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Source discrimination of mine 
water based on the random forest 
method
Zhenwei Yang1,2,3, Hang Lv1,2, Zhaofeng Xu1,2 & Xinyi Wang1,2*

Machine learning is one of the widely used techniques to pattern recognition. Use of the machine 
learning tools is becoming a more accessible approach for predictive model development in preventing 
engineering disaster. The objective of the research is to for estimation of water source using the 
machine learning tools. Random forest classification is a popular machine learning method for 
developing prediction models in many research settings. The type of mine water in the Pingdingshan 
coalfield is classified into surface water, Quaternary pore water, Carboniferous limestone karst water, 
Permian sandstone water, and Cambrian limestone karst water. Each type of water is encoded with 
the number 0–4. On the basis of hydrochemical data processing, a random forests model is designed 
and trained with the hydrochemical data. With respect to the predictive accuracy and robustness, 
fourfold cross-validation (CV) is adopted for the model training. The results show that the random 
forests model presented here provides significant guidance for the discrimination of mine water.

Coal is the most important energy source in China. The mine safety production is associated with the sustain-
able development and economic stability. The mine hydrogeological conditions are complicated1. With the 
increasing depth of coal mining, the source of mine water inrush becomes increasingly complex. It can lead to 
serious disasters due to the complicated hydrogeological conditions found in parts of China, which are uncom-
mon elsewhere in the world. Therefore, rapid and accurate discrimination of the source of water inrush is very 
important and necessary for both resuming production and rescuing miners2.

The hydrochemical composition maintains an equilibrium, even though a series of chemical and physical 
reactions such as redox, precipitation and dissolution occur constantly between rock and groundwater3. Con-
sequently, the chemical characteristics of groundwater in different aquifers are distinct, and the same aquifer 
is consistent, which is the basis of the source discrimination of mine water derived from hydrochemical char-
acteristics. Many mathematical models of mine water source discrimination have been well established over 
the past several decades4,5. For example, cluster analysis, distance discrimination, grey analysis, bayes, fuzzy 
evaluation, and so on. Based on mathematical methods, hydrochemistry is widely used to identify mine water 
sources. With the development of machine learning, more and more research on source discrimination of mine 
water has been conducted by artificial intelligence, such as BP neural network, deep learning and support vector 
machines (SVM)6,7.

It is a beneficial attempt to apply mathematical models and artificial intelligence to source discrimination 
of mine water. There are some limitations to these methods. (1) Most of the mathematical models focus on two 
or more values, and the data distribution ranges greatly, which is difficult to process correctly. (2) Generally, 
the number of water samples is several dozen or even hundreds8,9. The data is abundant for model training by 
BP neural network and SVM, but it is not easy to be operated by these methods. For deep learning, thousands 
of data samples are needed for the model training. Obviously, it is far from enough for deep learning10,11. As a 
fast, flexible, and representative method for mining high dimensional data, random forest is a commonly used 
machine learning algorithm trademarked by Leo Breiman and Adele Cutler, which performs well even in the 
presence of a large number of features and a small number of observations12,13.

The main contribution of this research is (1) to introduce random forests into source discrimination of mine 
water to build a discriminant model and (2) to train the model parameters and apply it to water source discrimi-
nation in the Pingdingshan coal field. The objective of the study is to develop new ideas for the discrimination 
of water inrush sources. The organization of the paper is as follows. “Geological conditions and hydrogeological 
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data” presents the geological and hydrogeological conditions of the study area. The source discrimination of 
mine water problems in the framework of the random forest is introduced in detail in “Methodology”. The 
implementation procedure is introduced in “Implementation procedure”. The results and discussion for the 
source discrimination of mine water are demonstrated in “Results and discussion”. This paper closes with some 
conclusions and final remarks.

Geological conditions and hydrogeological data
Outline of the coalfield.  The Pingdingshan coalfield is located in the central and western parts of Henan 
Province, northern China (Fig. 1), which is the third largest coal producer in China. The length is about 40 km 
long E–W and 20 km wide N–S. There are 17 coal mines occupied a total area of about 400 km2 at the coalfield. 
The studied area can be divided into eastern and western areas by the Guodishan fault. It is a large syncline 
with symmetrically gently dipping limbs14. The coal-bearing sediments are mostly Permian in age, comprised of 
sandstone, siltstone and carbonaceous shale. They are overlaid by Neogene, Paleogene and Quaternary deposits 
(Fig. 2).

