in the 
region of sufficiently large absorber vibration frequency and small optical depth i.e., far lower and to the right 
from the black dashed lines in Fig. 4a–c and to the left in Fig. 4d. As can be seen, in these regions, the analyti-
cal estimates for the narrowband wave packet are in rather good agreement with the numerical estimates for 
the broadband wave packet, �G = γ21 , (the starred, dotted and dashed colored lines are mostly within certain 
colors). Therefore, the propagation delay and propagation velocity of a broadband single-photon wave packet 
with a spectrum sufficiently narrower than the AIT window in an absorber with a sufficiently small optical depth 
indeed tend to group delay (Eq. (21)) and group velocity (Eq. (19)) due to the steep dispersion of the absorber, 
as discussed in section "Basic idea".

As can be seen in Fig. 4a,c at any fixed optical depth of the absorber, a decrease in the vibration frequency 
leads to an increase in the propagation delay and, accordingly, to a decrease in the propagation velocity of the 
broadband Gaussian pulse due to a steeper nuclear dispersion. However, at the same time, the peak pulse inten-
sity decreases (Fig. 4b) due to higher absorption. At a very low vibration frequency, a significant part of the field 
spectrum can fall into the region of anomalous nuclear dispersion and high absorption (see Fig. 3 in the vibrat-
ing reference frame and Fig. 2 in the laboratory reference frame), which leads to a large distortion of the photon 
waveform and a large decrease in the output intensity. Hence, the minimum allowable vibration frequency, �min , 
of the absorber is limited jointly by the linewidth of the nuclear resonance and the spectral width of the wave 
packet in such a way that most part of the plus- and minus-first spectral sidebands are located in the region of 
the normal material dispersion (Fig. 3). This condition is met if

Thus, Eq. (44) determines the absorber vibration frequency for achieving the greatest slowing down of photon 
via steep nuclear dispersion. In the case �G = γ21 , Eq. (44) is read as �min

/

γ21 = 3.
At this vibration frequency, according to Eqs. (41), (42), the model of the group velocity independent of Ta is 

valid only for optically thin absorber, i.e., at Ta < 1 . In an optically thicker absorber, photons are characterized 
by the propagation velocity, which we obtain by numerical integration of Eq. (33). As expected, the propagation 
velocity is higher than the group velocity (Fig. 4d), since ±n-th spectral components in the vibrating reference 
frame are attenuated stronger than ±(n+ 1)-th components (see Fig. 3 and the last three paragraphs in section 
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"Group velocity in vibrating reference frame"). At larger Ta , this difference in the absorption of spectral compo-
nents becomes greater leading to increase in the pulse propagation velocity (Fig. 4d). In such a way, the lowest 
propagation velocity can be achieved at the smallest Ta , tending to the group velocity at Ta < 1 . In this case, the 
intensity and shape of the pulse are preserved. For example, at Ta = 1 the propagation velocity is v ≈ 12.5 m/s 
(Fig. 4c,d), which is close to the group velocity estimated in section "Basic idea", whereas the peak pulse intensity 
is αpeak ≈ 0.92 (Fig. 4b yellow circles and Fig. 5 black solid line).

It should be noted that the small optical depth of the absorber corresponds to a small physical thickness 
(according to Eq. (17), Ta = σ0faNn12L ) and hence to a small delay of the pulse. For example, the thickness of our 
stainless-steel foil Fe70Cr19Ni11, 95% enriched with 57Fe and having Ta = 1 , is as small as L ≈ 95 nm . The corre-
sponding propagation delay, Eq. (35), of the Gaussian pulse, obtained from the numerical integration of Eq. (33), 
is only τd ≈ 7.6 ns (Fig. 4a, yellow stars and Fig. 5 black solid line). A much larger delay, namely τd ≈ 101.5 ns 
(Fig. 4a, upper left corner), accompanied by a relatively modest attenuation, αpeak ≈ 0.24 (Fig. 4b, upper left 
corner and Fig. 5), can be achieved with the absorber optical depth Ta = 30 corresponding to L ≈ 2.85µm . This 
pulse delay corresponds to the propagation velocity v ≈ 28 m/s . The waveform of the delayed Gaussian photon 
is shown in Fig. 5. It almost repeats the waveform of the incident photon. At the same time, stronger absorption 
of the spectral components closer to the resonance causes not only an increase in the propagation velocity, but 
also some lengthening of the pulse.

