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Distributed time‑varying 
out formation‑containment 
tracking of multi‑UAV 
systems based on finite‑time 
event‑triggered control
Xin Cai , Xiaozhou Zhu  & Wen Yao *

Considering the limited communication resources and slow convergence speed of multi-unmanned 
aerial vehicle (UAV) systems, this paper presents a finite-time even-triggered control framework for 
multi-UAV systems to achieve formation-containment tracking control. First, a virtual leader with 
time-varying output is introduced so that the trajectory of the whole system can be manipulated 
in real time. Second, the finite-time control enables that the systematic error converge to a small 
neighborhood of origin in finite time. Third, in order to save communication resources, an event-
triggering function is developed to generate the control event sequences, which avoids continuous 
update of the controller. Rigorous proof shows the finite-time stability of the proposed control 
algorithm, and Zeno behavior is strictly excluded for each UAV. Finally, some numerical simulations 
are given to verify the effectiveness of the proposed controllers.

In recent decades, cooperative control of multi-UAV systems has become a hot research topic due to its wide 
application of load transportation, localization and and other fields1–5. Cooperative control problems mainly 
includes leaderless consensus6, leader-following tracking7,8, formation9,10 and containment11,12. Das et al.13 and 
Fax and Murray14 described several methods of formation control, Ge et al.15 studied formation tracking control 
problem based on potential field, took the average position of all agents as virtual leaders, and transformed the 
task into controlling virtual leaders to track the center of the desired formation. In addition to the formation 
control problem, containment control also attract the attention of many people.The goal of containment control 
is to drive all followers to enter the convex hull formed by the leaders16. In17, the containment control of the 
multi-agent system under switched topology was discussed. Haghshenas et al.18 solved the containment control 
problem of heterogeneous linear multi-agent systems.

Inspired by the containment control and the formation control, a more complicated formation-containment 
problem arises, where the leaders need to accomplish a desired formation and the followers are required to con-
verge to the convex hull spanned by the leaders simultaneously. Liu et al.19 considered the influence of control 
input with time delay on formation-containment control of multi-agent system. Han et al.20 and Dong et al.21 
designed the formation-containment control protocol for second-order and high-order multi-agent systems, 
and used a Riccati equation to solve the gain matrix in the control protocol. In22, for the multi-agent system with 
uncertain nonlinear dynamics and directed communication constraints, a distributed adaptive control approach 
was proposed to complete the formation-containment target.

It should be pointed out that the macroscopic movement of the whole system cannot be controlled effectively 
and flexibly in the above formation-containment works19–22. In the cooperative transportation application of a 
group of UAVs crossing dangerous areas, in addition to completing the task of formation-containment, the multi-
UAV system should also track the desired trajectory so that all the UAVs can avoid the dangerous area and reach 
the destination safely. Therefore, the problem of formation-containment tracking appears. In23,24, the formation-
containment tracking problem was solved for high-order multi-agent system. It can be seen that consensus 
tracking problem, containment problem and formation problem are special cases of formation-containment 
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tracking problem23. How to make the whole system move flexibly and effectively is a challenge to enable it to 
cope with complex real environments.

It is worth noting that most of the existing research focuses on the asymptotic convergence of multi-agent 
systems20,25. In practical applications, multi-UAV systems require fast response. Compared with the asymptotic 
convergence algorithm, the finite-time control protocol has faster convergence speed and better anti-interference 
ability, therefore, it is necessary to study the finite-time control of multi-agent systems. In9, the finite-time time-
varying formation tracking problem of multi-agent systems was studied in directed topology. A finite-time for-
mation tracking protocol was provided in the presence of mismatched disturbances for high-order multi-agent 
systems in26. Yu et al.11 developed a distributed finite-time sliding mode observer for estimating the reference for 
each UAV, and designed a finite-time containment controller. Nevertheless, these studies only consider formation 
tracking problem or containment control separately, but do not solve the problem of formation-containment. 
Namely, It is not guaranteed to complete the formation-containment tracking task in the finite time.

Furthermore, it should be pointed out that the above finite-time controllers employ the continuous time con-
trol method, which means that the controller needs to constantly update its control input. However, in practical 
applications, UAVs are usually equipped with embedded microprocessors with limited computing resources. In 
view of this concern, event-triggered control is developed to avoid the controller being constantly updated27–29. 
In1, aiming at the collaborative transportation problem of the multi-UAV system, a self-triggered method was 
designed to lower the communication frequency. Chen et al.30 discussed the event-triggered formation-con-
tainment problem of Euler Lagrange system. In31, the formation control problem of the multi-UAV system was 
considered through a dynamic event-triggered control algorithm, which includes a dynamic threshold. Combin-
ing event-triggered control with existing cooperative control is of great value to multi-agent coordinated control 
problems. The main challenge of event-triggered control is to design triggering functions according to different 
task scenarios to ensure convergence, and not Zeno behavior occurs.

