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Temperature prediction of solar 
greenhouse based on NARX 
regression neural network
Maosheng Gao 1,2, Qingli Wu 3, Jianke Li 1,2*, Bailing Wang 1,2, Zhongyu Zhou 1,2, 
Chunming Liu 1 & Dong Wang 4

Temperature has an important influence on plant growth and development. In protected agriculture 
production, accurate prediction of temperature environment is of great significance. However, 
due to the time series, nonlinear and multi coupling characteristics of temperature, it is difficult to 
achieve accurate prediction. We proposed a method for building a solar greenhouse temperature 
prediction model based on a timeseries analysis, that considers the time series characteristics and 
dynamic temperature changes in the greenhouse system. The method would predict the temperature 
of greenhouse, and provide reference for the temperature change law in protected agriculture. 
A parameter analysis was performed on the nonlinear autoregressive exogenous (NARX) neural 
network, and a solar greenhouse temperature time series prediction model was established using the 
NARX regression neural network. The results showed that the proposed model depicted a maximum 
absolute error of 0.67 °C, and model correlation coefficient of 0.9996. Compared with the wavelet 
and BP neural networks, the NARX regression neural network accurately predicted and significantly 
outperformed in the solar greenhouse temperature prediction model. Moreover, the prediction model 
can accurately predict temperature trends within the solar greenhouse and is pivotal to obtaining 
precise control of solar greenhouse temperature.

Solar greenhouses are designed to insulate heat and increase production1,2. In recent years, the area of green-
houses in China has continued to expand3,4. As of 2020, greenhouses covered 340 hectares, 90% of which are solar 
greenhouses located in northern China5. Solar green houses are operated by simple, manual processes. In winter, 
the manager will close the greenhouse based on experience to ensure the indoor temperature6. However, because 
these temperature control decisions are made in the absence of scientific assessment, they are often erroneous or 
tardy, which leads to delays in shed opening time, negatively impacts the greenhouse’s sunlight exposure time in 
winter, and contributes to a decline ineffective crop photosynthesis7,8. Therefore, to achieve effective greenhouse 
temperature regulation, it is particularly important to predict the greenhouse temperature in advance9.

Solar greenhouses are nonlinear, large inertia, strong coupling, and time-varying complex systems10. As such, 
implemented control measures and changes in external climate will impact the greenhouse environment and 
thus, facilitate changes in the solar greenhouse crops’ physiological characteristics11. The modeling methods of 
greenhouse temperature can be divided into mechanism models based on energy balance and non-mechanism 
models based on data drive. The mechanism model has the advantages of strong interpretability, but it is dif-
ficult to apply to the actual agricultural production due to its low accuracy, poor versatility and difficulties in 
obtaining parameters. With the development of sensor technology, data acquisition becomes easier and easier. 
Data driven model is widely used in agriculture because of its high precision and strong generalization ability. 
Holthuijzen12 has used five statistical methods to predict temperature. Although statistical methods can predict 
time series data, their ability to deal with nonlinear problems is limited, and their fitting accuracy is generally low.

To circumvent this issue, many scholars use intelligent algorithms to solve the challenges associated with 
greenhouse modeling. Examples include but are not limited to: fuzzy control, neural network, genetic, and non-
linear regression algorithms13–16. Among them, the application of neural networks in greenhouse modeling is 
particularly prominent17, as modeling process difficulties are greatly reduced due to the neural networks’ black 
box nature18. Ferreira et al.19 used radial basis function neural network to predict the greenhouse temperature. 
The parameters of the model were optimized by Levenberg–Marquardt method. However, the model belongs 
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to static neural network and the temperature time series change information is not considered. The long-term 
prediction accuracy is low.

Considering the time series change characteristics of temperature, we designed a closed loop neural network 
Nonlinear Auto Regressive Model with Exogenic Inputs (NARX). Compared with the traditional neural net-
work, this network takes the predicted temperature as the feedback input, which belongs to a dynamic model. 
The closed loop network can predict the temperature according to the previous temperature to improve the 
accuracy of the model. In order to train the model easily, the error back propagation algorithm was used to train 
the parameters. In researches of temperature prediction, NARX has dynamic time series characteristics and is 
convenient for training.