The delayed pulse in Fig. 5 is obtained both by numerical integration of Eq. (33) (red solid line) and by 
calculation using Eq. (38) (green dotted line). The latter assumes that, despite �G = γ21 , in the vibrating refer-
ence frame there is no group velocity dispersion and no change in the field absorption on the scale of the n-th 
( n = ±1,±2, ... ) spectral component (see also Fig. 3). The almost complete coincidence of the curves shows that 
the basic mechanism for slowing down and delaying this Gaussian pulse in the vibrating absorber is the steep 
normal nuclear dispersion on the wings of the spectral contour of the nuclear transition, accompanied by nuclear 
absorption at a high optical depth of the absorber in the co-moving reference frame.

In conclusion of this section, the slowest propagation velocity on the order of several tens of meters per second 
and the largest delay of about one hundred nanoseconds of the 14.4-keV Gaussian pulse with a relatively mod-
est attenuation of intensity and preservation of its shape can be achieved at the lowest 57Fe absorber vibration 
frequency (limited by the sum of the nuclear transition linewidth and field linewidth), providing the steepest 
nuclear dispersion. The accompanying attenuation of the field leads to a higher propagation velocity of the pulse 
compared to the group velocity and slight lengthening. They increase with an increase in the absorber optical 
depth. Along with this, the pulse delay also increases.

The Gaussian shape of the pulse provides the clearest physical picture of photon slowing down and delay due 
to AIT. However, the Gaussian pulses with photon energy of 14.4 keV suitable for slowing down and delay in 
the vibrating 57Fe absorber are not available yet. The available radioactive or synchrotron sources of 14.4-keV 
radiation produce photons with Lorentz or Lorentz-like spectral profiles. Slowing down of such photons in the 
vibrating resonant 57Fe absorber under AIT conditions is studied in the next two sections.

Slowing down Lorentzian photons
In this section, we consider the propagation of 14.4-keV photons with the Lorentz spectrum,

through the vibrating single-line 57Fe absorber under the above conditions of AIT Eqs. (13), (14). Such photons 
are typically emitted by RMS 57Co as well as by SMS at certain conditions21,23 The RMS 57Co linewidth is usually 
comparable to the 57Fe absorber resonance linewidth. Thus, as a limiting case, we assume the natural linewidths 

(45)Sin(δ) =
1

2π

1

γS − iδ
,

Figure 5.   Time dependence of the intensity of the 14.4-keV Gaussian single-photon wave packet Eq. (36) at 
the entrance (blue dashed line) and exit from the absorber vibrating at the frequency �

/

γ21 = 3 with amplitude 
R1 = 0.38� , Eq. (14), corresponding to p1 = 2.4 , Eq. (13), as well as for �G

/

(2π) = γ21
/

(2π) = 0.56 MHz . 
The black solid thin line corresponds to Ta = 1 , whereas the red solid and green dotted lines correspond to 
Ta = 30 . The black and red solid lines are calculated by the numerical integration of Eq. (33), whereas the green 
dotted line is calculated using Eq. (38) without taking into account the contributions of both the group velocity 
dispersion and the frequency-dependence of the absorption within each spectral component.
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of both the source and absorber, γS
/

