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Elucidating the genetic architecture 
of DNA methylation to identify 
promising molecular mechanisms 
of disease
Jiantao Ma1,11*, Roby Joehanes2,3,11, Chunyu Liu4,5,6, Amena Keshawarz2,3, 
Shih‑Jen Hwang2,3, Helena Bui2,3, Brandon Tejada2,3, Meera Sooda2,3, Peter J. Munson2,3, 
Cumhur Y. Demirkale7, Paul Courchesne2,3, Nancy L. Heard‑Costa5,6,8, 
Achilleas N. Pitsillides4,5,6, Mike Feolo9, Nataliya Sharopova9, Ramachandran S. Vasan5,6,8, 
Tianxiao Huan10 & Daniel Levy2,3*

DNA methylation commonly occurs at cytosine‑phosphate‑guanine sites (CpGs) that can serve 
as biomarkers for many diseases. We analyzed whole genome sequencing data to identify DNA 
methylation quantitative trait loci (mQTLs) in 4126 Framingham Heart Study participants. Our mQTL 
mapping identified 94,362,817 cis‑mQTLvariant‑CpG pairs (for 210,156 unique autosomal CpGs) 
at P < 1e−7 and 33,572,145 trans‑mQTL variant‑CpG pairs (for 213,606 unique autosomal CpGs) at 
P < 1e−14. Using cis‑mQTL variants for 1258 CpGs associated with seven cardiovascular disease (CVD) 
risk factors, we found 104 unique CpGs that colocalized with at least one CVD trait. For example, 
cg11554650 (PPP1R18) colocalized with type 2 diabetes, and was driven by a single nucleotide 
polymorphism (rs2516396). We performed Mendelian randomization (MR) analysis and demonstrated 
58 putatively causal relations of CVD risk factor‑associated CpGs to one or more risk factors (e.g., 
cg05337441 [APOB] with LDL; MR P = 1.2e−99, and 17 causal associations with coronary artery disease 
(e.g. cg08129017 [SREBF1] with coronary artery disease; MR P = 5e−13). We also showed that three 
CpGs, e.g., cg14893161 (PM20D1), are putatively causally associated with COVID‑19 severity. To 
assist in future analyses of the role of DNA methylation in disease pathogenesis, we have posted a 
comprehensive summary data set in the National Heart, Lung, and Blood Institute’s BioData Catalyst.

DNA methylation, the most frequently studied epigenetic modification, involves the transfer of a methyl group 
to the fifth carbon position of the cytosine DNA nucleotide to form 5-methylcytosine1. DNA methylation is 
influenced both by genetic and environmental factors and may mediate gene-environment interactions; there-
fore, it may be used to determine the risk of many complex diseases through its critical role in gene expression 
 regulation2,3. Associations between DNA methylation and a wide range of phenotypes have been identified by 
epigenome-wide association studies (EWAS)4–6. DNA methylation therefore can serve both as a biomarker for 
disease and contribute to its pathogenesis.

Identification of genetic loci associated with the methylation of cytosine-phosphate-guanine sites (CpGs)—i.e., 
DNA methylation quantitative trait loci (mQTLs)—can facilitate the interpretation of the biological underpin-
nings of disease relations and causal inference regarding the role of DNA methylation in disease. Genome-wide 
association studies (GWAS) have successfully identified many disease-associated genetic  variants7. Molecular 
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mechanisms linking these variants to disease, however, are not fully understood. Exploring colocalization of 
disease-associated genetic variants from GWAS with mQTL variants may further reveal molecular mechanisms 
underlying the associations between genetic variants and  diseases8. We hypothesize that by studying the overlap 
of mQTL variants with known disease-associated genetic variants from GWAS, we can further explore the joint 
contributions of genetic and environmental influences to diseases. Furthermore, by colocalizing mQTLs with 
genetic variants associated with gene expression (expression quantitative trait loci, eQTLs), we can better inter-
pret the biological functions of disease-associated  CpGs8. Utilizing effect sizes derived from GWAS for mQTL 
variants with different diseases, we can conduct causal inference testing to explore the putative causal roles of 
CpGs on a wide range of  diseases9–14.

In our earlier work, we performed GWAS of ~ 415,000 CpGs in whole blood derived DNA in Framingham 
Heart Study (FHS) participants with validation in the Atherosclerosis Risk in Communities (ARIC) study and 
the Grady Trauma Project (GTP)15. Genotyping was performed using commercial arrays with imputation across 
the genome. The present study greatly expands on our prior work by incorporating whole genome sequencing 
(WGS) data in FHS participants obtained as part of the National Heart, Lung, and Blood Institute’s (NHLBI) 
Trans-Omics for Precision Medicine (TOPMed) Program (https:// www. nhlbi wgs. org/). Use of WGS greatly 
reduces imputation uncertainty and vastly increases coverage of variation across the human genome. In this 
study, we utilized state-of-the-art WGS in conjunction with DNA methylation measured by commercial arrays 
to quantify single nucleotide polymorphism (SNP)-CpG associations in over 4000 FHS participants (Fig. 1). 
Our primary goal was to create a robust mQTL resource to better understand the genetic architecture of DNA 
methylation and facilitate the discovery of molecular mechanisms underlying a variety of diseases. We also 
provide examples of how mQTLs can be used in colocalization and Mendelian randomization (MR) analyses 
to infer the causal roles of DNA methylation in relation to disease phenotypes, with a focus on cardiovascular 
disease (CVD) risk factors and severity of coronavirus disease 2019 (COVID-19).

