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Whole genome sequencing reveals 
epistasis effects within RET 
for Hirschsprung disease
Yanbing Wang 1, Timothy Shin Heng Mak 2, Saloni Dattani 3,4, Maria‑Merce Garcia‑Barcelo 1, 
Alexander Xi Fu 5, Kevin Y. Yip 5,6, Elly Sau‑Wai Ngan 1, Paul Kwang‑Hang Tam 1,7,8, 
Clara Sze‑Man Tang 1,7* & Pak Chung Sham 3,9*

Common variants in RET and NRG1 have been associated with Hirschsprung disease (HSCR), 
a congenital disorder characterised by incomplete innervation of distal gut, in East Asian (EA) 
populations. However, the allelic effects so far identified do not fully explain its heritability, 
suggesting the presence of epistasis, where effect of one genetic variant differs depending on other 
(modifier) variants. Few instances of epistasis have been documented in complex diseases due to 
modelling complexity and data challenges. We proposed four epistasis models to comprehensively 
capture epistasis for HSCR between and within RET and NRG1 loci using whole genome sequencing 
(WGS) data in EA samples. 65 variants within the Topologically Associating Domain (TAD) of RET 
demonstrated significant epistasis with the lead enhancer variant (RET+3; rs2435357). These epistatic 
variants formed two linkage disequilibrium (LD) clusters represented by rs2506026 and rs2506028 that 
differed in minor allele frequency and the best-supported epistatic model. Intriguingly, rs2506028 is in 
high LD with one cis-regulatory variant (rs2506030) highlighted previously, suggesting that detected 
epistasis might be mediated through synergistic effects on transcription regulation of RET. Our 
findings demonstrated the advantages of WGS data for detecting epistasis, and support the presence 
of interactive effects of regulatory variants in RET for HSCR.

Hirschsprung disease (HSCR), also known as colonic aganglionosis, is a congenital disorder where defects in 
enteric neural crest cell migration, differentiation or proliferations result in incomplete innervation of the distal 
gut. It exhibits features consistent with an appreciable degree of epistasis, which refers to the situation where the 
phenotypic effect of one genetic variant differs depending on the presence or absence of another genetic vari-
ant. Family studies estimate an overall heritability of HSCR close to 80%1, while the additive effects of identified 
common genetic variations explain only 34% of the phenotypic variance in Asian GWAS2. Isolated HSCR shows 
complex inheritance3, but the risk of HSCR is largely influenced by a small number of genes with moderately large 
effect. The RET gene is the major contributor of genetic predisposition to the disease, as almost all patients carry 
at least one RET deficiency allele4, and rare exonic mutations in RET explain up to 50% of familial cases of HSCR 
and up to 20% of isolated cases5. Furthermore, the effects of genetic variants on HSCR risk are multiplicative, with 
the number of implicated alleles being associated with an exponential increase in risk of developing the disease6.

The most prominent HSCR-associated gene, RET, is a tyrosine kinase receptor that is important for cell signal-
ling and the development of the enteric nervous system. Epistasis has been detected within RET and between risk 
variants in RET and other genes, including NRG1 and EDNRB7. Chatterjee et al.4 demonstrated a biological inter-
action in RET, in which a combination of cis-regulatory HSCR-associated variants (RET+3 (rs2435357), RET-5.5 
(rs7069590), and RET-7 (rs2506030)) synergistically reduced RET expression through both positive and negative 
feedback. In addition to RET, common variants in NRG1 and SEMA3C/D have been consistently linked to HSCR 
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through genome-wide association studies (GWAS), although evidence for SEMA3C/D has been restricted to 
European populations and evidence for NRG1 is stronger in Asian populations1,8,9. Garcia-Barcelo et al.10 found 
a significant interaction between rs2435357 and rs7835688 from NRG1—the risk allele C in rs7835688 increased 
the odds ratio of rs2435357 2.3 times to almost 20. Such genetic interplay was later confirmed functionally11 and 
in an Indonesian cohort12. Likewise, the frequency of the rs2435357 risk variant (T) in RET was higher in patients 
with the rs12707682 risk allele in SEMA3C/D than in those without, which is in line with the synergistic effects 
on gut innervation observed in co-knockdown of sema3c/d and ret in the zebrafish model8.

Epistatic effects have been argued to be ubiquitous in nature13. In principle, epistasis can be identified by test-
ing for interaction terms between genetic variants in regression models14. However, the detection of epistasis in 
genome-wide association studies (GWAS) involves testing a huge number of combinations of genetic variants, 
and therefore suffers from high computational burden and low statistical power after multiple testing adjustment. 
Furthermore, despite the likely biological ubiquity of epistasis, both theory and empirical data suggest that the 
total genetic variance of polygenic traits is likely to be largely explained by additive effects, with non-additive 
effects (dominance and epistasis) making a much smaller contribution15–18. There are some situations in which 
the amount of genetic variance contributed by epistasis can be larger than usual, and the characterisation of 
epistasis can substantially improve the accuracy of individual risk prediction. Epistasis can be more important 
when most of the genetic variance arises from a small number of loci with large individual effects, when there 
is high allele heterozygosity16,18, when the genotypic values have a non-linear relationship with the phenotype 
(e.g. as in a multiplicative model)19, or where interacting alleles are under strong linkage disequilibrium (LD)20,21. 
Moreover, even when the trait variance contributed by epistasis is small, its identification and quantification 
can still increase the precision and accuracy of individual risk estimation20. However, the detection of epistasis 
is challenging in GWAS, which relies largely on indirect association through LD. First, the reduction in statisti-
cal power due to incomplete LD between the causal and genotyped single nucleotide polymorphisms (SNPs) 
is greater for epistasis than for main effects. Secondly, the observed interaction effects between two genotyped 
SNPs can result from a hidden causal SNP that is tagged by a specific haplotype formed by the two SNPs, rather 
than true epistasis22,23. In this scenario, the apparent interaction between two SNPs would disappear if one could 
control for the untyped causal SNP. These issues can be resolved if we use whole-genome sequencing (WGS) to 
fully capture all SNPs in the genome.