(2π) = γ21
/

(2π) ≈ 0.56 MHz . The spectrum Eq. (45) corresponds to the 
exponentially decaying incident single-photon wave packet Eq. (1) with a stepwise front,

where θ(t) is the unit step function. The long spectral wings corresponding to the stepwise front edge of the 
single-photon wave packet Eqs. (45), (46), propagate through the absorber almost without resonant interaction. 
In the motionless absorber, this corresponds to formation of a Sommerfeld-Brillouin precursor, described by 
equation �Iout(t)�ϑ

/

I0 = θ(t)e−Ŵ21t J20
(√

Ŵ21Tat
)

 (where Ŵ21 = 2γ21)25,51, in the output photon waveform, which 
follows from Eq. (33). It has the stepwise front edge and its maximum is not delayed. Its half-height duration can 
either be much shorter than the duration of the incident pulse, τSB ≈ 1

/

(Ŵ21Ta) (called the speedup effect51), 
if Ta ≫ 1 , or approach the incident pulse duration, τSB ≈ 1

/

Ŵ21 , if Ta ≪ 1 . Thus, the polarization response of 
the medium to the Lorentzian pulse is delayed, being formed during the time τSB . As a result, in contrast to the 
Gaussian pulse delayed in the AIT-absorber as a whole, the Lorentzian single-photon wave packet should be 
split into two parts: the Sommerfeld-Brillouin precursor passed without delay, and the next delayed part due 
to the field-nuclei interaction (see also Fig. 7). The total delay of the delayed part of the pulse is summed up 
from the delayed nuclear response and the delay due to the real part of the nuclear response corresponding to 
dispersion of the nuclear transition. Taking this into account, we estimate the propagation delay, τd , Eq. (34), 
and propagation velocity, v , Eq. (35), of the delayed part of the Lorentzian wave packet by numerical calculation 
of the intensity, Eq. (33), where τd = t(out)max  is the moment of time corresponding to the first maximum in the 
transmitted photon waveform, Eq. (33), following the initial moment corresponding to the undelayed peak of 
the Sommerfeld-Brillouin precursor, t(in)max = 0.

In Fig. 6 we show the dependences of the delay and reciprocal propagation velocity on the absorber optical 
depth, Ta , and its normalized vibration frequency, �

/

γ21 . In contrast to the case of the Gaussian photon, not two 
but three regions can be distinguished in each panel of Fig. 6. The dark blue region of relatively large absorber 
vibration frequency and small optical depth, Eq. (41), corresponds to high AIT, which was realized in37. A 
transmitted photon waveform, typical for high AIT, is shown in Fig. 7 by the thin black solid line. It is close to 
the exponential shape of the incident photon (blue dashed line in Fig. 7), since the half-height duration of the 
Sommerfeld-Brillouin precursor in this case is close to the duration of the incident photon, 144 ns, and the sub-
sequent delay due to nuclear dispersion is only about 8 ns, which is indistinguishable at the scale of the picture. 
This delay is approximately the same as the propagation delay of the Gaussian photon at these parameter values 
(see Fig. 5, solid black line) and is close to the group delay. In the numerical simulation used, this propagation 
delay is not identified, since in this case there is neither a dip nor a local maximum in the transmitted photon 
waveform after the front edge (the derivative changes value but does not change sign). This is also the reason for 
the contrast boundaries of the dark blue regions in Fig. 6, above which the local maximum begins to be identified.

In the regions near the upper left corners in Fig. 6a,b corresponding to large optical depth and low absorber 
vibration frequency, the vibrating absorber remains optically thick, T(eff )a > 1 . For example, the green line in 
Fig. 7 corresponds to T(eff )a ≈ 2 . In this case, a large attenuation of a relatively strong resonant part of the field 

(46)A(t, 0) = θ(t) exp (−γ21t),

Figure 6.   (a) The moment (in nanoseconds) of formation of the delayed pulse maximum, τd , as a function of 
the absorber normalized vibration frequency, �

/

γ21 , and the resonant optical depth, Ta (see Eq. (17)), plotted 
using numerical integration of Eq. (33) taking into account Eq. (45). The green circle marks the longest photon 
delay of 144 ns. (b) Dependence of the reciprocal propagation velocity, 1