Results
Participant characteristics. As shown in Table 1, our pooled analysis included 4126 participants (2320 
with DNA methylation data from the 450K array and 1806 with data from the EPIC array). In the FHS Offspring 
cohort, blood samples used for the 450K array measurements were collected ~ 6 years earlier than those for the 
EPIC array measurements, while blood samples for both arrays in the Third Generation cohort were obtained 
at the same visit. Therefore, the mean age for participants with EPIC array data was older than that for the 450K 
array. There were no substantial differences in sex, BMI, or other CVD risk factors.

mQTL mapping. Our primary pooled analysis examined association of 20,696,115 SNPs with 452,567 
whole blood derived CpGs. In the pooled analysis, we identified 94,362,817 cis-mQTL variant-CpG pairs (details 
in "Methods") for 210,156 unique autosomal CpGs and at P < 1e−7 and 33,572,145 trans-mQTL-CpG pairs for 
213,606 unique autosomal CpGs at P < 1e−14. The numbers of cis- and trans-mQTL variant-CpG pairs for 
each chromosome are presented in Supplemental Table 1. The cis-mQTL variants accounted for 0.7% to 79.9% 
(median 1.6%) of heritability of DNA methylation, and trans-mQTLs accounted for 1.4% to 78.7% (median 
2.1%) of heritability. There were 1,080,716 cis-mQTL variants, associated with 31,422 unique CpGs (2,345,086 
or 2.5% of the 94,362,817 cis-mQTL variant-CpG pairs), that accounted for ≥ 20% of heritability of DNA meth-
ylation at the corresponding CpGs (Fig.  2). We also observed that 185,167 trans-mQTL variants accounted 
for ≥ 20% of heritability of DNA methylation for 2711 unique CpGs (314,660 or 0.9% of the 33,572,145 trans-
mQTL variant-CpG pairs; Fig. 2). The array-specific results are presented in Supplemental Table 2.
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Figure 1.  Study design.
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We examined whether whole blood derived mQTL variant-CpG pairs identified by other  studies16,17 were 
significant in our dataset. For the top independent cis-mQTL variant-CpG pairs (168,675 pairs for 104,619 CpGs; 
P < 1e−7) identified by the pooled analysis in five Dutch  biobanks16, 66.1% of the pairs (111,557 pairs for 79,099 
CpGs) overlapped with our cis-mQTL variant-CpG pairs (P < 1e−7 with consistent effect direction). For the top 
independent trans-pairs (5865 pairs for 2066 CpGs with P < 1e−14) in the Dutch biobanks, 38.4% of the pairs 
(2250 pairs for 866 CpGs) overlapped with our trans-mQTL variant-CpG pairs (P < 1e−14 with consistent effect 
direction). Using blood samples collected from 3799 Europeans and 3195 South Asians, Hawe et al. identified 
10,346,172 cis- and 819,387 trans-mQTL variant-CpG pairs at P < 1e−14 in a cross-ancestry  analysis17. Compared 
to their study, at P < 1e−14, we identified 41,224,533 more cis-mQTL variant-CpG pairs and 32,752,758 more 
trans-mQTL variant-CpG pairs. Among the 10,346,172 cis- and 819,387 trans-mQTL variant-CpG pairs reported 
by Hawe et al.17, 78.3% (n = 8,105,456) of cis-mQTL variant-CpG pairs and 66% (n = 540,851) of trans-mQTL 
variant-CpG pairs were significant and had consistent effect direction in our mQTL database, respectively.

GO analysis for cis‑ and trans‑mQTLs. To investigate the biological implications for diseases, we con-
ducted Gene Ontology (GO) analysis to identify biological processes, cellular components, and molecular func-
tions that are impacted by the detected mQTLs. Using the top 1000 unique cis-mQTL variants from the pooled 
analysis, we identified 19 significant GO pathways (16 for Biological Process and 3 for Cellular Component) at 
FDR < 0.05 (Supplemental Table 3); the top Biological Process term was dendrite development (GO:0016358; 
P = 8.8e−7; FDR = 0.01) and the top Cellular Component term was cell periphery (GO:0071944; P = 3.4e−6; 
FDR = 0.01). The top 1000 unique trans-mQTL variants from the pooled analysis were linked to nine signifi-
cant GO pathways (six for Biological Process and three for Cellular Component) at FDR < 0.05 (Supplemen-
tal Table 4); the top Biological Process term was cellular component organization or biogenesis (GO:0071840; 
P = 7.8e−7; FDR = 0.009) and the top Cellular Component term was cytoplasm (GO: 0005737; P = 3.4e−6; 
FDR = 0.009).

Enrichment analysis of mQTL GWAS signals. To illustrate the potential health consequences associ-
ated with the mQTL variants, we examined the overlap between the detected mQTL variants with GWAS SNPs 

Table 1.  Characteristics of the study population. Values are mean ± SD.