Motivated by challenges stated above, considering both the limited communication resources and slow con-
vergence speed of the multi-UAV system, this paper investigates the finite-time event-triggered formation-
containment tracking control for the multi-UAV system. Compared with the existing literature, the main con-
tributions of this paper are summarized as follows.

•	 a virtual leader with time-varying output is introduced so that the trajectory of the whole system can be 
manipulated in real time

•	 The distributed finite-time protocols are utilized to ensure that the multi-UAV system realize the expected 
formation-containment tracking in finite time. The upper bound of settling time is given by carefully con-
structing the Lyapunov function.

•	 The event-triggering function is developed in the multi-UAV system, which avoids the continuous update 
input of the controller and greatly reduces the dependence on communication resources.

The remaining sections of this paper are organized as follows. In “Preliminaries and problem formulation”, 
some basic preliminaries and problem formulation are introduced. “Formation-containment tracking protocol 
design” presents the designs of formation-containment tracking protocol and analyzes the stability of the system. 
The results of simulation experiments are provided in “Simulation results”. Finally, the conclusion is drawn in 
“Conclusions”.

N o t a t i o n s :  F o r  x = [x1, x2, . . . , xn]
T  a n d  a  p o s i t i v e  c o n s t a n t  α  ,  w e  d e f i n e 

sig(x)α =
[

sgn(x1)|x1|
α , sgn(x2)|x2|

α , . . . , sgn(xn)|xn|
α
]T , where sgn(·) is the signum function. Let �·� and 

diag{ . . .} represent the 2-norm, the block-diagonal matrix. ⊗ is the Kronecker product. Rn, In, 0n denote n× 1 
real vectors, n× n identity matrices and n× 1 zero vectors, respectively. �min(·) , �max(·) represent the maximum 
and minimum eigenvalues of the square matrix, respectively.

Preliminaries and problem formulation
Graph theory and lemmas.  A directed graph G = (V ,E,A) is used to represent the information interac-
tion relationship of multi-UAV system. V = {1, 2, . . . , n} is the set of nodes in graph G. E is the set of edges in the 
graph. In a directed graph, each edge can only represent one-way information transmission. (i, j) ∈ E only indi-
cates that nodes i can transfer information to nodes j, and 

(

i, j
)

∈ E �
(

j, i
)

∈ E . A =
[

aij
]

n×n
 is the weighted 

adjacency matrix of the graph, if there exists an edge between the node i and node j, namely, 
(

i, j
)

∈ E , then, 
aij = 1 , otherwise aij = 0 . Define the degree matrix as D = diag[d11, . . . , dnn] with 

∑n
j=1 aij and the Laplacian 

matrix of G is defined as L = D −W . A directed graph is said to have a spanning tree if there exists at least one 
node having a directed path to all the other nodes, and that node is called the root node.

The multi-UAV system is represented by three layers, as shown in Fig. 1. The inner layer consists of follow-
ers, the real leaders constitute the outer layer, and the guidance layer consists of virtual leader. The inner layer 
and the outer layer jointly complete the containment task, and the formation tracking target is accomplished by 
the cooperation of the guidance layer and the outer layer. Assume that the information exchange between two 
adjacent layers is unidirectional and the information interaction between each agent in the layer is bidirectional. 
The system consists of 1+ N +M agents, where i = 0 represents agent of the guidance layer, namely the virtual 
leader, E = {1, 2, . . . ,N} are the index of the real leaders, which constitute outer layer, and the index set of fol-
lowers in the inner layer are F = {N + 1, N + 2, . . . , N +M} , then the Laplace matrix LA ∈ R

(N+M+1)×(N+M+1) 
of the communication topology GA is expressed in the following form:
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where L12 ∈ R
N×1, L1 ∈ R

N×N , L2 ∈ R
M×N , L3 ∈ R

M×M.
Define B = diag

{

LT12
}

 , and L = L1 − B describes communication topology between real leaders without 
receiving information from the virtual leader. L2 expresses the communication from real leaders to followers. L3 
denotes the communication between followers.