In this work, a dynamic neural network was employed to develop a model that enables solar greenhouse 
temperature series prediction with time series characteristics. Herein, the time series concept, which is based on 
traditional neural network modeling, is introduced; and a NARX recurrent neural network (NARXNN) predic-
tion model with two primary external input influencing factors—light and temperature difference—is proposed. 
Results show that the prediction accuracy and network performance of a NARXNN prediction model based on 
time series analysis is significantly better than that of other algorithm models, which has practical significance 
for accurate regulation of greenhouse temperature.

Materials and methods
Testing platform structures.  In this work, greenhouse temperature and temperature-related environ-
mental data were experimentally obtained, from December 12–17, 2021. Testing was conducted at Northwest 
A&F University of Agriculture and Forestry Science and Technology in Wutun Town, Yanliang, Xi’an City (lati-
tude 34° 35′ 11″ N, longitude 109° 08′ 54″ E). The experimental greenhouse was 46 m long and3.8 m high, with 
1 m thickeast, west, and rear walls. Experimental apparatus consisted of a db130 air temperature and humidity 
sensor, with a measurement accuracy of ± 0.5 °C at ambient temperature (25 °C); and a DAVIS6450 solar radia-
tion sensor, with a ± 5% measurement accuracy at full scale.

Using ZigBee wireless communication and general packet radio service (GPRS) technology, the monitoring 
node collected the greenhouse environmental factor information, and uploaded the data to the website through 
the root node and DTU. The test data acquisition system is shown in Fig. 1.

The monitoring node is composed of a power supply module, core processing module, sensor module, and 
debugging module. All the monitoring nodes are networked to collect and transmit the environmental data from 
each node—which consists of indoor/outdoor air temperature, humidity, and light radiation data that has been 
collected every 5 min. The root node is composed of the serial port, power, and core processing modules. Using 
ZigBee wireless sensor network technology, the latter receives the data collected by each monitoring node and 

Figure 1.   Experimental data acquisition system.
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sends it to the DTUs through the RS232 serial port. The central server then uses GPRS technology to have the 
DTU upload the environmental factor information to the agricultural production Internet of Things monitoring 
platform. Users can then access the platform online to obtain test data.

Experiment design.  The greenhouse remained vacant during the experiment to avoid the influence of crops on 
indoor temperature changes. The temperature detection values differed as a function of height and distance from 
the rear wall, so the placement position of each sensor was determined as shown in Fig. 2. Nodes 1, 2, 7, and 8 
were1m equidistant from the ground; Nodes 2, 3, 8, and 9 were3.5 m equidistant from the back wall; Nodes 4, 5, 
and 6 were0.8 m equidistant from the ground within the same vertical plane; and Nodes 1, 2, and 3 were sym-
metrical with nodes 7, 8, and 9 relative to the vertical planes of nodes 4, 5, and 6. In addition, Nodes 1-9 were 
outfitted with air temperature and humidity sensors, while nodes 4, 5, and 6 were outfitted with light radiation 
sensors. Node 0 was located outdoors, at a minimum distance of 1.5 m from the greenhouse, and a height of 2 m. 
This node was also outfitted with an air temperature/humidity sensor and light radiation sensor.

The test was conducted during clear weather conditions, such that the low temperatures and absence of light 
associated with actual extreme weather could be simulated. The greenhouse remained in an opened state from 
Dec.24th–25th, during which time the greenhouse quilt remained open at night. The greenhouse was closed 
before sunset on the evening of the 25th and open after sunrise on the morning of the 27th, during which time 
the quilt remained closed during the day. The shed was then closed again at sunset on the evening of the 28th. 
The specific time associated with opening and closing the shed in the morning and evening was managed 
by the greenhouse manager and performed in conjunction with the greenhouses of other crops. The five-day 
data collection time spanned from 00:00 on January 24, 2018 to 00:00 on January 30, 2018.After the data was 
obtained, the average temperature value of each node in the greenhouse was calculated and taken as the indoor 
temperature data, while the indoor/outdoor temperature difference was calculated and used for indoor/outdoor 
temperature difference data. After the outliers in the test data were excluded, the sample set consisted of 1440 
sets of environmental factors.

Pretreatment of test data.  Because temperature, temperature difference, and radiation intensity are character-
ized using different dimensions, the data could not be directly compared. As such, if the NARXNN model was 
established using the raw data, the model accuracy would be negatively impacted. Thus, the sample set was first 
normalized using the normalization mapping formula in Formula (1):

where x, y ∈ Rn; xmin = min (x); xmax = max(x), x is the data to be normalized, and y is the normalized data. Using 
this formula, the original data was normalized to the range of [0, 1].