Third generation cohort Offspring cohort Omni cohort

N 1945 2129 52

Women (%) 52.7 54.7 46.2

Age (years) 46 ± 8 67 ± 9 70 ± 9

BMI: kg/m2 27.9 ± 5.7 28.2 ± 5.3 27.8 ± 4.9

Systolic blood pressure (mm Hg) 116 ± 14 129 ± 17 126 ± 16

Diastolic blood pressure (mm Hg) 74 ± 9 73 ± 10 68 ± 10

Hypertension (%) 33.9 53.2 42.3

Fasting glucose (mg/dL) 96.7 ± 20.8 106.3 ± 22.1 100.5 ± 12.6

Diabetes (%) 6.0 14.7 9.6

Triglyceride (mg/dL) 112 ± 79.3 119.8 ± 71.9 94.9 ± 43.9

High density lipoprotein (mg/dL) 59.3 ± 17.2 57.3 ± 18.1 65.5 ± 19.3

Low density lipoprotein (mg/dL) 104.5 ± 29.4 104.8 ± 31.1 87.9 ± 28.9
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Figure 2.  Heritability of DNA methylation explained by the cis- and trans-mQTLs identified in the pooled 
analysis. The total number of cis-mQTLs is 94,362,817 and the total number of trans-mQTLs is 32,434,987.
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included in the GWAS  Catalog7. We examined 9,395,367 cis-mQTL variants and 6,039,960 trans-mQTL variants 
located in all autosomal chromosomes identified by the pooled analysis. The enrichment analysis showed that, 
at FDR < 0.05, the cis-mQTL variants were enriched with GWAS SNPs associated with 783 traits, representing 
27.1% of the traits included in the GWAS  Catalog7. For example, we found enrichment of SNPs associated with 
BMI (enrichment P = 2e−305 for BMI; Supplemental Table 5), systolic BP (enrichment P = 2e−305, triglyceride 
level (enrichment P = 3.5e−231), type 2 diabetes (enrichment P = 2.4e−194), and coronary artery disease (enrich-
ment P = 4.8e−118). Compared to the cis-mQTL variants, the number of enriched GWAS traits for the trans-
mQTL variants was lower with enrichment for nine GWAS traits (Supplemental Table 6).

Colocalization analysis. We tested 1258 CVD risk factor-associated CpGs for colocalization with five 
CVD-related traits to further explore the clinical implication of the detected mQTLs. We found that 104 unique 
CpGs colocalized with at least one CVD-related traits at PPFC threshold ≥ 0.7 (overall 155 colocalized pairs; 
Supplemental Tables 7 and 8). In Table 2, we present the top two CpGs that colocalized with each CVD-related 
trait. For example, cg11554650 (PPP1R18), a BMI-associated CpG on chromosome 6, colocalized with type 2 
diabetes at SNP rs2516396 (PPFC = 0.98), which explained 100% of the observed PPFC; cg05337441 (APOB), 
an LDL-associated CpG at chromosome 2, colocalized with coronary artery disease at rs668948 (PPFC = 0.8), 
which explained 41% of the observed PPFC; and cg03676485 (LFNG), a HDL-associated CpG at chromosome 
7, colocalized with systolic and diastolic BP at rs4632959 (PPFC = 0.99), which explained 100% of the observed 
PPFC.

Mendelian randomization analysis. To further demonstrate the clinical implications of the detected 
mQTLs in the development of complex diseases, we performed MR analysis to test the putative causal relation-
ships between mQTL and CVD risk factors and COVID-19 severity. Using the cis-mQTL variants for the 1258 
CVD risk factor-associated CpGs (P < 1e−6) reported in the EWAS catalog, we conducted MR analysis to test for 
putatively causal relations of CVD risk factor-associated CpGs with the corresponding CVD risk factors (e.g., 
HDL-associated-CpGs with HDL and fasting glucose associated-CpGs with type 2 diabetes). After Bonferroni 
correction for the number of tests in analysis for each trait (e.g., 0.05/566 or 8.8e−5 in analysis for BMI), we iden-
tified 58 significant MR associations (Supplemental Tables 9). Information for the cis-mQTL variants and their 
corresponding CpGs is presented in Supplemental Table 8. The top three CpG-trait pairs reflected increased 
methylation levels at cg05337441 (APOB) with lower LDL (MR effect size: -2.94 ± 0.14, P = 1.2e−99), increased 
methylation levels at cg26663590 (closest gene is NFATC2IP in UCSC genome browser) with lower BMI (MR 
effect size: -1.39 ± 0.13, P = 6.3e−26), and increased methylation levels at cg14099685 (CELF1) with higher 
systolic BP (MR effect size: 138.64 ± 14.85, P = 9.9e−21). We also demonstrated that 17 CVD risk factor-CpGs 

Table 2.  Top colocalization analysis results for CVD risk factor-associated CpGs. The top two colocalization 
results are presented for each outcome trait of interest (BMI, SBP, DBP, HDL, LDL, TG, T2D, & CAD). BMI, 
body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; DBP, high density lipoprotein 
cholesterol; LDL, low density lipoprotein cholesterol; TG, triglyceride; T2D, type 2 diabetes; CAD, coronary 
artery disease; PPFC, posterior probability of colocalization; PPE, proportion of PPFC explained by the listed 
SNP. *Shore is region from 1 to 2 Kb away from a CpG island and shelf is located at 2–4 Kb from a CpG island. 
Prefixes N_ and S_ represent north (i.e., upstream) and south (i.e., downstream) regions relative to a CpG 
island. TSS, transcription start site.