Lemma 1  32If exists, δ1, δ2, c > 0, p, q > 1 and 1p + 1
q = 1 , then δ1δ2 ≤ cp

δ
p
1
p + c−q δ

q
2
q .

Lemma 2  33For xi ∈ R , if α ∈ [1,+∞) , then 
(
∑n

i=1 |xi|
)α

≥
∑n

i=1 |xi|
α ≥ n1−α

(
∑n

i=1 |xi|
)α ; and if exists 

α ∈ (0, 1] , then 
(
∑n

i=1 |xi|
)α

≤
∑n

i=1 |xi|
α ≤ n1−α

(
∑n

i=1 |xi|
)α.

Lemma 3  34Consider the system ẋ = f (x), x ∈ R
n , if there exists a continuous differentiable function V: 

[0,∞) → [0,∞) , and it satisfies V̇(x) � −c(V(x))η , where c > 0 and 0 < η < 1 . The system can be stabilized in 
a finite time, and the finite settling time satisfies T ≤ (V(x0))

1−η/c(1− η).

Assumption 1  The topology between the real leaders and the virtual leader contains a spanning tree, and the 
root node of the spanning tree is the virtual leader.

Assumption 2  The communication topology between followers is a directed graph, and for each follower, there 
exists at least one directed path from the real leader to the follower.

Multi‑UAV formation‑containment tracking problem formulation.  For each UAV in the multi-
UAV system, the controller design can be divided into inner-loop control and outer-loop control. The inner 
loop mainly completes the stabilization of the attitude, while the outer loop realizes the tracking of the given 
trajectory. This paper is mainly concerned with the formation-containment tracking problem of the outer-loop. 
Define pi(t) =

[

xi , yi , zi
]T , then the outer-loop dynamic model of each UAV can be described as follows35:

where pi ∈ R
3, vi ∈ R

3 and Ri ∈ R
3×3 represents the position, velocity and rotation matrix of each UAV, 

e3 = [0, 0, 1]T,Tτi represents the total lift, mi , g are the mass of the UAV and gravitational acceleration, respec-
tively. Define the control input vector of each UAV ui = −Tτ i

mi
Rie3 + ge3 , then the dynamic model of the UAV 

(1) can be rewritten by the following double integrator in36,

Denote χi =
[

pTi , v
T
i

]T , oi represents the position offset vector between the real leaders and the virtual leader.

Definition 1  If for all real leaders and any given initial states,

then in a finite time T1 , all the real leaders achieve the expected formation described by oi.

LA =

[

0 01×N 01×M

L12 L1 0N×M

0M×1 L2 L3

]

(1)
{

ṗi = vi
miv̇i = −Tτi Rie3 +mige3 i = 1, 2, . . . , n

(2)
{

ṗi(t) = vi(t)
v̇i(t) = ui(t)

(3)
lim
t→T1

∥

∥pi(t)− oi − p0(t)
∥

∥ = 0

lim
t→T1

�vi(t)− v0(t)� = 0 i ∈ E

Figure 1.   Three-layer structure representation.
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Definition 2  For each follower, if there exists T2 > 0 and non negative constants ̟ij satisfying 
∑N

i=1 ̟ij = 1 
such that

then followers is said to achieve containment in a finite time T2.

Definition 3  If both the conditions (3) and (4) are established at the same time, namely, a desired formation is 
formed between real leaders in a finite time T1 , the followers converge to the convex hull constructed by the real 
leaders in a finite time T2 , and then Multi-UAV system realizes the finite-time formation-containment tracking, 
as shown in Fig. 2.

Therefore, the principal problem to be studied in this paper can be expressed as follows: for the UAV system 
described in (2), design control laws for leaders and followers to achieve the formation-containment tracking 
goal defined in Definition 3.

Formation‑containment tracking protocol design
Finite‑time event‑triggered formation tracking control for leaders.  It is worth noting that only 
real leaders directly connected to the virtual leader can receive virtual leader’s states, therefore, a distributed 
fixed time observer is designed for each real leader to estimate the state of virtual leader.

where α > 0,β > 0 , a, b, c, d are positive odd integers satisfying a > b, c < d , ˙̂p0 = v0 , ˙̂pi represents the esti-
mated velocity of the ith UAV. Under Assumption 1, the observer can estimate the state value in a fixed time37.

Remark 1  When t � T , we can conclude that ˙̂p1 = ˙̂p2 = · · · = ˙̂pN = ṗ0 = v0 . By further derivation, we get 
¨̂p1 =

¨̂p2 = · · · = ¨̂pN = p̈0 = u0.