In this study, we used the high-coverage WGS data on 443 HSCR cases and 493 controls to examine evidence 
of epistatic effects24; the use of WGS rather than GWAS data overcomes the problems of indirect association 
and hidden SNPs mentioned above. In order to reduce multiple testing and minimize false positive findings, we 
restricted the analysis to SNPs and short indels within the Topologically Associating Domains (TADs) encom-
passing RET and NRG1, since cis regulator elements for gene expression are likely to involve long-range physical 
interactions between chromosomal segments, and such interactions occur most frequently between chromosomal 
segments within the same TAD25. Tests for epistasis were performed between the most strongly associated variant 
(or lead variant) for each gene (rs2435357 in RET and rs7005606 in NRG1) and each of the other variants within 
the respective TADs. To explore the full range of possible patterns of interaction between the risk alleles, we 
considered four epistasis models: (1) a phase-independent model with interaction between both alleles present at 
one SNP and both alleles present at the other SNP, regardless of parental origin, (2) a cis model with interaction 
only between alleles inherited from the same parent (and are therefore on the same chromosome if the 2 SNPs 
are syntenic), (3) a trans model with interaction between alleles inherited from different parents, and (4) a cis and 
trans (C&T) model, where interaction between alleles inherited from the same parent and interaction between 
alleles inherited from different parents are both present but can be of different magnitude. To allow for multiple 
testing, we adjusted the p-value threshold for statistical significance by the effective number of independent tests26 
performed, which takes account of the correlations (i.e., LD) between SNPs. Lastly, we attempted to replicate the 
findings of epistasis on an independent GWAS dataset of Korean populations.

Results
Marginal association analysis.  We first tested the marginal association between HSCR and the common 
variants (minor allele frequency (MAF) > 5%) within the TADs of RET as well as NRG1. The variant rs2506006 
(chr10:43581501) in RET and rs7005606 (chr8:32401501) in NRG1 were identified as the most significant vari-
ants in these two regions (Table 1). The variant rs2506006 in RET is in nearly perfect LD (r2 = 0.98) with the lead 
variant rs2435357 that was found in previous study8. In the following analyses, we considered rs2435357 and 
rs7005606 as the lead SNPs for RET and NRG1 loci, respectively. Rs2435357 was used instead of rs2506006 as 
rs2435357 has been much more studied27,28, both statistically and biologically, and was shown to have strong 
enhancer activities that regulate the expression of RET. Conditional association tests of other SNPs in the RET 
and NRG1 TADs did not find other significant marginal effects after adjusting for the corresponding lead SNPs.

Epistasis and secondary epistasis analysis.  The focused regions (RET and NRG1) have been com-
pletely phased. We then detected epistatic effects between the lead variants (rs2435357 in RET and rs7005606 in 
NRG1) and all other common variants within the TADs of RET and NRG1. We considered four epistasis models 
(3)–(6) to explore different interaction mechanisms: phase-independent model, cis model, trans model, and 
C&T model. Briefly, the phase-independent model considers the interactions through the standard genotype 
effects, while the other three models incorporate the haplotype effects where the risk alleles inherited from the 
same or different parents can be tested (the more details can be found in the “Methods” section).

We adopted the Bonferroni correction method to adjust the p-values in the multiple testing. Realizing that 
the tests we performed in the study may not be independent due to the LD between SNPs, we used an esti-
mated effective number of independent tests in the Bonferroni correction26. Using the method from Li et al., we 
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estimated that the effective number of independent tests is 727 for the RET locus, and 590 in the NRG1 locus, 
which corresponds to the p-value thresholds of p < 0.05/727 = 6.9 × 10–5 and p < 0.05/590 = 8.5 × 10–5 in RET and 
NRG1, respectively. We used these two thresholds throughout this study to identify the significant signals. The 
evidence of epistasis was found in RET using the phase-independent, cis, and C&T models but not by the trans 
model. Specifically, we successfully identified 48 epistatic variants using the phase-independent model, 33 epi-
static variants using the cis model, and 53 epistatic variants using the C&T model (Supplemental Tables S1–S3). 
Amongst them, 65 unique variants were identified to have the significant epistasis effect with the lead variant 
with at least one epistasis model (see the summary in Fig. 1 and Supplemental Table S4). In order to identify 
independent signals among the detected epistasis variants in RET, a secondary epistasis analysis was conducted by 
conditioning each detected epistasis variant from the marginal association tests on the most significant epistasis 
variant (more details can be found in the Supplemental methods). The results from secondary epistasis analysis 
revealed that all detected epistasis variants by different epistasis models do not have independent roles, which 
might be driven by the high LD between the epistasis variants with the top epistasis variants (Supplemental 
Fig. S2). However, a subset of the significant epistasis variants with a different MAF range (21–22%) from that 
of the majority (46–49%), and for these variants the evidence for epistasis was strongest under the cis model 
(Fig. 1 and Supplemental Fig. S2; Supplementary Table S2). This suggests the potential independence between 
these two clusters. The secondary epistasis analysis did not identify significant independent effects of the second 
cluster of variants, which possibly due to inadequate statistical power.