/

v in (m/s)−1, on the absorber vibration 
frequency, �

/

γ21 , and the optical depth, Ta , calculated according to Eq. (35) and panel (a). As above, the 
absorber is a stainless-steel foil Fe70Cr19Ni11, 95% enriched with 57Fe nuclide, vibrating with amplitude R1 in Eq. 
(14) corresponding to p = p1 in Eq. (13). The green circle marks the propagation velocity of photons having 
the longest photon delay, which corresponds to the red waveform in Fig. 7 and equals 4 m/s. The orange circle 
marks the minimum propagation velocity of Lorentzian photons equal to 3 m/s. In the dark blue regions, both a 
dip and a local maximum after the Sommerfeld-Brillouin precursor are absent (the derivative changes value but 
does not change sign), therefore zero value is set in the numerical simulation. Above the boundaries of the blue 
regions, both a dip and a local maximum after the Sommerfeld-Brillouin precursor are numerically identified.
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(due to overlapped long wings of the Lorentz spectral contours) in the vibrating reference frame (Fig. 8), leads to 
the so-called dynamical beats in the waveform of the output photon waveform25 (Fig. 7, green line). As a result, 
the distortions in the incident photon spectrum and waveform are so large that the concept of the pulse delay 
and pulse propagation velocity become inapplicable in this region.

As shown in Fig. 6, the maximum propagation delay and the minimum propagation velocity of the Lorentzian 
pulse occur at the minimum absorber vibration frequency, limited by relation (44), �

/

γ21 = 3 , as in the case of 
the Gaussian photon. However, unlike the Gaussian photon, in the case of the Lorentzian photon, there is also 
an optimal optical depth, Ta ≈ 6 , at which the propagation delay achieves the maximum value (Fig. 6a, green 
circle), whereas the propagation delay of the Gaussian photon constantly increases with increasing optical depth 
(see Fig. 4a). The maximally delayed Lorentzian single-photon pulse at optimal values of � and Ta is shown in 
Fig. 7 by the solid red line. It consists of two maxima. The first maximum at t = 0 corresponds to the peak of the 
undelayed Sommerfeld–Brillouin precursor, and the second maximum corresponds to the delayed fraction of 
the output wave packet caused by steep nuclear dispersion inside the AIT spectral window in the formed nuclear 
response (see also Fig. 2, where the blue and red lines are the nuclear response, and the dashed black line is the 
incident field spectrum). The latter can be seen from a comparison of the red solid line in Fig. 7 with the dashed 
red line corresponding to the same photon passed through the same absorber at rest. In the motionless absorber, 
the incident photon is completely absorbed during 136 ns due to the rapidly developing collective response of 
nuclei (speed-up effect51), which is characterized by strong absorption of the Lorentz-shape field resonant to the 
nuclear transition. The collective response of the oscillating nuclei to the stepwise front (long spectral wings) of 
the pulse is the same as for the motionless absorber, namely strong and fast, which corresponds to the same shape 
and duration of the Sommerfeld–Brillouin precursor and strong attenuation of the field. However, as soon as the 

Figure 7.   Waveforms of the of 14.4-keV Lorentzian single-photon wave packet. The blue dashed line 
corresponds to the incident photon waveform emitted by 57Co RMS with γS

/

(2π) = 0.56 MHz . Other lines 
are the waveforms at the exit from the 57Fe absorber with γ21 = γS . The red dashed line corresponds to the 
motionless absorber with Ta = 6 in comparison with the red solid line for the same absorber vibrating at the 
frequency �

/

γ21 = 3 with amplitude R1 ( p1 = 2.4 , see Eqs. (13), (14)). The red solid line has the Sommerfeld-
Brillouin precursor with duration τSB ≈ 1

/

(2γ21Ta) ≈ 24 ns at half-height, transmitted without delay, and 
the delayed part of the single-photon wave packet. The green line demonstrates the dynamical beats in the 
waveform of the photon passed through the same vibrating absorber with Ta = 30 , where the concept of the 
propagation delay and velocity becomes inapplicable. The black solid thin line is plotted for the same vibrating 
absorber with Ta = 1 . All curves are plotted using numerical integration of Eq. (33).