Describe 
{

ti0 = 0, ti1, . . . , t
i
k , t

i
k+1, · · ·

}

 as the trigger time sequence of ith UAV. The finite-time event-triggered 
formation tracking controller is designed as follows:

(4)lim
t→T2

∥

∥

∥

∥

∥

χj(t)−

N
∑

i=1

̟ijχi(t)

∥

∥

∥

∥

∥

= 0,∀j ∈ F, ∀i ∈ E

(5)

¨̂pi =

�N
j=0 aij

¨̂pj
�N

j=0 aij
−

α
�N

j=0 aij
sig





N
�

j=0

aij

�

ˆ̂pi −
˙̂pj

�





a/b

−
β

�N
j=0 aij

sig





N
�

j=0

aij

�

˙̂pi −
˙̂pj

�





c/d
i ∈ E

(6)T <
b

α(a− b)(3N)(1−a/b)/2
+

d

β(d − c)

Figure 2.   Formation-containment tracking.
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where k1, k2 > 0, 0 < α1 < 1,α2 = 2α1/(1+ α1).
Define the combinational tracking error as:

Define R =
[

rT1 , . . . , r
T
N

]T,Q =
[

qT1 , . . . , q
T
N

]T , where ri = [ri1, ri2, ri3]
T , qi =

[

qi1, qi2, qi3
]T.Define the tracking 

errors as: p̃i = pi(t)− oi − p0(t),ṽi = vi(t)− v0(t) . The measurement errors are defined as follows:

where ϕr
i =

[

ϕr
i1,ϕ

r
i2,ϕ

r
i3

]T
,ϕ

q
i =

[

ϕ
q
i1,ϕ

q
i2,ϕ

q
i3

]T
,ϕc

i =
[

ϕc
i1,ϕ

c
i2,ϕ

c
i3

]T

Define P̃ =
[

p̃T1 , . . . , p̃
T
N

]T,Ṽ =
[

ṽT1 , . . . , ṽ
T
N

]T where p̃i =
[

p̃i1, p̃i2, p̃i3
]T , ṽi = [ṽi1, ṽi2, ṽi3]

T,then we can get 
R = L1 ⊗ I3P̃and Q = L1 ⊗ I3Ṽ  , According Remark 1, combine (7), (8) and (9), the system error equation can 
be described as follows:

where ϕr =
[

(

ϕr
1

)T
,
(

ϕr
2

)T
, . . . ,

(

ϕr
N

)T
]T

,ϕq =
[

(

ϕ
q
1

)T
,
(

ϕ
q
2

)T
, . . . ,

(

ϕ
q
N

)T
]T

.

Theorem 1  Let Assumption 1 hold, then the multi-UAV system (2) can achieve the desired formation in finite time 
u n d e r  t h e  p r o t o c o l  ( 7 )  a n d  t r i g g e r  f u n c t i o n  ( 1 1 ) .  I f  e x i s t s  0 < α1 < 1,α2 = 

2α1/(1+ α1), 1− 3
1−α2
2 ξ > 0, k1 > k2(3N)

1−α1
2(1+α1) (ξ + N) c

1+α1
1+α1

, k1 > 2
2(1+α1)
3+α1

(√

2
�min(L1)

· θ�max(L1)(1+α1)
3+α1

)1+α1
(1+ 

α1)
1−α1
3+α1 , k2(3+α1)

2(1+α1)
(1− 3

1−α2
2 ξ

)(

�min(L1)
2

)

1−α1
2(1+α1) > θk2(3N)

1−α1
2(1+α1) (ξ+N) α1c

−
1+α1
α1

1+α1
+θ�max(L1) , where c, θ > 0 , 

the distributed event-triggered function is designed as follows:

where ξ ∈ (0, 1).