Figure 1 shows the 65 potential epistastic variants detected by any of the four epistasis models (3)–(6), where 
the LD and the best p-value obtained in the epistasis analysis are summarized. The phase-independent model 
and the cis model provided more significant results than the C&T model for the commonly detected variants. 
In the figure, the epistatic variants are ordered based on the physical position on the chromosome. We can 
see that the phase-independent model performs best more often than other models. The high LD and similar 
p-values within the same cluster of variants as shown in the LD plot made it less possible to identify the true 
causal epistatic variants in the current analysis. Thus, we took the epistatic variants from each cluster/model 
with the smallest p-value as the representative variants. The most significant epistatic variants we found are 
rs2506026 (p-value = 9.01 × 10–7 in phase-independent model, p-value = 2.40 × 10–6 in C&T model; MAF = 0.47) 
and rs2506025 (p-value = 5.39 × 10–6 in cis model; MAF = 0.49). We noted that both the detected top epista-
sis variants (rs2506025 and rs2506026) do not fall inside an enhancer peak region as defined using ChIP-seq 
and ATAC-seq data from the disease-relevant enteric neural crest cells differentiated from induced pluripotent 
stem cells29. Within the enhancer peaks around RET, rs35651048 is the most significant variant using the cis 
model (p = 7.3 × 10–6) and rs11239806 is the top epistatic variant detected by the phase-independent model 
(p = 1.3 × 10–6) and C&T model (p = 5.0 × 10–6). While the top epistatic variants (rs2506025 and rs2506026) we 
detected are not within the enhancer peak region, they are in high LD with rs35651048 and rs11239806 (r2 = 0.85 
and 0.98 respectively), which indicates that their epistatic effect may act through the enhancer variants. Moreover, 
among the 33 epistatic variants that pass the p-value threshold using cis model, the variant rs2506030 (RET-7, 
MAF = 0.22, p = 6 × 10–5) reported to have active regulatory roles in the expression of the RET gene in Chatterjee 
et al.4 is identified to have the strong interaction with the lead variant rs2435357 and mapped to the second 
cluster of cis-epistatic variants with lower range of MAF. The other variant rs7069590 (RET-5.5) highlighted 
in their study shows a significant marginal association (p = 9.01 × 10–8) but this variant is no longer marginally 
significant after conditioning on the lead variant (see Fig. 2).

None of the variants that have significant interaction effects with the lead variants in NRG1 were detected 
in our dataset (Supplemental Table S5). Moreover, we also examined evidence for statistical epistasis between 
RET and NRG1: all variants within RET were examined for epistasis with rs7005606 in NRG1 using the phase-
independent model and likewise variants within NRG1 with rs2435357 in RET. Only the phase-independent 
model that ignores the haplotype effects was accessed, as the phasing process is not accurate across different 
chromosomes. This analysis did not show the epistasis effect between RET and NRG1 (Supplemental Table S6).

Figure 3 summarizes a closer examination of the representative epistatic variants (rs2506026 and rs2506028) 
with rs2435357 graphically. A clear upward trend of increasing log odds ratios can be seen going from the CC to 
CT to TT genotype in the lead variant (rs2435357). The genotypes in rs2435357 yield different effect of genotypes 
in rs2506026 on the odds of HSCR: when rs2435357 is CC, the C allele (vs. T) in rs2506026 appears to increase 

Table 1.   Top variants that have strong marginal associations in RET and NRG1. *rs2506006 is in high linkage 
disequilibrium with rs2435357 (r2 = 0.98). Variant column has the format of chromosomal position: alternative 
allele: reference allele.