CpG Chr Position
Annotated Gene 
of CpGs

Relation to CpG 
island* Distance to TSS

CVD risk factors 
associated with 
CpGs in EWAS 
catalog Colocalized traits

Colocalized cis-
mQTL variants PPFC PPE %

cg14509967 17 48601772 HOXB6 S_shelf 6021 BMI BMI rs9299 1 100

cg01856529 12 54259306 CBX5 28,364 HDL BMI rs4759073 0.9869 74.42

cg27087650 19 44752538 BCL3 N_shore 4833 BMI CAD rs62117206 0.889 46.72

cg05337441 2 21043695 APOB N_shore 42,266 LDL CAD rs668948 0.7996 41.29

cg03676485 7 2524181 LFNG Island 11,652 HDL DBP rs4632959 0.9999 100

cg14099685 11 47524515 CUGBP1 58,578 SBP DBP rs34312154 0.993 57.7

cg21506299 6 136784086 MAP3K5 227,040 BMI HDL rs6924387 0.9978 99.74

cg27087650 19 44752538 BCL3 N_shore 4833 BMI HDL rs1531517 0.9961 59.67

cg27087650 19 44752538 BCL3 N_shore 4833 BMI LDL rs4803750 0.9989 100

cg03725309 1 109214962 SARS1 S_shore 1069 BMI:SBP:TG LDL rs4970829 0.9962 100

cg03676485 7 2524181 LFNG Island 11,652 HDL SBP rs4632959 0.9999 99.99

cg20278790 20 59008418 CTSZ S_shore 13,233 WC SBP rs151343 0.9979 100

cg11554650 6 30685413 PPP1R18 N_shore 9024 BMI T2D rs2516396 0.9835 100

cg00973118 16 324569 AXIN1 N_shore 37,129 BMI T2D rs8049265 0.9505 99.33

cg27087650 19 44752538 BCL3 N_shore 4833 BMI TG rs4803750 0.9988 98.56

cg14099685 11 47524515 CELF1 58,578 SBP TG rs34312154 0.9927 54.52
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were associated with coronary artery disease (Table 3; corresponding P < 3.9e−5), e.g., at cg08129017 (SREBF1; 
reported as associated with BMI and triglyceride in the EWAS catalog) and cg02050917 (SKI; BMI-associated 
CpG), higher methylation levels were associated increased CVD risk, MR effect size: 1.81 ± 0.25; P = 5e−13 and 
2.65 ± 0.39, P = 1.4e−11, respectively.

A recent study conducted in 407 patients with COVID-19 showed that whole blood derived DNA methyla-
tion levels at 23 CpGs (annotated to 20 genes) were associated with COVID-19  severity18. We found that ten 
of the 23 COVID-19 severity-associated CpGs had at least one cis-mQTL variant in our database. We used 
independent cis-mQTL variants (linkage disequilibrium  R2 < 0.1), which overlapped with the SNPs tested by 
the two COVID-19 severity  GWAS19,20, to conduct MR analyses. As shown in Table 4, we observed that higher 
methylation levels at cg14893161 (PM20D1; P = 6e−5 and 0.002 for the two COVID GWAS, respectively), lower 
methylation levels at cg17178900 (PM20D1; P = 7e−4 and 0.008), and higher methylation levels at cg14859874 
(UBAP2L; P = 0.002 and 2e−4), were causally associated with COVID-19 severity after Bonferroni correction in 
analyses using both COVID GWAS databases.

Table 3.  Mendelian randomization analysis for CVD risk factor-associated CpGs (exposure) with coronary 
artery disease (outcome). IV: instrument variables, i.e., independent cis-mQTL variants with linkage 
disequilibrium R-squared < 0.1. Beta, SE, and P are derived from Mendelian randomization analysis using the 
inverse variance weighted (IVW) method.

CpG Chr Position Gene
Relation to CpG 
island Distance to TSS N of IVs Beta SE P

cg08129017 17 17825345 SREBF1 S_Shore 14,011 20 1.81 0.25 5.0e−13

cg00184953 6 31178444 PSORS1C3 N_Shelf 4709 7 − 4.86 0.70 4.7e−12

cg02050917 1 2242131 SKI 13,812 13 2.65 0.39 1.4e−11

cg05337441 2 21043695 APOB N_Shore 42,266 17 1.26 0.19 3.5e−11

cg21587837 6 31558116 NFKBIL1 11,265 33 − 2.50 0.41 1.3e−9

cg03725309 1 109214962 SARS1 S_Shore 1069 1 12.59 2.25 2.2e−8

cg04545296 12 48351459 ZNF641 S_Shore 16,872 29 − 0.89 0.16 2.6e−8

cg26562921 16 84726822 USP10 26,822 18 1.59 0.29 6.5e−8

cg20544516 17 17813868 MIR33B;SREBF1 S_Shore 32 1 7.50 1.43 1.5e−7

cg21242002 4 3263352 MSANTD1 19,079 4 − 4.93 0.96 2.7e−7

cg08244301 19 17499941 SLC27A1 N_Shore 31,174 4 3.71 0.75 7.1e−7

cg21053741 6 31558083 NFKBIL1 11,232 7 − 3.39 0.70 1.2e−6

cg27087650 19 44752538 BCL3 N_Shore 4833 1 7.36 1.63 6.1e−6

cg10101600 2 43251603 THADA 20,752 2 6.65 1.53 1.4e−5

cg19224164 4 2964656 GRK4;NOP14 S_Shore 1085 13 − 1.67 0.40 2.3e−5

cg18933331 1 109643795 S_Shore 2 − 5.92 1.42 3.0e−5

cg12467090 1 204490010 PIK3C2B 67,377 3 − 4.65 1.12 3.3e−5

Table 4.  Mendelian randomization analysis of putatively causal relations of COVID-19 severity-associated 
CpGs to COVID-19 severity. IVs are independent cis-mQTL variants with linkage disequilibrium 
R-squared < 0.1. Inverse variance weighted (IVW) method was used to conduct Mendelian randomization 
analysis, using data from two COVID-19 GWAS (COVID-19 Host Genetics  Initiative20 and GenOMICC 
 study19).