Figure 8.   In the vibrating reference frame, real (black curve, left axis) and imaginary (red curve, right axis) 
parts of the resonant susceptibility Eq. (23) of the motionless absorber as well as the spectral density of the 
resonant, ω0 = ω21 , spectrally broadened, γS = γ21 , incident wave packet with Lorentz spectral profile, Eq. (45), 
(blue dashed line) under �

/

γ21 = 3 and p = p1 = 2.4.
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nuclear response becomes sufficiently developed (in about 60 ns), the oscillating nuclei “see” a broadband non-
Lorentzian spectrum (Fig. 8), most of which is located outside the nuclear resonance in the region of relatively 
weak absorption and steep nuclear dispersion, similar to the case of the Gaussian photon (Fig. 3). It is this field 
that propagates through the absorber with small attenuation and slow velocity.

The small attenuation of the delayed part of the pulse corresponds to a decrease in the effective optical 
depth of the absorber from Ta ≈ 6 to Teff

a ≈ 0.4 , which also reduces the amplitude of dynamical beats. How-
ever, in contrast to the motionless absorber, the optical depth reduction of which also leads to elongation of 
the Sommerfeld-Brillouin precursor, a decrease in the effective optical thickness due to vibration of the same 
absorber does not change the Sommerfeld-Brillouin precursor.

With an increase in the absorber optical depth, the delay due to nuclear dispersion should also increase 
similar to the case of the Gaussian photon. However, in contrast to the Gaussian photon, a significant field of the 
overlapping Lorentzian sidebands is present in the vicinity of the resonant frequency (compare Fig. 3 and Fig. 8). 
The attenuation of this field due to resonant absorption increases with increasing optical depth, which shortens 
both the dynamical beats and the Sommerfeld-Brillouin precursor. These factors lead to a shift of the position 
of the second maximum in the photon waveform to an earlier moment (see Fig. 7 green line). Competition 
between the dynamical beats and the delay due to the steep nuclear dispersion defines the optimal optical depth, 
Ta , providing the maximum delay time. It is worth noting that the propagation delay and shape of the delayed 
part of the Lorentzian pulse in this case are also determined by the group velocity dispersion and non-uniform 
absorption over the field spectrum in the vibrating reference frame due to the long spectral wings of the Lorentz 
contour (Fig. 8). Their overlap is more pronounced than for the Gaussian spectrum (Fig. 3).

As shown in Figs. 6a and 7, the maximum delay for the Lorentzian photon in the 57Fe absorber of 144 ns 
exceeds the photon half-height duration of 97 ns. As can be seen from Fig. 7, this is the total delay of the delayed 
part of the Lorentzian photon, which can be represented as the sum of the delay due to the formation of a nuclear 
response of 76 ns (corresponding to the dip between the Sommerfeld-Brillouin precursor and the delayed part) 
and the delay of 68 ns due to steep dispersion of the formed nuclear response. This representation is rather 
qualitative, since the two processes are self-consistent and cannot be separated.

The propagation velocity of the 144 ns delayed part of the Lorentzian single-photon wave packet, estimated 
for the above stainless-steel foil (Fe70Cr19Ni11, 95% enriched with 57Fe, of the physical thickness 0.57 µm cor-
responding to Ta = 6 ), is v ≈ 4 m/s (see Fig. 6, green circles). Similar to the Gaussian photon, this velocity is 
not the smallest because of its dependence on the absorber optical depth. The minimum propagation velocity 
(Fig. 6b, orange circle), numerically estimated using Eqs. (35) and (33), is achieved at Ta ≈ 4 (the correspond-
ing physical thickness of the foil is L ≈ 0.38µm ), taking the value v ≈ 3 m/s . It should be noted that the group 
velocity approximation in this case is invalid, since, both conditions Eqs. (41) and (42) are not satisfied.