Rs ID Variant MAF p-value

RET

rs2506006 chr10:43581501:A:G 0.35 9.24E−43

rs2435357 chr10:43582056:T:C 0.35 1.66E−42

rs2435359 chr10:43580015:A:G 0.35 1.66E−42

NRG1

rs7005606 chr8:32401501:T:G 0.28 1.72E−09

rs6996585 chr8:32400803:A:G 0.28 2.88E−09

rs10090954 chr8:32402501:C:A 0.48 4.85E−08
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the risk of HSCR, while the C allele in rs2506026 is associated with a decreased risk when rs2435357 is TT. When 
rs2435357 is CT, the heterozygous genotype in rs2506026 leads to a higher risk of HSCR. The CT genotypes are 
divided into two groups, in which CT (Cis) happens when the risk allele T and the risk allele T in rs2435357 are 
inherited from the same parent, and CT (Trans) happens when the two risk alleles are inherited from different 
parents. It shows that the CT (Cis) always has equally or higher effect on the disease risk than the CT (Trans). 
The overall patterns in log odds suggests a clear additive interaction between rs2506026 and rs2435357. A similar 
trend is seen in the relationship between the genotypes in rs2435357 and rs2506025 that is identified using the 
cis model (Supplemental Fig. S3) given the moderate LD between them. The difference in log odds for CA (Cis) 
and CA (Trans) seems larger when there is a presence of heterozygous genotype in rs2435357, and such non-
additive relationships could be further explained by the cis or trans interaction mechanisms. We also visualized 
the log odds among different genotypes in lead variant (rs2435357) and the other representative epistatic variant 
rs2506028 (the epistatic variant from cis model that represents the second cluster with a MAF ~ 22%). In contrast, 
the right panel in Fig. 3 shows an overall smaller change in log odds for rs2506028 among different genotypes 
in rs2435357 compared to the left panel, and it seems that the A allele in rs2506028 always increases the disease 
risk regardless of the genotypes in the lead variant, which all suggests a weaker additive epistasis effect. The AG 
(Cis) and AG (trans) yield the similar effect on log odds when the genotypes in lead variants are homozygous, 
while the significant log odds difference in the AG (Cis) and AG (trans) is observed when the lead variants is CT 
and such non-linear effect was captured using the cis model through the haplotype effects.

Figure 1.   The LD pattern and − log10 (p-value) for 65 significant epistatic variants identified in RET. The 65 
significant epistatic variants are those identified as significant (p < 0.05/727) based on at least in one epistasis 
model (phasing/phase-independent, cis, trans and C&T). The − log(p-value) are the log of the most significant 
p-values obtained for those 65 epistatic variants across epistasis models. The variants are ordered based on the 
physical location.
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Figure 2.   LD measures among three SNPS (rs2506030 (RET-7), rs7069590 (RET-5.5), rs2435357 (RET+3)) and 
the three representative epistatic variants (rs2506026, rs2506025, rs2506028). The conditional p-value refers to 
the p-value for the analysis conditioning on the lead variants; the additive p-value refers to the p-value obtained 
from the phasing-independent model.

Figure 3.   The epistatic effects in log odds between the two representative epistatic variants with the lead variant 
(rs2435357) in RET. On the left panel, CT (Cis) refers to the scenario where the risk allele (T) in rs2506026 and 
the risk allele (T) in rs2435357 are inherited from the same parent; CT (Trans) refers to the scenario where the 
risk allele (T) in rs2506026 and the risk allele (T) in rs2435357 are inherited from the different parents; Similarly, 
on the right panel AG (Cis) refers to the scenario where the risk allele (A) in rs2506028 and the risk allele (T) 
in rs2435357 are inherited from the same parent; AG (Trans) refers to the scenario where the risk allele (A) in 
rs2506028 and the risk allele (T) in rs2435357 are inherited from the different parents.
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Replication analysis in Korean data.  Next, we attempted to replicate the epistatic effects detected in the 
RET locus on an independent GWAS dataset of Korean populations (122 cases and 374 controls)30 as no other 
WGS analysis has been conducted on HSCR thus far. Compared to the findings in Chinese data described above, 
the similar inheritance patterns in the lead variants were observed in the Korean data. The RET lead variant 
(rs2435357) has the dominant inheritance pattern as suggested by the underlying odds ratios within in three 
different genotypes (Table S7), however the dominant effect did not pass the significance level in the standard 
Likelihood Ratio Test (LRT) (p = 0.27) due to the limited power. Moreover, the additive inheritance pattern was 
observed in NRG1 lead variant (rs7005606).

Three variants (rs2506026, rs7393563, and rs2506025) were chosen as the best LD proxies to represent and 
account for the missingness of the 48 epistatic variants previously identified using the phase-independent model 
in the Chinese data. As shown in the Fig. S5, the three proxy variants can well represent the three LD blocks of 
the 48 epistatic variants. Based on the phase-independent model, the proxy variant rs2506034 representing the 
small group of 5 epistatic variants showed a significant interaction with the lead variant (p = 0.03), replicating 
the observed epistasis detected in the Chinese WGS data (Figs. S5, S6; Table S8), where Fig. S6 suggests that 
the epistasis patterns are generally similar in the two datasets. For the three most significant epistatic variants 
(rs2506026, rs7393563, and rs2506025) in the Chinese dataset that highly correlate to these three proxy variants, 
larger standard error and wider confidence interval in the estimates were observed in the Korean data (Table S8), 
which also suggests a power issue due to the smaller sample size. Lastly, the model with the additional adjustment 
of epistasis effect showed an improvement in heritability (~ 1%) on top of the model with only the main effect 
(see details in the Supplemental methods).

Discussion
In this project, we performed an exploratory analysis to look for statistical epistasis in two Hirschsprung disease 
related regions of the genome—the TADs encompassing the RET and NRG1 genes. Our epistasis analysis identi-
fied the variants in 130–150 kb upstream of RET that appeared to show epistatic effects with the lead variant in 
the region: rs2506026 and rs2506025. Significant epistatic effects were found using the phase-independent, cis, 
C&T epistasis models, where the phase-independent model models the interactions between genotypes, and 
cis model models the interactive effects among two risk alleles inherited from the same parent by incorporating 
the haplotype effect, and C&T models captures the combined cis and trans effects (risk alleles inherited from 
different parents). The stronger epistatic effect identified using the phase-independent model with the better 
fit suggests that haplotype effects alone were not sufficient to explain the epistasis. Other mechanisms, such as 
autoregulation and positive/negative feedback from the gene regulatory network, may also be involved in the 
epistatic interaction. It has been pointed out in the literature31 that apparent statistical epistatic effects could be 
due to haplotype tagging of an untyped SNP. Here, we used WGS data and avoided the confounding by assaying 
nearly all variants, except for complex cases such as tandem repeats. The fact that the additive epistasis effect was 
more significant also argues against the interpretation that this effect was due to an untyped SNP.