CpG CHR BP Gene Relation to CpG island Distance to TSS

COVID-19 Host Genetics Initiative 
GWAS (release 6) GenOMICC study

N of IVs Beta SE P N of IVs Beta SE P

cg07796016 1 152779584 LCE1C 2275 19 0.08 0.26 0.76 22 − 0.35 0.28 0.20

cg14859874 1 154238265 UBAP2L 45,616 36 0.64 0.21 0.002 37 0.65 0.18 0.0002

cg17515347 1 159047163 AIM2 22,321 13 1.13 0.46 0.02 13 0.34 0.44 0.44

cg17178900 1 205818956 PM20D1 Island 21,802 31 − 0.54 0.16 0.0007 31 − 0.46 0.17 0.008

cg14893161 1 205819251 PM20D1 S_Shore 22,097 34 − 0.69 0.17 6.1e−05 38 − 0.54 0.17 0.002

cg08309069 6 31240651 HLA-C S_Shore 4124 46 − 0.40 0.19 0.04 45 0.31 0.28 0.28

cg05030953 6 31241000 HLA-C S_Shore 4473 50 − 0.24 0.15 0.10 43 0.47 0.18 0.01

cg02872426 6 110736772 DDO 27,247 28 0.77 0.27 0.004 27 0.39 0.28 0.16

cg12682382 8 74787918 UBE2W N_Shelf 95,586 28 0.18 0.17 0.29 27 0.03 0.19 0.88

cg13571460 9 124989337 LHX6 Island 24,475 17 0.10 0.35 0.78 18 − 0.21 0.33 0.53
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Discussion
To create a cutting-edge genome wide resource of cis- and trans-mQTLs, we analyzed whole genome sequences 
in conjunction with array-based DNA methylation data from 4126 FHS participants. Our pooled analysis identi-
fied 94,362,817 cis-mQTL variant-CpG pairs (9,395,367 cis-mQTL variants; 210,156 unique autosomal CpGs; 
P < 1e−7) and 33,572,145 trans-mQTL variant-CpG pairs (6,039,960 trans-mQTL variants; 213,606 unique auto-
somal CpGs; P < 1e−14). This comprehensive database can bridge a GWAS knowledge gap regarding mechanisms 
of effects of disease-associated SNPs. For example, we demonstrated enrichment of mQTL variants for disease-
associated SNPs from GWAS. Using cis-mQTL variants, our colocalization analyses support connections between 
CpGs with CVD traits. MR analyses further demonstrated that cis-mQTLs can be used to test causal relations of 
CpGs to multiple phenotypes. In particular, we showed that DNA methylation at several CpGs, e.g., cg14893161 
(annotated to PM20D1), may play an important role in relation to COVID-19 severity. Taken together, our study 
created a robust mQTL repository to better understand the epigenetic mechanisms underlying a wide range of 
diseases. A comprehensive summary data set will be posted to the National Heart, Lung, and Blood Institute’s 
BioData Catalyst site and will be freely accessible to the scientific community.

Consistent with our previous mQTL  study15 and  others21,22, a majority of SNP-CpG pairs are cis. For example, 
the number of cis-mQTL-CpG pairs was 2.8 times of that of trans-mQTL-CpG pairs in our pooled analysis (1.5 
times using P < 1e−14). To the best of our knowledge, our study is the largest mQTL mapping project using WGS, 
including ~ 20 million SNPs and INDELs and ~ 850 thousand CpGs. Our database expands the existing literature 
by adding ~ 40 million novel cis- and ~ 30 million trans-mQTL-CpG pairs based on WGS rather than imputed 
genotypes from array-based genotyping. In addition, our database included cis- and trans-mQTLs for 180,692 
unique CpGs present on the EPIC array that are not on the 450K array. Compared to the older 450K array, the 
EPIC array increases CpG coverage of specific genomic regions such as enhancers and non-coding  regions23. 
Therefore, our data will facilitate future studies that examine the potential biological function and clinical impact 
of DNA methylation at these genomic regions.