It is worth noting that the single-photon waveform similar to waveform in Fig. 7 solid red line, including the 
Sommerfeld–Brillouin precursor and the second maximum corresponding to the delayed part, was observed 
earlier in the optical range where slowing down of the Lorentz-shape photon due to EIT was implemented52. 
Also, similar waveforms were observed in39 where slowing down of 14.4-keV photon in 57Fe-enriched compounds 
with a doublet upper state was realized.

Direct observation of the dispersive slowing-down of 14.4-keV Lorentzian photons in the vibrating absorber 
can be demonstrated via temporal filtration of the detected photons, which “cuts off ” the Brillouin precursor 
from the waveform of the transmitted photon. Such a cutoff is usually used in synchrotron x-ray time-domain 
Mössbauer spectroscopy32,33,38,45. For parameter values of Fig. 7, this can be implemented if we start registering 
14.4-keV photon in about 76 ns after detecting a 122-keV photon in the case of RMS or receiving a timing signal 
in the case of SMS. In Fig. 7 this corresponds to the photon waveform started at the vertical red dotted line. A 
dispersive delay of about 68 ns will correspond to the photon propagation velocity of about 8 m/s. Taking into 
account the delayed nuclear response to the stepwise front edge of the Lorentzian photon results in the effective 
propagation velocity of 3 m/s.

As shown in Fig. 7, the delayed fraction of the Lorentzian single-photon pulse contains 42% of the energy 
(the area under the red line to the right of the vertical red dotted line) of the incident pulse. This is significantly 
more than the transmitted energy in delayed optical pulses due to EIT (for example, 0.1% in a pulse having a 
velocity of 102 m/s6, up to 10% for 148 m/s7, and less than 15% for 32 m/s2).

Slowing down Lorentz‑squared photons
Synchrotron Mössbauer Source (SMS) available at ESRF20,22 and Spring-8 facility23,24 can operate in a single-line 
mode and produce single photons with various spectral forms. Let’s consider the case of ESRF when the SMS 
spectral line can be described by a superposition of two antiphase Lorentz lines Eq. (45) with HWHM γS sepa-
rated by B , which in the case B ≪ γS corresponds to the square of the Lorentz line20,

The spectrum Eq. (47) has more rapidly falling wings than the Lorentz spectrum and corresponds to the 
smooth front of the photon waveform,

We consider the experimentally implemented case, when γS = 4.7γ21 and B = 1.88γ21
20,23. As follows from 

Eq. (47), the HWHM of the Lorentz-squared line is �LS ≈ 0.64γS ≃ 3γ21 . Qualitatively, spectrum Eq. (47) is 
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intermediate between Gaussian and Lorentz spectra. However, the width of the Lorentz-squared spectral con-
tour is three times greater than the width of the Gaussian and Lorentzian spectra. Therefore, the group velocity 
dispersion over the field spectrum and the difference in absorption of the Fourier constituents of the field in the 
vibrating reference frame become more significant than in the case of Gaussian and Lorentzian photons (compare 
Figs. 3, 8 and 9). This can lengthen the pulse, change its shape, and shift the peak intensity. At the same time, the 
nuclear resonant absorption (red line in Fig. 9) affects a much smaller part of the field spectrum, which leads to 
the conservation of more energy in the pulse and reduces distortion in its shape.