The epistasis analysis was done by evaluating the interaction effects between the lead variant and other vari-
ants within the RET and NRG1 regions. We used rs2435357 as the lead variant in RET, and rs7005606 as the 
lead variants in NRG1. After exploring the different interaction mechanisms, we detected the omniums set of 65 
significant epistatic variants that pass the significance threshold (p < 0.05/728) for RET using at least one epistasis 
model. It has also been shown that, among the top epistatic variants, the phase-independent model provides a 
better performance in terms of AIC/BIC, and the phase-independent or cis models always yield more significant 
p-values for the commonly detected variants than the C&T. The secondary epistasis analysis revealed that all the 
detected epistatic variants do not have independent roles to contribute the epistasis effects on HSCR. However, 
the LD patterns in Fig. 1 suggests a possibly independent effects of the two clusters of epistatic variants. We also 
want to note that the similar significance and strong or moderate LD were observed within these two clusters of 
epistatic variants. which implies two independent causal variants (from the two clusters) with the true epistasis 
effects exist and the remaining variants in the omniums set were detected might due to the underlying LD. One 
limitation in our study is that it is less possible to identify the true causal epistatic variants statistically among LD 
proxies even with the WGS and other annotation information will be needed to further implicate the functional 
regulatory epistasis variants. Instead, we took the top variants from each cluster as the representative epistatic 
variants: rs2506026 and rs2506028. Their overall trends in log odds among different genotypes in lead variant 
provide the consistent evidence on the interaction mechanisms as revealed by phase-independent, cis or C&T 
models. We were not able to detect the epistatic variants that have strong interactions with the lead variant within 
NRG1 or between RET and NRG1 due to the limited cases that carry the risk alleles in NRG1. The findings of 
additive epistasis effects (using the phase-independent model) were replicated using the Korean data, where we 
showed a significant interaction effect through the proxy variant rs2506034 that well represents the small group 
of 5 epistatic variants based on the LD. In the Chinese analysis, these 5 epistatic variants (rs2506025, rs2488277, 
rs1539291, rs35651048, and rs2506036) were all identified by the phase-independent, cis, and C&T models, but 
the results showed that they have the most significant p-values with the Cis model (Fig. 1), which potentially 
suggests a non-linear effect between the variants and the disease risk and such effect is more closed to Cis interac-
tive mechanism. Moreover, we also presented a gain in heritability in the model with the additional inclusion of 
epistasis effect in comparison to the model without the epistasis effect, although the improvement was not very 
significant given the low statistical power in the Korean data. We also want to note the small sample sizes in both 
discovery and replication data may cause the false positive results. Currently the WGS data on non-Asian samples 
are not available yet. In the future, we hope to generate WGS from more samples to further replicate those results.

The roles of rs2435357 in RET and rs7005606 in NRG1 have been confirmed by previous study. Moreover, 
rs7005606 was also the lead variant identified in the recent meta-analysis by2, which is correlated with the 
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previous lead variant for NRG1 rs783568810,32 with r2 = 0.70. Rs9282834 (MAF = 2.3% in our study), the previ-
ously identified conditionally significant variant2, did not show any significance in all epistasis analyses we 
considered. The lead variant rs2435357 in RET was highlighted with other two variants in Chatterjee et al.4. 
They also provided evidence for the regulatory roles of these three variants, with RET-7 (rs2506030), RET-5.5 
(rs7069590), and RET+3 (rs2435357) being the transcription factor binding sites essential for enteric nervous 
system (ENS) development27. We summarized the statistical significance of the other two SNPs (rs2506030 
and rs7069590) highlighted in their paper, with respect to the marginal, conditional, and epistatic associa-
tions (Fig. 2). RET-5.5 (rs7069590) is significantly associated to HSCR in the marginal association, and RET-7 
(rs2506030) shows a significant cis epistasis effect. RET-7 (rs2506030) is bound by the retinoic acid receptor beta 
(Rarb) and the risk variant was shown to reduce Ret expression through reducing binding of Rarb and hence the 
enhancer activity. While RET+3 (rs2435357) has been well established as a risk variant in HSCR and the lead 
SNP of this study, we were not able to find evidence for statistical epistasis between RET-5.5 (rs7069590) and 
RET+3 (rs2435357). Moreover, there is no evidence of independent association between RET-5.5 (rs7069590) 
and HSCR after accounting for LD with RET+3 (rs2435357). Thus, despite evidence for independent biological 
functions of three RET variants in regulating its expression, this does not translate to statistical independence. 
Our study suggests a more prominent role of the RET+3 (rs2435357) variant alone, with possible modulatory 
effects by RET-7 (rs2506030), and no important contribution from the RET-5.5 variant (rs7069590). Our finding 
on epistasis on RET could be generalized to other populations, such as European population, as the previous 
biological evidence on epistasis has been shown in Chatterjee et al. in which the variants tested were prioritized 
from GWAS on European populations19. However, because of the shortage of the WGS in other populations, we 
can only study Asian population now. When available, WGS data on other populations will help fine map the 
causal epistatic variant(s) that may modify the penetrance for HSCR.