Hydrogeological conditions.  The study area is situated in a transitional zone from a warm temperate 
zone to a subtropical zone, with a long-term average precipitation of 747.4 mm/year, mainly concentrated from 
July to September. With a surface elevation varying from 900 to 1040 m, the topography is low in the southeast 
and high in the northwest. Influenced by the topographical features, the rivers, such as the Shahe, Ruhe, Zhanhe 
and Baiguishan Reservoir, are mainly distributed in the south and north of the mining area. There are some other 
seasonal rivers and man-made ditches, such as Zhanhe, Beigan Canal and Xigan Canal. The riverbed inserts into 
Cambrian limestone or Neogene marl, which has a certain replenishment effect on the groundwater of limestone 
in the No.7 mine in the southwest of the Pingdingshan coalfield15,16.

There are four main water filled aquifers in the study area. From the upper to the bottom, mainly include:(1) 
The Quaternary sand gravel pore aquifer, which covers the coal strata, contacts the minable seam on the out-
crop. The osmotic coefficient is 0.000626 m/day. (2) Dyas sandstone aquifer, composed by medium sized and 
large sandstones, has poor water yield and poor supplementation conditions. (3) The Taiyuan formation of the 
Carboniferous system. There are seven layers of limestone in the formation. Most of them are dominated by 
corrosion fissures. The supplementation condition is poor. The water inflow per unit is 0.00018–0.3569 L/s m, 
and the permeability coefficient is 0.0076–3.047 m/day. (4) The middle and upper Canmbrian limestone aquifer, 
which is the indirect water-filled aquifer of the upper coalbed. The thick dolomite limestone of the upper Gushan 
Formation and the thick oolith limestone in the upper Zhangxia Formation are predominant in this layer. The 
osmotic coefficient of 1.092–7.47 m/day and the unit-specific capacity is 2.27–26.62 l/s m17.

Dataset.  In the study, one hundred and forty-nine mine water samples were collected. All samples were sent 
to the laboratory as soon as possible for further analysis. The box plots in Fig. 3 shows the characteristics of the 
original data distribution, which compares multiple parameters for the same aquifer. As a whole, the range of 
HCO- 3 content changes more greatly than other ion compositions in all the aquifers. The Mg2+ concentration 
is significantly higher than other ions.

Data standardization is about ensuring that data is internally consistent, that is, each data type has the same 
content and format. Standardized values are useful for tracking data that isn’t easy to compare otherwise. The 
raw data are normalized individually according to Eq. (1).

(1)Zij =
(

xij −mean
(

xj
))

/std
(

xj
)

Figure 1.   General map of the study area (the figure was drawn by MapGIS 6.7, URL link: https://​www.​mapgis.​
com/​index.​php?a=​shows​&​catid=​97&​id=​29).

https://www.mapgis.com/index.php?a=shows&catid=97&id=29
https://www.mapgis.com/index.php?a=shows&catid=97&id=29
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Figure 2.   Comprehensive histogram of strata in the Pingdingshan coalfield.
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where the subscript i means the row of the data matrix, the subscript j means the column of the data matrix, 
Zij represents the data after standardization, xij represents the source data, and the symbol std represents the 
standard deviation of related data.

In theory, the dataset could be split into three subsets: training set, validation set, and testing set. The training 
set is utilized to training the model; the validation set is used to estimate prediction error for model selection; 
and the testing set is adopted to assess the generalization error of the finalized model. If there is enough data 
at hand, the best practice is to randomly split. Because our data is generally scarce, the inability to truly reflect 
the generalization performance of the model is common. In order to avoid any bias in data selection, k-fold 
Cross-Validation (CV) was employed in the paper during the process of hyper-parameters tuning and model 
assessment5. In k-fold CV, original samples S are randomly split into k mutually exclusive subsets of similar 
size, i.e. S = S1 ∪ S2 ∪ … ∪ Sk, Si ∩ Sj = Ø{i ≠ j}. Each subset Si maintains the consistency of the data distribution as 
much as possible, that is, from hierarchical sampling of S. Then, each time the union of k subsets is used as the 
training set, and the remaining subset is utilized as the testing set; therefore, the k group training and testing 
dataset can be obtained, and k training and testing cross-validation can be performed. There is no definite strict 
rule for determining the value of k. A value of k = 5 is very common in the field of random forest. In the aspect, 
the number of k is set to 5 and associated with the trade-off between the bias and the computation time. Thus, 
the manuscript adopts the method of fivefold cross-validation to train the model (Fig. 4).

Figure 3.   Boxplots of major hydrochemical parameters for different aquifers.