Proof  The Lyapunov candidate is constructed as follows :

The derivative of (12) can be obtained:

(7)

ui = ¨̂pi
(

tik
)

− k1sig

[

N
∑

j=1
aij
((

pi
(

tik
)

− oi
)

−
(

pj
(

tik
)

− oj
))

+ ai0
(

pi
(

tik
)

− oi
)

i ∈ E

− p0
(

tik
)]α1

− k2sig

[

N
∑

j=1
aij
(

vi
(

tik
)

− vj
(

tik
))

− ai0
(

vi
(

tik
)

− v0
(

tik
))]α2

(8)

ri(t) =

N
∑

j=1

aij
((

pi(t)− oi
)

−
(

pj(t)− oj
))

+ ai0
(

pi(t)− oi − p0(t)
)

qi(t) =

N
∑

j=1

aij
(

vi(t)− vj(t)
)

+ ai0(vi(t)− v0(t))

(9)

ϕr
i = sig

(

ri
(

tik
))α1

− sig(ri(t))
α1

ϕ
q
i = sig

(

qi
(

tik
))α2

− sig
(

qi(t)
)α2

ϕc
i =

¨̂pi
(

tik
)

− u0(t)

(10)

Ṙ =Q

Q̇ =− (L1 ⊗ I3)
(

k1sig(R)
α1 + k2sig(Q)

α2

+k1ϕ
r + k2ϕ

q
)

(11)ti(t) =
∥

∥k1ϕ
r
i (t)

∥

∥+
∥

∥k2ϕ
q
i (t)

∥

∥− ξ
∥

∥sig
(

qi(t)
)α2

∥

∥

(12)V1(t) = k1

N
∑

i=1

3
∑

j=1

|x|α1+1

α1 + 1
(rij)+

1

2
QT

(

L1
−1 ⊗ I3

)

Q
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According to k2 > 0, 1− 3
1−α2
2 ξ > 0 , it can be concluded that V̇1(t) < 0 and the error system (10) is asymptoti-

cally stable.
To further prove that the system converges in finite time, the following Lyapunov function is constructed:

where θ is a positive constant, according to Lemmas 1 and 2 , the following formula can be obtained

where h is a positive constant, combining (15) and (16),

In order to ensure that V(t) is positive definite, satisfying

Further, taking the derivative of V(t)

(13)

V̇1(t) = k1

N
∑

i=1

3
∑

j=1

sig
(

rij
)α1 ṙij + QTL−1

1 ⊗ I3Q̇

− k2

N
∑

i=1

qTi sig
(

qi
)α2 −

N
∑

i=1

qTi
(

k1ϕ
r
i + k2ϕ

q
i

)

≤

N
∑

i=1

∥

∥qi
∥

∥

(∥

∥k1ϕ
r
i

∥

∥+
∥

∥k2ϕ
q
i

∥

∥

)

− k2

N
∑

i=1

qTi sig
(

qi
)α2

≤ ξk2

N
∑

i=1

∥

∥qi
∥

∥

∥

∥sig
(

qi
)α2

∥

∥− k2

N
∑

i=1

qTi sig
(

qi
)α2

≤ −k2

(

1− 3
1−α2
2 ξ

)

N
∑

i=1

∥

∥qi
∥

∥

α2+1

(14)V(t) = V1(t)
3+α1

2(1+α1) + θRT
(

L1
−1 ⊗ I3

)

Q

(15)

V1(t)
3+α1

2(1+α1)

≥



k1

N
�

i=1

3
�

j=1

� rij

0
sig(x)α1dx





3+α1
2(1+α1)

+

�

1

2
QT

�

L1
−1 ⊗ I3

�

Q

�

3+α1
2(1+α1)

≥





k1

1+ α1

N
�

i=1

3
�

j=1

�

�rij
�

�

α1+1





3+α1
2(1+α1)

+

�

�min(L1)

2
� Q � 2

�
3

2(1+α1)

≥

�

k1

1+ α1
� R � 1+α1

�

3+α1
2(1+α1)

+

�

�min(L1)

2
� Q � 2

�

3+α1
2(1+α1)

(16)

θRT
(

L1
−1 ⊗ I3

)

Q

≥ −θ�max(L1) � R �� Q �

≥ −θ�max(L1)

(

2

3+ α1
h

3+α1
2 � R �

3+α1
2 +

1+ α1

3+ α1
h
−

3+α1
1+α1 � Q �

3+α1
1+α1

)

(17)
V(t) ≥





�

k1

1+ α1

�

3(1+α1
2(1+1)

−
2θ�max(L1)

3+ α1
h

3+α1
2



 � R �
3+α1
2

+

�

�min(L1)

2
−

θ�max(L1)(1+ α1)

3+ α1
h
−

3+α1
1+α1

�

� Q �
3+α1
1+α1

k1 > 2
2(1+α1
3+α1

(
√

2

�min(L1)

θ�max(L1)(1+ α1)