Considering that the patients with high penetrant, pathogenic mutations in RET and other known HSCR 
genes might affect our results, we performed additional epistasis analysis by removing 5 samples with rare, loss of 
function (LoF) variants in RET and 3 syndromic cases with LoF variants in ZEB2 based on function annotations 
using KGGSeq. We identified the same 61 unique epistatic variants with the same best model compared to our 
results that use all 936 samples (Table S9). Because of the smaller sample size, four previously identified variants 
(rs2995411, rs9340489, rs2488278, rs2506030) did not pass the significance threshold and the determined vari-
ants have less significant p-values after excluding 8 samples.

In summary, our results offer the statistical evidence for the epistasis effect between the genetic variations 
upstream of the promoter with the lead variant in RET, and such effect might act through the enhancer variants 
suggested by the high LD between the top epistatic variants with the top epistatic variants within the enhancer 
peaks. Given that HSCR is found to be contributed only by a small number of common variants but with high 
heritability, our findings can provide more insights on the contribution of epistasis effects on the unexplained 
heritability in the HSCR.

Materials and methods
Study samples.  The discovery cohort comprised 443 short segments HSCR (S-HSCR) cases and 493 con-
trols analyzed by WGS and passed the quality control (as described in Tang et al.24). All patients analyzed were 
sporadic, with no known family history of HSCR, and were recruited at hospitals in China (n = 341) and Viet-
nam (n = 102). To minimize confounding due to population stratification, controls were ascertained from the 
same or nearby cities to match with the subpopulations of the patients. Informed consent was obtained from all 
participants and the study was approved by the institutional review board of the University of Hong Kong and 
the Hospital Authority. The research was conducted performed in accordance with the Declaration of Helsinki.

To replicate the analysis, we used the Korean GWAS data of sporadic HSCR cases and controls. In the replica-
tion analysis, we only included the unrelated samples from 122 cases and 374 controls. The proxy variants were 
used to the represent the missing variants in the Korean dataset, based on their underlying LD.

Genotype data.  The discovery sample was whole genome sequenced using Illumina HiSeq X Ten to a mean 
coverage of 30×. Raw sequence reads were first aligned to human reference genome (hg19) using Burrows-
Wheeler Aligner (BWA-MEM). Aligned reads were then processed according to Genome Analysis Toolkit 
(GATK; version 3.4) and which resulted a final call set of 33.4 million (M) single nucleotide variants (SNVs) 
and 3.3M indels. To determine the haplotype configurations for variants in RET and NRG1, we performed read 
aware phasing using SHAPEIT2. Briefly, phase informative reads spanning at least two heterozygous sites were 
obtained from the BAM files and were used to phase the common and rare variants in VCF file.

Topologically associating domains and enhancer peaks.  TADs are defined using the TADs called 
from Hi-C data of 9 cell lines from Rao et al.33. The union of the different intervals across cell types is used, which 
results in the 2.2 Mb and 2.5 Mb TAD regions for RET (chr10:43340000–45560000) and NRG1 (chr8:31070000–
33600000), respectively. We extended the region of interest to chr10:43000000–45560000 (2.6 Mb) for RET to 
cover more significant variants for RET. In our paper, we use the same enhancer list from29 to prioritize the vari-
ants within the enhancer peak.

Marginal association and conditional analyses.  Marginal variant association tests were performed 
using the following logistic regression assuming the additive and dominant genetic effects:

(1)logit pi = α0 + α1PC1i + α2PC2i + γ1A
j
i + γ2D

j
i ,



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20423  | https://doi.org/10.1038/s41598-022-24077-w

www.nature.com/scientificreports/

where Aj
i and Dj

i are the additive and dominant effects for variant j that satisfies the selection criteria within the 
region for sample i. Principal Component Analysis (PCA) was performed using PC-AiR34 to control for the 
population structure (the details of PCA can be found in the Supplemental methods). We adjusted for population 
stratification using the first two PCs (i.e., PC1 and PC2). Tests were limited to common variants with MAF of at 
least 0.05 in the data. Significance level was assessed using the Likelihood Ratio Test (LRT) where we compared 
the model with the genetic effect with the null model (only contains the covariates). Altogether 6810 and 4779 
variants and short indels were considered within RET and NRG1 respectively.

To detect the variants beyond the lead variants (we used rs2435357 in RET and rs7005606 in NRG1 in this 
paper), a series of conditional analyses for the significant epistatic variants from marginal tests were then con-
ducted by conditioning on the lead variants within the RET and NRG1 regions, i.e.,

where Alead
i  and Dlead

i  are the additive and dominant effects for the lead variants detected through the marginal 
association analysis. The significance for variant j was evaluated through the LRT that compares the model (2) 
and model (1).