To showcase the application of our mQTL database, we demonstrated the enrichment of mQTL variants 
for disease-associated SNPs from GWAS using the GWAS  Catalog7. For example, analysis utilizing cis-mQTL 
variants showed enrichment for SNPs associated with CVD and multiple CVD risk factors including BMI, sys-
tolic BP, triglyceride, type 2 diabetes, and coronary artery disease. Our colocalization analysis using cis-mQTL 
variants for CpGs and GWAS summary statistics of these variants for CAD identified colocalization of an LDL-
associated CpG, cg05337441 (APOB), with coronary artery disease. A intergenic SNP rs668948, mapped to 
APOB and TDRD15, explained 41% of the observed colocalization. The product encoded by APOB is the main 
apolipoprotein of LDL that serves as the ligand for the LDL receptor. The atherogenic potential of apolipopro-
tein B-100 has been demonstrated by many studies including MR  analysis24–27. Our data are consistent with 
the notion that DNA methylation contributes to the atherogenicity of LDL and suggest that future studies are 
needed to examine the exact molecular underpinnings of these observations. Also, in line with these observa-
tions, our MR analysis showed that many CVD risk factor-associated CpGs are putatively causal for CVD and 
CVD risk factors (Supplemental Table 8). These findings provide epigenetic insights into associations reported 
in GWAS. For example, we observed that cg12816198 (IRF5) was associated with systolic BP (MR P = 6.3e−8). 
SNP rs4728142, an intergenic variant mapped to genes IRF5 and KCP, has been reported to be associated with 
hypertension in previous  GWAS28. This SNP (rs4728142) is a strong cis-mQTL variant for cg12816198 (IRF5; 
P = 7e−215) and the leading instrumental variable in the MR analysis for systolic BP (single SNP MR analysis 
P = 2.7e−9), suggesting a causal pathway whereby rs4728142 modifies DNA methylation levels at cg12816198 with 
downstream effects on systolic BP. Interestingly, both colocalization analysis and MR analysis showed a connec-
tion between cg27087650 (BCL3) and coronary artery disease through cis-mQTL variant rs62117206 (intronic 
to BCL3; P = 3.6e−15; linkage disequilibrium  R2 = 1 with rs4803750, another cis-mQTL variant of cg27087650; 
P = 1.8e−14). CpG cg27087650 is located in the gene body of BCL3, which encodes a protein functioning as a 
transcriptional co-activator through its association with NF-kappa B homodimers. Expression of BCL3 has been 
linked to CVD and  cancer29–31. These examples provide proof of principle that integrating cis-mQTLs with CpGs 
and traits can reveal biological pathways by linking DNA methylation to a variety of diseases.

Our mQTL database can also be used to screen candidate DNA methylation sites for further consideration in 
experimental and interventional studies. This is exemplified by our MR analysis that revealed a putatively causal 
effect of COVID-19 associated CpGs on disease severity. Our COVID analysis focused on ten CpGs that were 
identified in a case–control study of COVD-19  severity18. Because of the retrospective design of the  study18, it 
could not infer causal relations between DNA methylation at these CpGs and the severity of COVID-19. Our 
analysis highlighted three COVID-related CpGs annotated to genes PM20D1 and UBAP2L that were putatively 
causal for COVID-19 severity; more research is needed to understand if and how these CpGs might influence 
outcome in patients with the COVID-19.

In parallel with our mQTL project, our research team is examining eQTLs and expression quantitative trait 
methylation sites (eQTM) using WGS, RNA sequencing, and DNA methylation resources obtained in FHS 
participants. The eQTL and eQTM resources are also freely available online via the BioData Catalyst site. These 
molecular resources enable users to explore how DNA methylation affects transcriptional activities and pathways 
leading to a wide range of disease phenotypes. These molecular resources can be used in concert to reduce bias 
due to reverse causality and unmeasured confounding, particularly environmental  confounders32,33. Nonetheless, 
this study has several limitations that warrant discussion. Our analysis was conducted in a group of middle-aged 
and older, primarily white adults; therefore, the findings in this study may not be generalizable to other popula-
tions. Nonetheless, we demonstrated that mQTLs identified in other  studies16,17, including those identified in a 
cross-ancestry  analysis17, were well replicated in our database. We captured whole blood-based DNA methyla-
tion profiles, which can serve as candidate biomarkers for diseases; however, they may not reflect tissue-specific 



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19564  | https://doi.org/10.1038/s41598-022-24100-0

www.nature.com/scientificreports/

DNA methylation levels, which may be relevant to specific diseases. Utilizing a publicly available database, Lowe 
et al. compared DNA methylation profiles measured by the same commercial 450K array in multiple tissues 
and showed a higher number of tissue-specific differentially methylated positions in blood compared to other 
 tissues34. Their study provided evidence supporting a critical role of blood in crosstalk with other tissues. A recent 
study by Ng et al. further advanced this notion by showing that T cells are directly involved in the pathogenesis 
of cardiovascular comorbidities through increased interactions with endothelial cells in individuals with nonal-
coholic fatty liver  disease35. MR analysis was used to showcase the potential application of our mQTL database; 
however, MR analysis is based on assumptions that may not be  testable36. Also, DNA methylation can be affected 
by both genetic and environmental factors. We did not attempt to test effect modification by environmental 
factors in this study. Future studies with larger sample sizes in diverse population are needed to replicate and 
expand our mQTL resource.

In conclusion, we have identified millions of cis- and trans-mQTL variant CpG pairs using state-of-the-art 
WGS data in conjunction with high-throughput DNA methylation data. We demonstrated the utility of this vast 
mQTL resource by conducting GWAS signal enrichment analyses, colocalization, and MR analyses. Our mQTL 
repository is freely available via the BioData Catalyst site for the scientific community to study the role of DNA 
methylation in health and disease.

