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Comparative study 
on high‑pressure physical 
properties of monoclinic  MgCO3 
and  Mg2CO4
Zi‑Jiang Liu1*, Tian Li1, Xiao‑Wei Sun1, Cai‑Rong Zhang2 & Jia‑Qi Ju1

The physical properties of Mg‑carbonate at high temperature and pressure are crucial for 
understanding the deep carbon cycle. Here, we use first‑principles calculations to study the physical 
properties of  MgCO3‑C2/m and  Mg2CO4‑P21/c under high pressure. The research shows that the 
structure and equation of state of  MgCO3‑C2/m are in good agreement with the experimental results, 
and the phase transition pressure of  Mg2CO4 from pnma to P21/c structure is 44.66 GPa. By comparing 
the elastic properties, seismic properties and anisotropy of  MgCO3‑C2/m and  Mg2CO4‑P21/c, it is 
found that the elastic modulus and sound velocity of  Mg2CO4‑P21/c are smaller than those of  MgCO3‑
C2/m, while the anisotropy is larger than that of  MgCO3‑C2/m. These results indicate that  Mg2CO4‑
P21/c exists in the deep mantle and may be the main reason why carbonate cannot be detected. The 
minimum thermal conductivity of  MgCO3‑C2/m and  Mg2CO4‑P21/c is the largest in the [010] direction 
and the smallest in the [001] direction. The thermodynamic properties of  MgCO3‑C2/m and  Mg2CO4‑
P21/c are predicted using the quasi‑harmonic approximation (QHA) method.

Magnesite (space group R3c ) is subducted into the deep mantle as the primary carbon carrier, and its high-
temperature and high-pressure physical properties are critical for understanding the deep carbon  cycle1,2. Previ-
ous studies have mainly focused on the structural phase transition of  MgCO3-R3c under high-temperature and 
high-pressure conditions, transforming to monoclinic  MgCO3 (space group C2/m) at around 80 GPa. Oganov 
et al. used the USPEX method to predict for the first time that  MgCO3-C2/m is most stable in the lower mantle 
greater than 82.4  GPa3.  MgCO3-C2/m has 30 atoms, in which adjacent oxygen atoms form tetrahedra around 
carbon atoms, and Mg atoms are in octet and tenfold coordination. Subsequently, the structure of  MgCO3-C2/m 
was verified  experimentally4–6 and  theoretically7–13. Recently, Gavryushkin et al. used USPEX and AIRSS methods 
to find that  MgCO3 reacts with MgO to form  Mg2CO4, which has two structures, orthorhombic (space group 
Pnma) and monoclinic (space group P21/c), and its structure is P21/c when the pressure is higher than 50  GPa14. 
Their experiments later confirmed the existence of  Mg2CO4-P21/c at the temperature and pressure of the Earth’s 
lower  mantle15.  Mg2CO4-P21/c has 28 atoms, it is isostructural to β-Ca2SiO4

16, and the atoms at the two positions 
Mg(1) and Mg(2) are six-coordinated, with octahedral coordination polyhedra. Earlier  reports17–20, although the 
structure of  Mg2CO4 was not determined, believed that it is stable at high pressure.

To understand the carbon cycle in the deep earth, it is crucial to study the structure, phase transition, equa-
tions of state, elasticity, thermodynamics, and thermal conductivity of  MgCO3-C2/m and  Mg2CO4-P21/c under 
high pressure. Recently, Maeda et al. measured the equation of state of  MgCO3-C2/m at high  pressure6. Since 
it is extremely difficult to measure the elastic constants, thermodynamic parameters, and thermal conductivity 
of minerals experimentally, the properties of  MgCO3-C2/m and  Mg2CO4-P21/c have not been reported experi-
mentally. Even the elastic constant of  MgCO3-R3c can only be measured to 13.7  GPa21, and its thermodynamic 
properties are only at low pressure, and the results at high pressure are  extrapolated22–24.

In the present work, the structures, phase transitions, equations of state, elastic properties, seismic properties, 
and minimum thermal conductivity of  MgCO3-C2/m and  Mg2CO4-P21/c at high pressure are investigated using 
first-principles calculations and compared with the available experimental and theoretical results. The QHA 
method is adopted to research the thermodynamic properties of  MgCO3-C2/m and  Mg2CO4-P21/c.
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Methods
First-principles calculations are used to investigate the high-pressure physical properties of  MgCO3-C2/m and 
 Mg2CO4-P21/c using projector-augmented wave (PAW)25 as implemented in  VASP26,27. The electronic con-
figurations:  2p63s2 for Mg,  2s22p2 for C and  2s22p4 for O are considered for the valence electrons. The Per-
dew–Burke–Ernzerhof modified solid (PBEsol) in the generalized gradient approximation (GGA)28 describes 
the exchange and correlation potentials. The generation of k-point mesh and the calculation of elastic proper-
ties utilize the vaspkit  program29. The cutoff energy for the plane wave is set to 900 eV. The k-points mesh of 
 MgCO3-C2/m and  Mg2CO4-P21/c are set to 4 × 5 × 5 and 13 × 9 × 7 using the Monkhorst–Pack  scheme30, respec-
tively. The thermodynamic properties are calculated by the QHA  method31.