Epistasis models.  We accessed statistical epistasis by testing the variants within the RET and NRG1 with 
their corresponding lead variants, where the logistic regression is applied. To test the models with different inter-
active mechanisms among risk alleles, the following four epistasis models are proposed:

Phase-independent

Cis

Trans

C&T

where Aj
i  and Dj

i  denote the additive and dominant effect respectively of variant j for sample i, and Hj,1
i   and 

H
j,2
i  denote the haplotypes for the same variants, with Hj,1

i +H
j,lead
i = A

j
i . A

lead
i , Dlead

i , Hlead,1
i ,Hlead,2

i  denote 
the equivalent for the lead variant, and pi is the probability of having the disease. The statistical significance for 
the epistasis effect is obtained through the LRTs by comparing each epistasis model with the base model defined 
as following:

which corresponds to the chi-square test with 1 degree of freedom when compare additive, cis, and trans models 
to the base model, and the chi-square test with 2 degrees of freedom when compare the C&T model to the base 
model.

Replication analysis using Korean data.  The Korean data was used to replicate our specific findings 
of epistasis effects with the phase-independent model. Recall that we identified 48 significant epistatic variants 
using the same model in the Chinese dataset, however, because of their high LDs and similar p-values, we could 
not identify the exact causal variant with the true epistasis effect. Therefore, in the replication analysis, we con-
sidered all the 48 epistatic variants in the epistasis analysis. In the Korean data, rs2505998 was used as a proxy 
for the RET lead variant which was not genotyped in the GWAS data, and the variants (rs2487918, rs11239767, 
rs2506034) were used as the three best proxy variants that can well represent the 48 epistatic variants based on 
the LDs. More detailed analysis can be found in the Supplemental methods.

Data availability
The datasets analysed for the current study are available upon request to the corresponding author (C.S.T.).

(2)logit pi = α0 + α1PC1i + α2PC2i + γ1A
j
i + γ2D

j
i + γ3A

lead
i + γ4D

lead
i ,

(3)logit pi = α0 + α1PC1i + α2PC2i + γ1A
lead
i + γ2D

lead
i + γ3A

j
i + γ4D
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i + β1A
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i A

j
i
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(5)logit pi = α0+α1PC1i+α2PC2i+γ1A
lead
i +γ2D

lead
i +γ3A

j
i+γ4D

j
i+β1(H
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(6)
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lead,1
i H

j,2
i +Hlead,2

i H
j,1
i )

logit pi = α0 + α1PC1i + α2PC2i + γ1A
lead
i + γ2D

lead
i + γ3A

j
i + γ4D

j
i ,



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20423  | https://doi.org/10.1038/s41598-022-24077-w

www.nature.com/scientificreports/

Received: 7 September 2022; Accepted: 9 November 2022

References
	 1.	 Badner, J. A., Sieber, W. K., Garver, K. L. & Chakravarti, A. A genetic study of Hirschsprung disease. Am. J. Hum. Genet. 46(3), 

568–580 (1990).
	 2.	 Tang, C. S. M. et al. Trans-ethnic meta-analysis of genome-wide association studies for Hirschsprung disease. Hum. Mol. Genet. 

25(23), 5265–5275 (2016).
	 3.	 Amiel, J. et al. Hirschsprung disease, associated syndromes and genetics: A review. J. Med. Genet. 45(1), 1–14 (2008).
	 4.	 Chatterjee, S. et al. Enhancer variants synergistically drive dysfunction of a gene regulatory network in Hirschsprung disease. Cell 

167(2), 355–368 (2016).
	 5.	 Luzón-Toro, B. et al. Exome sequencing reveals a high genetic heterogeneity on familial Hirschsprung disease. Sci. Rep. 5, 16473 

(2015).
	 6.	 Kapoor, A. et al. Population variation in total genetic risk of Hirschsprung disease from common RET, SEMA3 and NRG1 sus-

ceptibility polymorphisms. Hum. Mol. Genet. 24(10), 2997–3003 (2015).
	 7.	 Tomuschat, C. & Puri, P. RET gene is a major risk factor for Hirschsprung’s disease: A meta-analysis. Pediatr. Surg. Int. 31(8), 

701–710 (2015).
	 8.	 Jiang, Q. et al. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to 

Hirschsprung disease liability. Am. J. Hum. Genet. 96(4), 581–596 (2015).
	 9.	 Fadista, J. et al. Genome-wide association study of Hirschsprung disease detects a novel low-frequency variant at the RET locus. 

Eur. J. Hum. Genet. 26(4), 561–569 (2018).
	10.	 Garcia-Barcelo, M. M. et al. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. 

Proc. Natl. Acad. Sci. 106(8), 2694–2699 (2009).
	11.	 Gui, H. et al. RET and NRG1 interplay in Hirschsprung disease. Hum. Genet. 132(5), 591–600 (2013).
	12.	 Gunadi Kapoor, A. et al. Effects of RET and NRG1 polymorphisms in Indonesian patients with Hirschsprung disease. J. Pediatr. 