Methods
Study population. The study sample included consenting participants from the FHS Offspring, Third Gen-
eration, and Omni cohorts. In 1971, the FHS recruited the offspring of participants in the Original FHS cohort 
as well as the spouses of offspring to form the FHS Offspring  cohort37. The children of  the Offspring cohort 
participants were recruited to the Third Generation cohort beginning in  200238. Omni cohorts were established 
in parallel with the Offspring and the Third Generation cohorts. In the current investigation, the study sample 
included 4126 FHS participants with whole blood derived DNA methylation and WGS data; 2129 participants 
in the Offspring cohort (exam 8, N = 869; exam 9, N = 1260), 1945 participants in the Third Generation cohort 
(exam 2), and 52 participants in the Omni cohort. The FHS protocols and procedures were approved by the 
Institutional Review Board for Human Research at Boston University Medical Center, and all participants pro-
vided written informed consent. All research was performed in accordance with relevant guidelines/regulations.

Study design. A flow chart of the study design is presented in Fig. 1. The FHS had two sets of DNA meth-
ylation data, one set included 3460 participants assayed with the Illumina BeadChip 450K (450K array; 2009 
Offspring exam 8 participants and 1451 Third Generation exam 2 participants) and the second set included 1806 
participants assayed with the Illumina EPIC array (EPIC array; 1260 Offspring exam 9 participants, 494 Third 
Generation exam 2 participants, and 52 Omni cohort participants). To maximize the sample size, as our primary 
analysis we conducted a pooled analysis of the two data sets. Of note, 1140 Offspring participants were included 
in both sets, i.e., these participants had 450K array-based methylation data from exam 8 and EPIC array-based 
methylation data from exam 9. In the pooled analysis, we selected the EPIC array-based data for these 1140 par-
ticipants to avoid any duplication. We also conducted array-specific analysis to explore if mQTLs were replicable 
and to examine mQTLs that are unique to the EPIC array. We then examined the top cis- and trans-mQTLs by 
conducting GO pathway analysis and enrichment analysis. We tested cis-mQTLs for colocalization and causal 
association using two-sample MR analysis with CVD traits and COVID-19 severity.

DNA methylation profiling. Preparation of whole blood samples for DNA methylation profiling was con-
ducted as detailed  previously15. Briefly, DNA was obtained from whole blood buffy coat samples and prepared 
using bisulfite conversion before whole-genome amplification, fragmentation, array hybridization, and single-
base pair extension. DNA methylation was then measured in 4170 FHS participants using the Illumina Infin-
ium Human Methylation-450 Beadchip (450K array) in three batches (Batch 1, N = 499; Batch 2, N = 2149; and 
Batch 3, N = 1522). Of these, 3460 participants also had WGS data. Additionally, the Illumina MethylationEPIC 
850 K BeadChip (EPIC array) was used in 1806 FHS participants with WGS. All participants were with missing 
methylation levels of no more than 5% of CpGs (detection P < 0.01) and none of them were outliers in a multi-
dimensional scaling plot. The CpGs have been prefiltered so that all CpGs had < 5% missing values (detection 
P < 0.01). We calculated DNA methylation beta values (range 0 to 1) as the ratio of mean methylated and sum 
of methylated and unmethylated probe signal intensities. We used the DASEN  method39,40 to normalize the 
methylation beta values.

Whole genome sequencing. WGS of FHS participants was performed by the Broad Institute as part of 
the NHLBI’s TOPMed  program41. Genomic DNA from whole blood samples from 2194 FHS Offspring cohort 
and 1582 Third Generation cohort participants was sequenced at >  × 30 depth of  coverage41. Genetic variations 
were identified in a joint calling of all samples by the TOPMed Informatics Resource Center at University of 
Michigan. Centralized read mapping, genotype calling, and quality control were also performed at the TOPMed 
Informatics Research Center. This analysis used genetic variants generated from TOPMed Freeze 10a. We ana-
lyzed 20,696,115 SNPs and insertion/deletion polymorphisms (INDELs) with minor allele count (MAC) ≥ 10. 
WGS data acquisition is described on the Database of Genotype and Phenotype (dbGaP) website (https:// www. 
ncbi. nlm. nih. gov/ proje cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 0974. v4. p3).

mQTL mapping. The mQTL mapping was conducted separately for DNA methylation data generated using 
the 450K array and the EPIC array. In the analysis for the 450K array data, we calculated residuals for meth-
ylation beta values obtained within each of the three methylation batches after adjusting for relevant technical 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000974.v4.p3
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000974.v4.p3


8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19564  | https://doi.org/10.1038/s41598-022-24100-0

www.nature.com/scientificreports/

covariates. Whereas, in the analysis for the EPIC array data, we derived residuals using all available samples, 
also adjusting for technical covariates. The residuals from separate datasets were then combined. We then used 
linear regression models to perform the association analyses between the SNPs and the CpGs, adjusting for sex, 
age, differential leukocyte counts (estimated using the Houseman  method42), along with the top 15 residual 
methylation principal components (PCs) and five genetic PCs. We chose to adjust for 15 methylation PCs and 
five genetic PCs because this strategy resulted in the highest replication rate between the 450K array data and 
the EPIC array data. Because of relatedness among FHS study participants, linear mixed models were used in 
mQTL mapping to account for family structure. The primary pooled analysis examined 452,567 CpGs that are 
common to both arrays. The 450K array-specific analysis analyzed the same 452,567 CpGs and the EPIC array-
specific analysis examined 413,524 additional CpGs (i.e., CpGs not included in the pooled analysis). We defined 
SNPs residing within 1 million base pairs from a CpG site as cis-variants and those located ≥ 1 million base pairs 
away from the CpG site or on a different chromosome as trans-variants. We considered cis-variants as cis-mQTL 
variants if they were associated with DNA methylation levels at the corresponding CpG site with a two-sided 
P < 1e−7, whereas we considered variants as trans-mQTL variants when the variant-CpG associations had a 
two-sided P < 1e−14. The P value thresholds were selected for cis-mQTLs based on the Bonferroni correction 
for the number of CpGs tested (i.e., n = 452,567) and for trans-mQTLs based on an internal discovery-validation 
experiment that gave the highest trans replication rate. We counted the number of pairs of mQTL variants (cis 
or trans) with their corresponding CpGs at all autosomal chromosomes. R-squared values derived from a linear 
regression model were used to represent heritability (hSNP