To reserve sufficient opening action time and temperature response time, andto ensure prediction accuracy, 
20 min was selected as the prediction time. Equal spacing started from the first data point in the first 1440 sets of 
data. Next, 361 sets of data i.e., every 4th set, was selected to comprise the new sample set. Of the reduced sample 
set, the first 300 data sets were used as the training set and the last 61 sets as the prediction set.

Greenhouse temperature prediction model based on NARXNN.  In this work, a NARXNN time series prediction 
model with external input was used to establish a corresponding greenhouse temperature prediction model with 
the aim of resolving the temperature prediction challenges associated with solar greenhouse. The model was 
developed using static neurons and network feedback, and combined the linear autoregression (ARX) model’s 
nonlinear processing with a neural network, giving it strong nonlinear identification ability.

(1)y =
x − xmin

xmax − xmin

Figure 2.   Schematic diagram of the solar greenhouse architecture and sensor distribution.
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NARXNN based greenhouse temperature prediction model methodology.  Using the sample set described above, 
a NARX regression neural network prediction model was developed. The greenhouse’s historical and current 
light radiation time and inside/outside temperature difference were used as inputs, while the greenhouse’s future 
temperature at a given time served as the output. A flowchart of the NARXNN algorithm is shown in Fig. 3. First, 
the appropriate prediction model structure was selected based on the network’s input and output characteristics, 
a nonlinear autoregressive neural network model with external input was constructed, and the network mode 
was simultaneously established. Next, the time series data was pre-prepared, and the 361 training sets were 
divided into new training sets, verification sets, and test sets in a 70:15:15ratio. Then, the network parameters 
were determined and the algorithm was taught to achieve network training. Finally, predictions were made using 
the trained network.

Network pattern selection.  The standard NARXNN operates in Parallel neural network mode20. Given the time 
series continuity, the prediction output is fed back as one-dimensional input of the next moment to add the 
historical series influence on the future moment’s predicted value. In practice, temperature data is collected and 
stored in real time, and the indoor temperature of the current and historical moments are known when mak-
ing predictions. Therefore, a static network was built with the actual historical temperature value as one of the 
dimensional inputs. This resulted in a Series–Parallel neural network mode that turns the NARXNN into a pure 
forward neural network. Compared with the traditional BP neural network, the network structure adds a delay 
order, so the static neural network modeling function can be directly used, which reduces modeling difficulty 
and improves the network’s prediction accuracy to a certain extent. The network pattern is shown in Fig. 4.

Build a nonlinear autoregressive model 
and create a NARX neural network

Time series data preparation

N

Y

Start

Determine the input and output 
parameters of the network

End

Divide training set, validation set, and test set

Set training function, error function and plotting function

Train and adjust the weights and thresholds 
of each layer using the LM training method

Sample data 
preprocessing

Calculate the output of each layer using 
the training samples

Calculate error and error signal

Complete rotation?

Meet termination conditions? iterate

iterate

Get the best network weights and thresholds, save the 
network structure and parameters

N

Y

Temperature prediction for future moments using the 
built network

Figure 3.   Specific flowchart of the NARXNN algorithm.
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In Fig. 4, n and m represents the system’s input and output delay orders, respectively; R = n + m and indicates 
the current network’s number of input nodes; ωi,j is the connection weight between the ith neuron in the net-
work’s hidden layer and the jth element in the input vector; S is the number of hidden nodes; bi is the ith neuron’s 
bias value in the network’s hidden layer; ci is the net input of the ith neuron in the hidden layer; f1isthe transfer 
function of a crypto layer neuron; ai is the output of the ith neuron in the hidden layer; ωi is the ith connection 
weight between the network output layer neurons and the hidden layer neurons; b is the neurons’ bias value in 
the network’s output layer; d is the net input of neurons in the output layer; f2isthe transfer function of neurons 
at the network’s output layer; and Y(t + 1) is the network’s predicted output.

If the current moment is t, the input–output relationship between the model and the t + 1 moment tempera-
ture value prediction is as follows21:

The vector form is shown in Formula (3):

Formula (2) and Formula (3) are combined to obtain:

where u(t) is the temperature influencing factor term at the current moment, u(t-n + 1) is the temperature 
influencing factor term at the moment of t − 1 + 1, y(t) is the indoor temperature value at the current moment, 
y(t-m + 1) is the indoor temperature value at the t-m + 1 moment, and Y(t + 1) is the predicted indoor tempera-
ture at the next moment.