Surg. 49(11), 1614–1618 (2014).
	13.	 Moore, J. H. & Williams, S. M. Epistasis and its implications for personal genetics. Am. J. Hum. Genet. 85(3), 309–320 (2009).
	14.	 Crawford, L., Zeng, P., Mukherjee, S. & Zhou, X. Detecting epistasis with the marginal epistasis test in genetic mapping studies of 

quantitative traits. PLoS Genet. 13(7), e1006869 (2017).
	15.	 Wei, W., Hemani, G. & Haley, C. Detecting epistasis in human complex traits. Nat. Rev. Genet. 15(11), 722–733 (2014).
	16.	 Mäki-Tanila, A. & Hill, W. Influence of gene interaction on complex trait variation with multilocus models. Genetics 198(1), 

355–367 (2014).
	17.	 Plomin, R., DeFries, J., Knopik, V. & Neiderhiser, J. Top 10 replicated findings from behavioral genetics. Perspect. Psychol. Sci. 

11(1), 3–23 (2016).
	18.	 Hill, W., Goddard, M. & Visscher, P. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 

4(2), e1000008 (2008).
	19.	 Dillmann, C. & Foulley, J. Another look at multiplicative models in quantitative genetics. Genet. Sel. Evol. 30(6), 543 (1998).
	20.	 Mäki-Tanila, A. & Hill, W. G. Contribution of gene–gene interaction to genetic variation and its utilisation by selection. In: Pro-

ceedings of the 10th World Congress of Genetics Applied to Livestock Production (2014).
	21.	 Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits 146–150 (Sinauer, 1999).
	22.	 Wood, A. R. et al. Another explanation for apparent epistasis. Nature 514, 7520 (2014).
	23.	 de los Campos, G., Sorensen, D. A. & Toro, M. A. Imperfect linkage disequilibrium generates phantom epistasis (& perils of big 

data). G3 Genes|Genomes|Genetics 9(5), 1429–1436 (2019).
	24.	 Tang, C. S. M. et al. Identification of genes associated with Hirschsprung disease, based on whole genome sequence analysis, and 

potential effects on enteric nervous system. Gastroenterology 155(6), 1908–1922 (2018).
	25.	 Dekker, J. & Heard, E. Structural and functional diversity of topologically associating domains. FEBS Lett. 589(20 Part A), 2877–

2884 (2015).
	26.	 Li, M. X., Yeung, J. M. Y., Cherny, S. S. & Sham, P. Evaluating the effective numbers of independent tests and significant p-value 

thresholds in commercial genotyping arrays and public imputation reference datasets. Hum. Genet. 131, 747–756 (2012).
	27.	 Emison, E. S. et al. differential contributions of rare and common, coding and noncoding ret mutations to multifactorial 

Hirschsprung disease liability. Am. J. Hum. Genet. 87(1), 60–74 (2010).
	28.	 Emison, E. S. et al. A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434(7035), 

857–863 (2005).
	29.	 Fu, A. X. et al. Whole-genome analysis of noncoding genetic variations identifies multiscale regulatory element perturbations 

associated with Hirschsprung disease. Genome Res. 30(11), 1618–1632 (2020).
	30.	 Kim, J. H. et al. A genome-wide association study identifies potential susceptibility loci for Hirschsprung disease. PLoS One 9, 

e110292 (2014).
	31.	 Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. 

Genet. 46(11), 1173–1186 (2014).
	32.	 Gunadi Iskandar, K., Makhmudi, A. & Kapoor, A. Combined genetic effects of RET and NRG1 susceptibility variants on multi-

factorial Hirschsprung disease in Indonesia. J. Surg. Res. 233, 96–99 (2019).
	33.	 Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7), 

1665–1680 (2014).
	34.	 Conomos, M. P., Miller, M. B. & Thornton, T. A. Robust inference of population structure for ancestry prediction and correction 

of stratification in the presence of relatedness. Genet. Epidemiol. 39(4), 276 (2015).

Acknowledgements
We are grateful to the numerous patients, their families and referring physicians that have participated in these 
studies in our laboratories, and the numerous members of our laboratories for their valuable contributions over 
many years.

Author contributions
Y.W. wrote the article. Y.W. and T.S.H.M. did the statistical analysis and data interpretation. S.D. assisted with 
the data analysis. M.M.G.B., C.S.T. and P.C.S. jointly supervised the research and conceived the experiments. 
P.K.H.T. was responsible for clinical recruitment of patients and controls. K.Y.Y. and P.K.H.T. contributed to criti-
cal revision of the article. A.X.F., E.S.W.N., and K.Y.Y. were responsible for the data generation and interpretation 
regarding the regulatory elements.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:20423  | https://doi.org/10.1038/s41598-022-24077-w

www.nature.com/scientificreports/

Funding
This work was supported by Theme-based Research scheme [grant number T12C-714/14-R to P.T.], REACH 
research grant and Health Medical Research Fund (HMRF) [grant numbers 06171636 and 08193446 to C.S.T. 
and 06173306 to E.S.W.N.].

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​24077-w.

Correspondence and requests for materials should be addressed to C.S.-M.T. or P.C.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-24077-w
https://doi.org/10.1038/s41598-022-24077-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Whole genome sequencing reveals epistasis effects within RET for Hirschsprung disease
	Results
	Marginal association analysis. 
	Epistasis and secondary epistasis analysis. 
	Replication analysis in Korean data. 

	Discussion
	Materials and methods
	Study samples. 
	Genotype data. 
	Topologically associating domains and enhancer peaks. 
	Marginal association and conditional analyses. 
	Epistasis models. 
	Replication analysis using Korean data. 

	References
	Acknowledgements