3+ α1

)1+α1

(1+ α1)
1−α1
3+α1
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where c > 0 , ω = min (ω1,ω2) . From ω1,ω2 > 0 , there exists V̇(t) < 0.
Similarly, according to Lemmas 1 and  2, it can be obtained that:

and

Combining (19) and (20), we get

where β = max (β1,β2) . Combining (18), and further obtain

According to Lemma 3, the error system (10) satisfies the condition of finite time stability, namely, R and Q con-

verge to origin in finite time, with the settling time T1 ≤
β

2(1+α1)
3+α1 (3+α1)
ω(1−α1)

V
1−α1
3+α1 (0).Considering R = (L1 ⊗ I3)P̃

,Q = (L1 ⊗ I3)Ṽ  and L1 is positive definite,we soon have p̃i = ṽi = 0 when t � T1,which means that the desired 
formation is formed in a finite time T1 . This completes the proof. 	�  �

(18)

V̇(t) =
3+ α1

2(1+ α1)
V1(t)

1−α1
2(1+α1) V̇1(t)+ θQT

�

L−1
1 ⊗ I3

�

Q

+ θRT
�

L1
−1 ⊗ I3

�

Q̇

≤ −
k2(3+ α1)

2(1+ α1)

�

1− 3
1−α2
2 ξ

�

�

�min(L1)

2

�

1−α1
2(1+α1)

� Q � 2

+ θ�max(L1) � Q � 2 − θk1 � R � α1+1

+ θk2(3N)
1−α1

2(1+α1

�

(ξ + N) � R �� Q � α2
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�

θk1 − θk2(3N)
1−α1

2(1+α1) (ξ + N)
c1+α1

1+ α1

�
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−




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�
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2 ξ

�

�
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2

�

1−α1
2(1+α1)

− θk2(3N)
1−α1

2(1+α1 (ξ + N)
α1c

−
1+α1
α1

1+ α1
− θ�max(L1)



 � Q � 2

= −ω1 � R � α1+1 − ω2 � Q � 2

≤ −ω
�

� R � α1+1+ � Q � 2
�

(19)

V1(t)
3+α1

2(1+α1)

≤ 2
1−α1

2(1+α1)

(

k1N
1−α1
2

1+ α1
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2(1+α1)

� R �
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+
1

2
�max(L1)

3+α1
2(1+α1) � Q �

3+α1
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(20)

θRT
(

L−1
1 ⊗ I3

)

Q

≤
2θ�max(L1)

3+ α1
h

3+α1
2 � R �

3+α1
2

+
(1+ α1)θ�max(L1)

3+ α1
h
−

3+α1
1+α1 � Q �

3+α1
1+α1

(21)
V(t) ≤ β1 � R �

3+α1
2 + β2 � Q �

3+α1
1+α1

≤ β

(

� R �
3+α1
2 + � Q �

3+α1
1+α1

)

(22)

V̇(t) ≤ −ω
(
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Theorem 2  Considering Assumption 1 holds and the conditions of Theorem 1 are satisfied, Zeno behavior can be 
excluded in the control protocol (7) and distributed triggering function (11) for multi-UAV systems.

Proof  For t ∈
[

tik , t
i
k+1

)

 , we derive

when t = tik , 
∥

∥

∥
ϕr
i

(

tiki

)∥

∥

∥
= 0,

∥

∥

∥
ϕ
q
i

(

tiki

)∥

∥

∥
= 0 , and then

where δ1 = max
(

3
1−α1
2 k1, 3

1−α2
2 k2

)

, δ2 = max
(∥

∥qi(t)
∥

∥

α1 ,
∥

∥q̇i(t)
∥

∥

α2
)

 . When �qi� = 0 , the formation has been 
formed, and the controller does not need to be updated. Zeno behavior is naturally excluded. when formation 
is not achieved, we get 

∥

∥qi(t)
∥

∥

α
> 0 , According to the event-triggered function (11), we further obtain

From (25), we get

From (26), The inter-event interval has a strict positive lower bound and zeno behavior does not occur in the 
system. The proof is completed. 	�  �

Finite‑time event‑triggered containment control for followers.  Describe t0, t1, . . . , tk , . . . as the 
event trigger time series, where tk denotes the kth triggered time of followers. The finite-time event-triggered 
containment controller is designed as follows:

where k3, k4 > 0 , α3 ∈ (0, 1) , α4 = 2α3
1+2α3

.
The combinational tracking errors are defined as

Define Ep =
[

E
T
p1, . . . , E

T
pM

]T
, Ev =

[

E
T
v1, . . . , E

T
vM

]T , where Epi =
[

Epi1, . . . , Epi3
]T
, Evi = [Ev1, . . . , Ev3]