NARX regression neural network design.  The selected input and output delay orders were n = 3 and m = 3—i.e., 
there were six input layer nodes.

The number of neurons in the implicit layer is often based on experience, and in turn, has resulted in large 
network errors. To circumvent this issue, different numbers of neurons were tested for network training; and 
the number of neurons that produced the best training results was selected (Fig. 5).

The performance function is defined as the training result detection function and is used as the basis for 
determining whether the network training result is good or bad. As shown in Fig. 5, the NARXNN performance 
function value depicts an inverse relationship with the number of hidden layer nodes until the latter value 
reaches 10. At this point, the trend reverses and the two variables depict a positive correlation. While increasing 
the number of hidden layer nodes makes the network more accurate, it also results in a discordant fit, which 
affects the network’s performance. In this case, the performance value function is maximized when the number 

(2)Yt+ 1 =

s
∑

i=1

ωi f1[ci(t)]+ b

(3)ci(t)

n
∑

j=1

ωi.ju
(

t − j + 1
)

+

m
∑

j=1

ωi,j+ny
(

t − j + 1
)

+ bi

(4)Y(t + 1) = f
(

u(t), u(t − 1), . . . , u(t − n+ 1), y(t), y(t − 1), . . . , y(t −m1)
)

Figure 4.   Series parallel neural network model.
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of nodes in the hidden layer is 10; thus, 10 was selected as the value for this variable. The prediction result was 
the temperature value of the next moment, and the number of nodes in the output layer was 1.

In summary, the number of network nodes was as follows: 6 input nodes, 10 hidden layer nodes, and 1 output 
node.

Neuronal activation functions are often divided into global functions—such as S-type functions, and local 
functions—such as RBF functions22. Since NARXNN is a global approximation network, its neuronal excitation 
function should be a global function. Therefore, the influence of different S-type transfer functions on network 
performance was investigated. Four models training step parameters were analyzed to determine the optimal 
transfer function combination. In addition, the training set’s root mean square error, deterministic coefficient, 
and training time were tested under different combinations of transfer functions. The results are shown in Table 1.

Table 1 shows that different combinations of transfer functions have an important impact on model training. 
The model rms error and deterministic coefficient obtained in the sequence numbers 3, 4, 7, 8, 11, 12, and16 
depict superior performance. Among them, group 12 has the smallest root mean square error and the decision 
coefficient closest to 1, as well as a small training step and short training time. Thus 12 was selected as the opti-
mal transfer function combination. Accordingly, the implicit layer’s transfer function was tansig, and the output 
layer’s transfer function was purelin.

There are numerous types of neural network learning algorithms. In this study, the error function and net-
work computation time of the pseudo-Newtonian backpropagation algorithm, gradient descent backpropagation 
algorithm, Powell-Beale reset algorithm, gradient descent backpropagation algorithm for adaptive adjustment of 

Figure 5.   Performance function curve with the number of hidden layer nodes.

Table 1.   The transfer function’s effect on the mode’s prediction accuracy.

Order number

Transfer function

Training step RMS error Coefficient of determination Training timeImplication level Output level

1 radbas radbas 8 113.0576 0.7486 18.049

2 radbas logsig 13 137.0880 0.1512 21.977

3 radbas tansig 13 0.2326 0.9978 22.603

4 radbas purelin 13 0.0224 0.9998 16.719

5 logsig radbas 14 142.0744 0.06037 22.967

6 logsig logsig 10 112.9237 0.7537 23.047

7 logsig tansig 21 0.9222 0.991 20.620

8 logsig purelin 7 0.0166 0.9998 18.409

9 tansig radbas 7 116.1256 0.6604 22.727

10 tansig logsig 25 112.8936 0.7565 24.207

11 tansig tansig 19 0.0611 0.9995 23.625

12 tansig purelin 15 0.0133 0.9999 19.9925

13 purelin radbas 6 113.5387 0.7458 27.386

14 purelin logsig 28 113.5672 0.7348 40.981

15 purelin tansig 5 1.3032 0.9878 23.410

16 purelin purelin 22 0.0172 0.9998 18.203
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learning rate, and Levenberg–Marquardt backpropagation algorithm were assessed and compared. The results 
are shown in Table 2.