In Fig. 10 we plot the delay and reciprocal propagation velocity of the Lorentz-squared single-photon wave 
packet from SMS as functions of the absorber vibration frequency and optical depth, using the definitions Eq. 
(34), Eq. (35), and numerical calculation of the intensity Eq. (33) Similar to the case of the Lorentzian photon, 
the optimal absorber vibration frequency and optical depth providing the longest propagation delay and low-
est propagation velocity is located between two regions at the bottom and top of the panels, corresponding to 
relatively small pulse delay and high propagation velocity. In the region at the bottom, a small optical depth and 
relatively high vibration frequency of the absorber provide its relatively high transparency due to weak nuclear-
field interaction (Fig. 11, black line). At the top, a high optical depth and relatively low vibration frequency of 
the absorber provide a relatively strong dynamical beats in the photon waveform, which distort the pulse shape 
and shift its peak to earlier times similar to the Lorentzian photon (Fig. 11, green line). Similar to the Lorentz-
ian photon, for any given vibration frequency, the competition between dynamical beats and nuclear dispersion 
leads to some optimal value of the absorber optical depth, which provides the longest propagation delay and the 
slowest propagation velocity. However, the Lorentz-squared spectrum has significantly smaller wings than the 
Lorentz spectrum, which leads to much weaker dynamical beats and less distortion in the transmitted waveform, 

Figure 9.   In the vibrating reference frame, real (black curve, left axis) and imaginary (red curve, right axis) 
parts of the resonant susceptibility Eq. (23) of the motionless absorber as well as the power spectral density of 
the resonant, ω0 = ω21 , spectrally broadened, �LS = 3γ21 ( γS = 4.7γ21 and B = 1.88γ21 ), incident wave packet 
with Lorentz-squared spectral profile Eq. (47) (blue dashed line) under �

/

γ21 = 6 and p = p1 = 2.4.

Figure 10.   (a) The moment (in nanoseconds) of formation of the delayed pulse maximum, τd, as a function of 
the absorber normalized vibration frequency, �

/

γ21 , and the resonant optical depth, Ta (see Eq. (17)), plotted 
using numerical integration of Eq. (33), Eq. (47). The green circle marks the longest photon delay of 42 ns. (b) 
Dependence of the reciprocal propagation velocity, 1

/

v in (m/s)-1, on the absorber vibration frequency, �
/

γ21 , 
and the optical depth, Ta , calculated according to Eq. (35) and panel (a). As above, the absorber is a stainless-
steel foil Fe70Cr19Ni11, 95% enriched with 57Fe nuclide vibrating with amplitude R1 in Eq. (14) corresponding to 
p = p1 in Eq. (13). The green circle marks the propagation velocity of photons having the longest photon delay, 
which corresponds to the red waveform in Fig. 11 and equals 30 m/s. The orange circle marks the minimum 
propagation velocity of Lorentz-squared photons equal to 24 m/s.
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including the absence of the Sommerfeld-Brillouin precursor. Similar to the Gaussian and Lorentzian photons, 
the optimal absorber vibration frequency for both the longest pulse delay and slowest propagation velocity satis-
fies the relation Eq. (44) that becomes �

/

γ21 ≈ 6 . The optical depth of the absorber for the longest pulse delay 
of τd ≈ 42 ns is Ta ≈ 13 (see Fig. 10a, green circle). In this case, the waveform of the delayed Lorentz-squared 
photon is plotted in Fig. 11, red line.

The propagation velocity of the Lorentz-squared single-photon pulse in the case of �
/

γ21 ≈ 6 and Ta ≈ 13 
is equal to v ≈ 30 m/s (see also Fig. 10b, green circle). Similar to the case of the Lorentzian photon, it is not the 
slowest propagation velocity due to its dependence on the absorber optical depth. As can be seen in Fig. 11b, 
orange circle, the minimum propagation velocity of the Lorentz-squared photon is v ≈ 24 m/s . It is achieved at 
�
/

γ21 ≈ 6 and Ta ≈ 9 (the corresponding physical thickness of the foil is L ≈ 0.84µm ). As in the case of the 
Lorentzian photon, the group velocity approximation in this case is invalid, since both conditions Eqs. (41) and 
(42) are not satisfied.