T . Define 
the tracking errors as

(23)
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∥
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∥
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∥

∥k2sig
(

q̇i(t)
)α2

∥

∥
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∥
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∥

∥
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∥
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∥q̇i(t)
∥
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(28)

Epi(t) =

N+M
∑

j=1

aij
(

pi(t)− pj(t)
)

Evi(t) =

N+M
∑

j=1

aij
(

vi(t)− vj(t)
)

i ∈ F

(29)
{

ε̃pi = pi(t)− pτ (t)
ε̃vi = vi(t)− vτ (t)
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where τ ∈ E being the real leader directly connected to the followers. Define Ẽp =
[

ε̃Tp1, . . . , ε̃
T
pM

]T
 , 

Ẽv =
[

ε̃Tv1, . . . , ε̃
T
vM

]T , w h e r e  ε̃pi =
[

ε̃pi1, ε̃pi2, ε̃pi3
]T
, ε̃vi = [ε̃vi1, ε̃vi2, ε̃vi3]

T  t h e n  w e  g e t 
Ep = L3 ⊗ I3Ẽp, Ev = L3 ⊗ I3Ẽv . Define the measurement errors as

where ζ pi =
[

ζ
p
i1, ζ

p
i2, ζ

p
i3

]T
, ζ vi =

[

ζ vi1, ζ
v
i2, ζ

v
i3

]T . Combining (27), (28) and (30), the dynamic model of the Multi-
UAV system can be rewritten as

where ζ p =
[

(

ζ
p
1

)T
,
(

ζ
p
2

)T
, . . . ,

(

ζ
p
M

)T
]T

, ζ v =
[

(

ζ v1
)T

,
(

ζ v2
)T

, . . . ,
(

ζ vM
)T

]T
.

Moreover, The triggering function for the ith follower is designed as

where η ∈ (0, 1) is the parameter that can be adjusted. The triggering condition is defined as 
tik+1 = inf

{

t > tik , ti (t) > 0}.

Theorem 3  When the Assumption 2 holds, followers use control protocol (27) and distributed triggering function 
(32), if exists ϑ , κ > 0 , conditions in Theorem1 hold and k3 , k4 satisfy the inequalities (33), (34), all followers can 
converge to the convex hull spanned by the real leaders in a finite time. Moreover the Zeno behavior of the contain-
ment system is excluded.

Proof  From Theorem 1 and the previous proof, we take the same procedure of the proof for followers, one can 
prove that under the control protocol (27), Ep and Ev can converge to the origin in finite time T2 . Further to 
exclude the Zeno behavior, by employing the same procedure of the proof for real leaders in Theorem 2, we can 
conclude that the inter-event interval has a positive lower bound.

where ∆ denotes the inter-event interval, µ1 = max
(

3
1−α3
2 k3, 3

1−α4
2 k4

)

,µ2 = max
(

�Evi(t)�
α3 ,

∥

∥Ėvi(t)
∥

∥

α4
)

 . 
This completes the proof. 	�  �

Remark 2  The conclusion of Theorem 3 is established on the basis of Theorem 1. when the real leaders achieve 
the desired formation, the followers can enter the convex hull generated by the the real leaders and the multi-
UAV system (2) eventually accomplish the formation-containment tracking task.

Simulation results
In order to verify the validity and superiority of the proposed method in achieving formation containant 
tracking, this section uses a scenario containing 7 UAVs to conduct a simulation experiment. The People 
Computer(PC) is equipped with Intel(R) Core(TM) i5-8300H 2.3GHZ CPU, 8GB memory. Simulations are exe-
cuted in MATLAB environment.The UAVs in the Multi-UAV system are depicted by the dynamic model (2) with 
pi =

[

pi1, pi2, pi3
]T
, vi = [vi1, vi2, vi3]

T , i = 0, 1, . . . , 7, where pi1,pi2 and pi3 describe the positions in the direc-
tions X, Y and Z, vi1,vi2 and vi3 are the velocities in X, Y and Z. The Multi-UAV system consists of the guidance 
UAV denoted by i = 0 , the outer UAVs represented by index set E = {1, 2, 3, 4} and the inner UAVs represented 
by index set F = {5, 6, 7} . The information interaction topology between UAVs is shown in Fig. 3. The initial 

(30)
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∥

∥

∥
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∥

∥
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∥

∥k4ζ
v
i (t)

∥
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∥
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state of each agent in the Multi-UAV system is selected as follows: pij(0) = 10Θ(i = 1, 2, 3, 4, 5, 6, 7; j = 1, 2, 
3), vij(0) = Θ(i = 1, 2, 3, 4, 5, 6, 7; j = 1, 2, 3

)

 , where Θ is a random number in the range (0, 1) . The guidance 
and outer UAVs require to accomplish a formation tracking with a square configuration, where the offset vectors 
are shown as o1 = [0,−10, 0]T , o2 = [−10, 0, 0]T , o3 = [0, 10, 0]T , o4 = [10, 0, 0]T.