2) of each cis- or trans-mQTL variant.

mQTL replication. To explore consistency between our mQTLs with published databases, we examined 
whole blood derived mQTLs identified in two large studies, one conducted by Bonder et al. in 3841 individuals 
from five Dutch  biobanks16 and the other conducted by Hawe et al. in 3799 European individuals and 3195 indi-
viduals from South  Asia17. Both studies analyzed SNPs based on commercial arrays with imputation. Because 
the number of SNPs analyzed in the two studies (~ 5 and ~ 9 million, respectively) was smaller than that tested in 
the present study (~ 20 million), we examined whether mQTLs identified in the two studies were also significant 
in our database.

Gene Ontology analysis. We tested the over-representation of GO terms based on genes annotated to 
the top 1000 cis-mQTL variants (for 1000 CpGs) with Entrez IDs identified by the pooled analysis. The default 
setting in the goana function from the R limma (Linear Models for Microarray and RNA-seq Data) package was 
used to conduct the GO  analysis43. GO terms (Biological Process, Cellular Component, and Molecular Function) 
with false positive rate (FDR) < 0.05 were reported. We repeated the same analysis for the top 1000 trans-mQTL 
variants.

GWAS enrichment analysis. We analyzed all SNPs with association P < 5e−8 included in the NHGRI-
EBI GWAS Catalog (https:// www. ebi. ac. uk/ gwas/)7. We identified 243,587 entries for 2960 GWAS traits. In this 
analysis, we examined all mQTL variants with unique RSIDs in cis or trans at P < 1e−7 or P < 1e−14, respectively. 
Fisher’s exact test was used to perform the enrichment analysis for each trait, and traits with FDR < 0.05 were 
reported.

Colocalization analysis. We conducted colocalization analysis using the R HyPrColoc package, a highly 
efficient deterministic Bayesian algorithm based on GWAS summary  statistics44. We reported the posterior prob-
ability of full colocalization (PPFC). Default prior configuration parameters (prior.1 = 1e−4 and prior.c = 0.02) 
and threshold of 0.7 for PPFC were used. We extracted cis-mQTL variants (P < 1e−7) derived from the present 
pooled analysis for 1258 CpGs associated with CVD risk factors in the EWAS catalog (P < 1e−6) including BMI, 
waist circumference, fasting glucose, systolic blood pressure (systolic BP), diastolic blood pressure (diastolic 
BP), high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and  triglyceride6. 
We examined the colocalization of these CVD risk factor-associated CpGs with CVD-related traits including 
BMI, BP, lipid concentrations, type 2 diabetes, and coronary artery disease. Summary statistics for associations 
between cis-mQTL variants and GWAS SNPS for CVD-related traits were obtained from published GWAS 
 databases27,45–49.

Mendelian randomization analysis. To showcase the potential use of the mQTL resource in causal 
inference analyses, we conducted MR analyses to infer causal associations of the CpGs with the abovemen-
tioned CVD-related traits and COVID-19 severity. In the MR analysis for CVD-related traits, we used the same 
cis-mQTL variants for the 1258 CVD risk factors. COVID-19-associated CpGs were obtained from a recently 
published EWAS of COVID-19  severity18. We performed MR analyses using a two-sample MR  approach50. We 
used independent cis-mQTL variants with pair-wise linkage disequilibrium (LD)  r2 < 0.1 as instrumental vari-
ables (IVs). Using the TwoSampleMR R  package51, we performed the primary analysis using the inverse variance 
weighted (IVW) method and sensitivity analysis using the MR-Egger method. We tested for potential horizontal 
pleiotropy by examining the MR-Egger intercept P value. The effect sizes and standard errors for IV-CpG asso-
ciations were obtained from the pooled mQTL analysis. The effect sizes and standard errors for associations 
between IVs and CVD-related traits were obtained from the published large GWAS described  above27,45,46,48,49. 
We obtained effect sizes and standard errors from two GWAS for COVID-19 severity conducted by the COVID-
19 Host Genetics  Initiative20 and the Genetics of Mortality in Critical Care (GenOMICC)  study19. The COVID-
19 Host Genetics Initiative included 8779 cases (death or hospitalization requiring respiratory support due to 
COVID-19) and 1,001,875 population controls and the GenOMICC study included 7491 cases (confirmed 

https://www.ebi.ac.uk/gwas/)
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COVID-19 requiring continuous cardiorespiratory monitoring in intensive care units) and 48,400 population 
controls.

Data availability
The datasets analyzed in the present study are available at the dbGAP repository phs000007.v32.p13 (https:// 
www. ncbi. nlm. nih. gov/ proje cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 0007. v30. p11).
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