According to Table 2, the gradient descent backpropagation algorithm, which is known by the root mean 
square error value and the decision coefficient, is not suitable for the data characteristics and was therefore 
eliminated. Furthermore, the gradient descent backpropagation algorithm with the adaptive adjustment learning 
rate shows better adaptability, but still lags behind the remaining three algorithms. Comparing the LM back-
propagation algorithm, BFGS learning algorithm, and Plwell-Beale reset algorithm, the LM backpropagation 
algorithm performed best—depicting a coefficient of determination = 0.9999, root mean square error = 0.0133, 
and requiringonly 15 trainingsteps. Considering the indicators that were compared, the LM backpropagation 
algorithm offered the optimal value, indicating that it can solve the actual problem faster and more accurately 
that the others. As such, the LM backpropagation algorithm was selected for this study.

In summary, the model used herein depicts the following parameters: network structure (3–10-1); hidden 
layer activation function (tagsig function); output layer activation function (purelin linear transfer function); 
training function (trainlm function); and the error performance function (mse function).

Model evaluation.  In this work, the measured value and the predicted value were compared and used as the 
model evaluation benchmark. Moreover, the maximum absolute error, mean absolute error (MAE), root mean 
square error (MSE), decision coefficient, and calculation time were used as the specific evaluation indicators 
to determine the model’s advantages and disadvantages. The model’s feasibility was assessed by determining 
whether the indicators were within the acceptable range, while the model’s quality was evaluated by measuring 
the distance of each indicator from the best standard.

Results and discussion
Training effectiveness of the NARXNN prediction model.  The already established NARXNN pre-
diction model was used to train the study model, and the training effectiveness is shown in Fig. 6. Note that 
both the training set and test set reached the target error value in the 8th training. In contrast, the verification 
set reached the target error value after the 15th training, at which time the verification set error was 0.021865. 
Notably, the verification set error continued to rise, so the network required only 15 iterations to complete the 
training. These results indicate that the model prediction is characterized by a fast convergence speed and high 
accuracy.

Feasibility of the NARXNN prediction model.  A predictive model’s feasibility is usually determined 
by autocorrelation and cross-correlation tests. When the prediction error is obviously autocorrelated, and the 
input and error have obvious cross-correlation, then the prediction error is dependent on the time series, as well 

Table 2.   Evaluation index of different learning algorithms.

Predicted models Training step R2 RMSE Operation time

trainlm 15 0.9999 0.0133 19.9925

trainbfg 29 0.9995 0.0487 20.271

traingd 0 27.3047 625.6171 14.239

traingda 170 0.9825 1.18318 22.806

traincgb 44 0.9976 0.2494 25.438

Figure 6.   NARXNN training chart.
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as the input. Under these conditions, the model’s general performance significantly decreases and the prediction 
function will fail. In the NARXNN prediction algorithm, the error autocorrelation graph and the input and error 
correlation graph were visualized, as shown in Figs. 7 and 8, respectively.

In practice, it is impossible to guarantee complete disparity. When calculating the degree of autocorrelation, 
the confidence interval should beset to 95%23. The error should be maximized when lag is 0, and in all other 
cases, below the confidence interval. The lower the correlation between the input and the error, the better the 
results, and the closer its value is to zero in the plot. According to Fig. 7, the autocorrelation coefficient of the 
temperature prediction error sequence is 10−3, it is only maximized when lag is 0, and in other cases, it does not 
exceed the confidence interval from the third group. These results demonstrate that the temperature prediction 
error sequence is a random process and does not have any correlation. Figure 8 shows that the input and error 
correlation is very low, the maximum value of the correlation coefficient’s absolute value does not exceed 0.2, and 
that all values are within the confidence interval. The combined results from the error autocorrelation analysis 
and the input and error correlation analysis comprehensively demonstrate that it is feasible to use the model to 
predict the solar greenhouse temperature data.

NARXNN prediction model results analysis.  To verify the accuracy and adaptability of the model pre-
diction results, the 61 groups of prediction sample sets that were not used to train the model, were verified and 
analyzed via the heterometric calibration method. Due to the 1:3delay ratio, this process began with the fourth 
moment; thus, a total of 58 groups were analyzed. Specifically, the sample sets’ measured and predicted values 
were compared and analyzed, the correlation between these values was calculated, and a correlation analysis plot 
was generated in which x is the indoor temperature measured value and f is the room temperature predicted 
value.