Figure 4.   The schematic diagram of Random forests model.
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Methodology
Random forests (RF).  Random forests, designed for statistical learning, is one of the most famous machine 
learning approaches. The randomness is reflected in two aspects, one is random selection of features, the other 
is random sampling, so that each tree in the forest has both similarities and differences. As a supervised learn-
ing methodology, it employs a number of decision trees and generally uses the bootstrap resampling method to 
extract multiple samples from original samples. Each tree in the classifications takes input from samples in the 
original dataset, and all of features are selected randomly, which are used in growing the tree at every node18,19. 
With similar distribution in the random forest, each tree is dependent on random vectors sampled indepen-
dently. Trees in the forest will not be pruned until the end of the exercise when the prediction is reached deci-
sively. Combining the predictions of multiple decision trees produces an average for the final forecast results20.

The schematic of random forest model can be seen in Fig. 5. The training set should be constructed at the 
beginning. Each tree training in the sample uses random subsets from the initial training samples. Then, the 
subsets are used as the input to the classification and regression tree (CART). At each node of the random tree, 
m features are selected at random out of the initial features, and the optimal split is chosen from the randomly 
selected features of the unpruned tree nodes. Each tree grows without limits and should not be pruned whatso-
ever. Finally, predictions and results are weighted over trees by taking the majority vote over all trees8.

Performance measures.  The RMSE (root mean square error) is employed to analyze and assess the pre-
dictive results of the machine learning models (Eq. 2). The value closer to 0 indicates that the error in prediction 
is less22.

Variable importance measurement (VIM).  In order to quantitatively calculate the effect of every factor 
on the source discrimination of mine water, the mean decrease impurity importance (MDI) method is used to 
measure the variable importance, which is constructed in the following way. In the study of forest, the impor-
tance of a variable Vi could be evaluated by adding up the weighted impurity decreases q(t)∆ j(st,t) for the whole 
trees φn(form = 1,…,N) in the forest:

where q(k) = mk
m  is the proportion of samples, ik is the identifier of the variable used for splitting node k, and ∆j 

denotes the decrease impurity, which is the value of RMSE for the prediction23.
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Figure 5.   The algorithmic diagram of random forests model.
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Implementation procedure
Before the model training, the data of the hydrochemical component should be normalized. Otherwise, it leads 
to an unstable model training procession. As shown in Fig. 6, the accuracy of the model training is higher after 
data normalization.

Figures 7 and 8 illustrate the RMSE curves of the training and testing data set of the RF models under fivefold 
CV. The RMSE value close to 0 indicates that the error in prediction is marginal. It can be observed that the 
RMSE of the RF model is smaller than the other two ensemble learning methods, which shows that the predic-
tion performance of RF-based models is better than ANN and SVM in training data set. The curves are more 
fluctuant in Fig. 8. In addition, all models performed the same trend, which indicates that models are obviously 
influenced by the data set’s quality. By calculating average values of the RMSE for these models, the RF-based 
model’s RMSE average value is lower than that of comparison models, implying that the RF-based model has 
much better performance. Meantime, the k-fold cross-validation is also used for a better evaluation. It splits the 
training data set into k subsets of equal size, which are named folds. Every fold is used as a validation data set to 
test the model trees, whereas the right k-1 data set is used for model training. To balance the evaluation result 
and the training time, in the research, the four-folds is selected.

Figure 6.   The training accuracy vs experiment times by the data set.

Figure 7.   The RMSE curves of training patterns under fivefold CV.
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Results and discussion
In the random forest algorithm, hyper-parameters optimization has a great influence on the model’s robust-
ness, generalization capability and performance. The step is 1 for max_depth changing from 1 to 100 as well 
as n_estimator changing from 1 to 100. This sub-section details the selection of optimal hyper-parameters of 
random forest algorithm.

The max_depth, the maximum depth of each tree, is one of the most important hyper-parameters, which 
stands for the depth of the tree number. The best number of max_depth has been tested for the model, as is shown 
in Fig. 9. The blue curve represents the trend for the increasing of max_depth with the training dataset, and the 
red curve represents the trend for the increasing of max_depth with the validation dataset. From the Fig. 9, we 
can see that the RMSE value can be the least and keep when the depth of the tree number is 7.

To decrease the possibility of over-fitting, the n_estimator is also discussed as another hyper-parameter, which 
is directly related to the computational cost. A stepwise searching method is used to find optimal values of the 
model’s n_estimator, as is shown in Fig. 10. From the Fig. 10, we can see that the RMSE value can decrease to 0.2 
and 0.5 and remain unchangeable when the n_estimator is 22.

The number of random seeds is another hyper-parameter. The change of accuracy with different random 
seeds has been tested, as is shown in Fig. 11. We can see that the accuracy can get the highest value when the 
random seeds number equals 4000.