As shown in Fig. 11, the delayed Lorentz-squared single-photon pulse contains 73% of the energy (the area 
under the red line) of the incident pulse.

Conclusion
In this paper, we theoretically studied the effect of slowing down the propagation velocity of radiation in a 
medium under conditions of acoustically induced transparency (AIT) in the case of 14.4-keV photons and a 57Fe 
recoilless nuclear absorber. We have shown that the main mechanism for slowing down the propagation velocity 
of a single-photon wave packet is the steep dispersion of the resonant nuclear transition within the transparency 
spectral window created at the position of the nuclear resonance (see Fig. 2). This feature of AIT is similar to 
the effects of electromagnetically induced transparency (EIT) and Autler-Townes splitting (ATS). In contrast 
to EIT and ATS, where the transparency window is created by quite intense radiation in a three- or multilevel 
system, AIT-spectral window is induced in a two-level system by the collective oscillations of nuclei with the 
same amplitude as a result of a piston-like absorber vibration. We considered three types of the 14.4-keV single-
photon wave packets, namely Gaussian, Lorentzian and Lorentz-squared. Analysis of the Gaussian wave packet 
gives a clear physical picture of photon deceleration via AIT. Analysis of the Lorentzian and Lorentz-squared 
14.4-keV single-photon wave packets provides a theoretical background for observation and study of slow 14.4-
keV photons at the existing experimental conditions, using the 57Co radioactive Mössbauer source (RMS) and 
synchrotron Mössbauer Sources (SMS) available at ESRF20,22 and Spring-8 facility23,24.

We have found optimal experimental conditions under which 14.4-keV photons can be strongly slowed down 
and delayed in a 57Fe-enriched stainless-steel foil at room temperature with relatively small losses in the intensity 
of a single-photon wave packet. In particular, a significant portion containing more than 40% of the energy of 
97-ns duration single-photon wave packet from RMS can be slowed down to 3 m/s and delayed by 144 ns. A 
reduction in the propagation velocity to 24 m/s and a delay of 42 ns can be achieved for 100-ns length photons 
from SMS with a conservation of more than 70% of the energy. These values can be improved via higher doping 
of the stainless-steel with 57Fe nuclei (98% doping was used in54) as well as via increase of the Lamb-Mössbauer 
factor by decreasing the absorber temperature (at room temperature fa < 0.8 whereas fa > 0.9 at temperature 
below 50 K) or by using a host material with a harder crystal lattice (for 57Fe implanted into a diamond crystal, 
fa ≈ 0.94 at 295 K55). We have also shown that the propagation velocity can be widely controlled by changing 
the absorber vibration frequency.

The propagation velocities of hard x-ray and γ-ray photons on the order of units to several tens of meters 
per second are much lower than the propagation velocities currently achieved in this frequency range. They are 
comparable to the currently achieved slowest velocities of visible light. However, they could be attained in much 

Figure 11.   Normalized time dependence of the intensity of 14.4-keV Lorentz-squared single-photon wave 
packet Eq. (47) from ESRF SMS with a duration of 100 ns and peak intensity at the moment t(in)max = 59 ns . 
The blue dashed line corresponds to the incident wave packet, Eq. (47), under B = 1.88γ21, γS = 4.7γ21 , 
γ21

/

(2π) = 0.56 MHz . Other lines correspond to the photon waveform at the exit from the 57Fe absorber 
vibrating at the frequency �

/

γ21 = 6 with amplitude R1 = 0.38� , Eq. (14), ( p1 = 2.4 , Eq. (13)), plotted using 
numerical integration of Eq. (33). The red line corresponds to the absorber optical depth Ta = 13 ; the green line 
corresponds to Ta = 30 ; the black solid line is plotted for Ta = 1.
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thinner (sub-micrometer-thick) absorber. Slowing down hard x-ray and γ-ray photons under the AIT condi-
tion can open novel prospects for manipulating high-energy photons similar to EIT slow light in optical range.
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