Figure 7.   Error autocorrelation diagram.

Figure 8.   Input and output error correlation diagram.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1563  | https://doi.org/10.1038/s41598-022-24072-1

www.nature.com/scientificreports/

After fitting a correlation curve between the measured and predicted values (see Fig. 9), it was determined 
that the coefficient of determination = 0.9976, slope of the correlation curve = 1.015, and the ordinate inter-
cept = − 0.056. These results demonstrate that the measured value is highly correlated with the predicted value. 
In addition, an error analysis of the prediction results from the same 58 sets was simultaneously performed. 
Results showed that the maximum absolute error = 0.67 °C. Thus, the solar greenhouse temperature time series 
prediction model established in this work can achieve high-precision greenhouse temperature prediction. As 
such, it can successfully be used to provide a scientific basis for forecasting greenhouse conditions, and therefore 
enable accurate greenhouse temperature regulation. To further display the temperature prediction results, the 
predicted temperature is displayed in the form of time series as shown in Fig. 10. The trend of predicted results is 
completely consistent with the real results. The peaks and troughs of daily temperature could be almost perfectly 
captured. Although there is error in the numerical value, the error is very small and within an acceptable range.

In the research of temperature prediction, neural network algorithm has strong adaptability because of its 
data-driven characteristics. Wang et al.24 adopted BP neural network to obtain a good temperature prediction 
model for solar greenhouse. Wang25 also obtained a temperature prediction model with excellent performance 
by using the Wavelet neural network. Compared with them, the proposed method adds a temperature feedback 
mechanism. To further evaluate the performance of the NARXNN based greenhouse temperature prediction 
model proposed herein, the same training and prediction sets were used in conjunction with the wavelet neural 
network time series prediction algorithm and the BP neural network to establish a model. Subsequently, the 
prediction performance of all three algorithms was evaluated. The evaluation results are shown in Fig. 11.

As shown in Fig. 11, the model based on the NARXNN algorithm depicts the best performance, with the 
R2 of 0.9996, the MAE of 0.19, the maximum absolute error of 0.67, and the MSE of 0.12. The wavelet neural 
network timing analysis prediction algorithm and the BP network both use the historical temperature of the 
three historical moments as the input and the current moment temperature as the output to train the network. 
The NARXNN prediction algorithm and the wavelet neural network time series analysis prediction algorithm 
enhance the sequence learning ability more so than the BP neural network prediction algorithm. As such, when 
solving the timing prediction problem, the former two algorithms show better prediction performance than the 
latter. Comparing the wavelet neural network timing analysis prediction with the NARXNN prediction algo-
rithm, the latter adds a delay factor to consider the environmental factor timing characteristics. Subsequently, 

Figure 9.   Temperature prediction of NARXNN.

Figure 10.   Temperature prediction results.
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it uses the main environmental impact factor’s optical radiation value and the indoor and outdoor temperature 
difference value as the network input to correct the network and predict the temperature at the next moment.

Conclusions
In this work, the performance of a NARXNN time series prediction model was compared with that of models 
using the wavelet neural network time series prediction algorithm and BP algorithm. Results showed that the 
NARXNN time series prediction model depicted both accurate results and the highest performance, and thus, 
is proposed for solar greenhouse ambient temperature prediction.

Compared with traditional greenhouse temperature prediction models, the model established herein is based 
on a time series and introduces two main environmental factors as model inputs—temperature difference and 
light radiation. Moreover, the proposed model depicted a maximum absolute error of 0.67 °C, and model cor-
relation coefficient of 0.9996. Compared with traditional temperature prediction models, the temperature pre-
diction accuracy offered by the NARXNN time series prediction model is greatly improved. Due to the green-
house environment lag, greenhouse environment temperature regulation needs to be predicted and activated 
in advance. The model can achieve accurate temperature prediction for the next 20 min, which increases the 
advance decision-making time, and subsequently offsets the response time of the indoor temperature to the 
roller shutter quilt action, in effect, enabling proactive control.

The temperature is not only related to the current environmental conditions, but also to the accumulated heat 
in the past. The proposed model does not introduce accumulated heat, which limits the long-term temperature 
prediction performance. In the future research, the parameters related to heat accumulation, such as light dura-
tion, can be used as model inputs.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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