The performance of other models is also studied in the manuscript, which is shown in Figs. 12 and 13. The 
parameters of models are listed in Tables 1 and 2. Figure 12 demonstrates the accuracy (a, b) and the RMSE (c, 
d) of training and testing of the models (RF, ANN, SVM). According to Fig. 12, one hundred times’ tests have 
been taken, and the minimum value (0.2 for the training and 0.45 for the testing) of RMSE is calculated by the 
RF model. The ANN model and SVM model show almost the same performance based on the magnitudes of 
RMSE. Compared to the other two models, the RF model has the highest accuracy (or best performance) as it 
exhibits the lowest RMSE and the highest accuracy. In general, the RF model leads to a better match compared 
to the other two models for the training and testing phases.

Figure 8.   The RMSE curves of testing patterns under fivefold CV.

Figure 9.   The RMSE curve for the increasing of max_depth.
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Feature importance refers to a class of techniques for assigning scores to input features to a predictive model 
that indicates the relative importance of each feature when making a prediction. Feature importance scores 
can highlight which features may be most relevant to the target. The trained random forest model can calculate 
feature importance automatically, which is obtained through the interface feature importance criterion. The 
gain is calculated by taking each feature’s contribution for each tree, indicating the relative contribution of each 
feature to the model. Figure 13 shows the six feature variables’ average of feature relative importance (%) under 
fivefold CV. The blue bars represent the features importance of the RF model. In the current model, Ca2+ (33%) 
is the most important feature variables, followed by Cl− (22%), Na+ + K+ (15%), Mg2+ (14%), SO4

2− (12%) and 
CO3

2− (9%). The result implies significant guidance for exploring the characteristics of mine water.
Twenty-three samples are also used for model prediction. The result is shown in Fig. 14. The blue curve 

represents the true value of the water source, and the red curve represents the predicting value. There are two 
error predictions in the twenty-three water samples. It also means that the accuracy of the prediction is 87% by 
the Random Forests model.

Figure 10.   The RMSE curve for the increasing of n_estimator.

Figure 11.   The change of accuracy with different random seed number.
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Conclusions and outlooks
Random forests have developed well over the past years, and are widely accepted as one machine learning 
approach for a wide variety of tasks. In this study, using mine water data, the random forests model is imple-
mented to develop data-driven predictive models for the source of mine water. Based on the study outcomes, 
the concluding remarks are listed below:

A hydrochemical dataset was constructed by water sampling from the Pingdingshan coal field, which is 
divided into five sub-sets for model training and testing. The Random Forests model was trained by 5-folds 
CV. Compared to SVM and ANN model, the random forests model shows good performances in predict-
ing the source of mine water. 4-folds is the best practice for model training. With the 4-folds CV, a series of 

Figure 12.   Accuracy and RMSE plot of RF, ANN model and SVM.

Figure 13.   Means (over 10 permutations) of permutation-based variable-importance measures for the 
explanatory variables included in the random forest model.
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hyper-parameter have been tested for the random forests model. For the prediction, the accuracy is 87% by the 
Random Forests model.

The relative feature importance of source discrimination of mine water can be automatically calculated by 
the studied random forest model. The VIM indicates that Ca2+ of mine water plays the most important role in 
source discrimination of mine water.

It is also recommended that the random forests model is included as dataset attributes in the predictive models 
for estimating mine water source. The feature ranking strategy with the machine learning technique might be 
proper to predict other geological properties for saving geophysical exploration costs. It appears that the study 
strategies and feature ranking approaches can also be useful to geologists.

Data availability
The data that support the findings of this study is available from the Institute of Water Science but restrictions 
apply to the availability of this data, which was used under license for the current study, and so is not publicly 

Table 1.   The hyperparameters of the intelligent evaluation of the ANN model.

Number Parameter Value

1 Type of model Sequential model

2 The number of neurons in the input layer 6

3 The number of hidden layer and neurons 2,5

4 The number of neurons in the output layer 5

5 Activation function of hidden layer ReLU

7 Activation function of output layer Softmax

8 Epoch 100

9 Learning rate 0.01

10 Optimizer function Adam

11 Batch_size 10

12 Dropout rate 0.5

13 Error limitation 1*10–4

14 Momentum coefficient 0.8

Table 2.   The hyperparameters of the intelligent evaluation of the SVM model.

Number Parameter Value

1 Kernel function Radial basis function (RBF)

2 Regularization parameter 50

3 Gamma 1/6

4 Cache_size 200

5 Class_weight 1

7 Tolerance 0.001

Figure 14.   Prediction performance of random forests model.
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available. Data is however available from the authors upon reasonable request and with permission of the Insti-
tute of Water Science.

Received: 20 March 2022; Accepted: 9 November 2022
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