The guidance UAV leads the multi-UAV system with the following desired time-varying reference trajectory:

The coefficients of observer (5) are chosen as α = β = 5, a = d = 7, b = c = 5 and the control parameters of 
protocols (7) and (27) are selected as k1 = 4, k2 = 2,α1 = 0.7,α2 = 2α1

1+α1
, k3 = 6, k4 = 3,α3 = 0.8,α4 =

2α3
1+α3

, 
Choose ξ = 0.5, η = 0.8 as the parameters of the triggering functions (11) and (32). All parameters are the same 
on all three channels.

The simulation results are demonstrated from Figs. 4, 5, 6, 7, 8 and 9. Figure 4 shows the three-dimen-
sional trajectory of the UAVs. Figure 5 shows the position snapshots of the multi-UAV system at different 

(36)

{

p01 = −2 cos (0.1π t)+ 1
p02 = 2 sin (0.1π t)
p03 = 0.5t + 2

Figure 3.   The interaction topology among 7 UAVs.

Figure 4.   Three dimensional trajectory of UAVs.
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Figure 5.   Position snapshots at t = 1 s, 2 s, 5 s, 10 s for the UAVs.

Figure 6.   Events triggering times of UAVs.
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times t=1 s, 2 s, 5 s and 10 s. Figure 6 gives the events triggering times of 7 UAVs within 10 s. The evolutions 
of the position and velocity of each UAV in the X, Y and Z directions are given in Figs. 7 and  8. The forma-
tion tracking error displayed in Fig. 9a is defined as � ΓE �=� ΓE �1 , with ΓE = [ΓE1,ΓE2,ΓE3,ΓE4]

T , where 

Figure 7.   Positions of UAVs.

Figure 8.   Velocities of UAVs.
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∀i = 1, 2, 3, 4, hi = [oi , 03]
T , �Γi� = �χi − hi− −χ0�1 . Similarly, the containment error ΓC is obtained and shown 

in Fig. 9b.
From Figs. 4, 5, 6, 7, 8 and 9, it can be clearly seen that the outer UAVs achieve the desired formation in a finite 

time, the inter UAVs enter the convex hull, and the task of formation-containment tracking is accomplished. In 
addition, with the time-varying of the state of guidance UAV, the multi-UAV system can still realize formation-
containment tracking, which shows the robustness of the method proposed in this paper. At the initial time t= 0, 
the UAVs are randomly distributed in the space. After 1 s, in order to realize the formation, the outer UAVs start 
to move. At t= 2 s, the inner UAVs converge to the convex hull, and at t= 5 s and at 10 s of the snapshots show 
that the outer UAVs slowly achieve the square formation around the guidance UAV, and the inner UAVs enter 
the convex hull formed by the outer UAVs. Figure 6 shows that Zeno behavior does not occur, and the minimum 
interval of two adjacent events in the leaders’ system and followers’ system are 0.2 s and 0.4 s respectively, which 
indicates that the internal communication of the system is intermittent, not continuously. We can also see from 
Fig. 9 that the systematic error of the UAVs converges to the origin within 10 s. Therefore, under protocols (7) 
and (27), and with the triggering function satisfying (11) and (32), the multi-UAV system can realize the finite-
time event-triggered formation-containment tracking.

Conclusions
In this paper, the problem of time-varying out formation-containment tracking of multi-UAV systems is stud-
ied, with a three-layer hierarchical structure being introduced. A finite-time event-triggered control protocol 
is proposed for real leaders and followers, respectively. The problems of limited communication resources and 
slow convergence speed in multi-UAV systems are solved at the same time. The simulation results show that 
the time-varying tracking task can be completed in finite time, and the system does not exist zeno behavior. In 
future work, we will consider the obstacle avoidance problem in the tracking process, and consider the output 
saturation of the system to make the system more robust.

Data availability
All data included in this study are available upon request by contact with the corresponding author.
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