Results and discussion
Structural parameters, phase transition and equation of state. The crystal structures of 
 MgCO3-C2/m and  Mg2CO4-P21/c in the unit cell are shown in Fig. 1. The optimized lattice parameters are sum-
marized in Table 1 and compared with available experimental and previously calculated results. At 110 GPa, the 
calculated results of  MgCO3-C2/m are consistent with the experimental  results5. The results for  Mg2CO4-P21/c 
at 100 GPa agree well with the previous  calculations14.

As shown in Fig. 2, the present calculated transition pressure from  Mg2CO4-Pnma to  Mg2CO4-P21/c is 44.66 
GPa, while Gavryushkin et al. calculated 52  GPa14. This error may be caused by the use of different exchange 
correction functions, PBEsol is used in the present work, while PBE was used by Gavryushkin et al.14. The accu-
racy of using PBEsol to calculate the properties of Mg-carbonate has been examined in the previous  studies13. 
In the previous study,  MgCO3-C2/m was stable in the lower mantle above 80  GPa3,5–13,33. Therefore, in order to 
facilitate comparison, the high-pressure properties of  MgCO3-C2/m and  Mg2CO4-P21/c in the pressure range 
of 50–140 GPa are investigated in this work.

The equations of state for  MgCO3-C2/m and  Mg2CO4-P21/c at 50 to 140 GPa are shown in Fig. 3. It is found 
that the equation of state of  MgCO3-C2/m is in good agreement with available experimental  data6. The equation 
of state of  Mg2CO4-P21/c is smaller than that of  MgCO3-C2/m, and is almost parallel. The formula unit volume 
of  MgCO3-C2/m is smaller than that of  Mg2CO4-P21/c, which is in line with their molecular formula composi-
tion relationship.

Elastic properties. For monoclinic  MgCO3-C2/m and  Mg2CO4-P21/c, there are 13 independent elastic con-
stants ( c11 , c12 , c13 , c15 , c22 , c23 , c23 , c25 , c33 , c35 , c44 , c46 , c55 and c66 ). The elastic constants are calculated using the 
stress–strain  method29. In this work, all calculated elastic stiffness constants cij are checked using the mechanical 

Figure 1.  Crystal structures of  MgCO3-C2/m (a) and  Mg2CO4-P21/c (b) in unit cell. The crystal structures are 
drawn by  VESTA32.

Table 1.  Lattice parameters of  MgCO3-C2/m and  Mg2CO4-P21/c at 110 GPa and 100 GPa, respectively, 
compared with experimental and previous calculations.

Method a (Å) b (Å) c (Å) β V(Å3)

MgCO3-C2/m

This work 8.104 6.493 6.884 103.893 351.61

Binck et al.5 8.117 6.510 6.911 103.858 354.64

Mg2CO4-P21/c

This work 4.383 5.358 8.293 117.56 172.65

Gavryushkin et al.14 4.408 5.383 8.345 117.65 175.39
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stability  criteria34 and find that they all meet the mechanical stability criteria in the studied pressure range, thus 
they are mechanically stable.

The elastic constants of  MgCO3-C2/m and  Mg2CO4-P21/c are plotted in Figs. 4 and 5, respectively. It is found 
from Fig. 4 that at 50–110 GPa, c22 > c33 > c11 , indicating that the a-axis of  MgCO3-C2/m is the most easily 
compressed, and the b-axis is the least compressed. At > 110 GPa, c33 > c22 > c11 , the c-axis is least likely to be 
compressed. From Fig. 5, it can be seen that c22 > c11 > c33 in the studied pressure range, indicating that the 
c-axis of  Mg2CO4-P21/c is the most easily compressed, and the b-axis is the least compressible. In the previous 
 study13, the elastic constants of  MgCO3-R3c are consistent with the experimental  results21. Therefore, the pre-
dicted elastic constants of  MgCO3-C2/m and  Mg2CO4-P21/c in this work should be correct, but it needs to be 
further verified by experiments.

Based on the calculated elastic constants, the bulk modulus B and shear modulus G of  MgCO3-C2/m and 
 Mg2CO4-P21/c are calculated using the Voigt-Reuss-Hill  method35–37. As shown in Fig. 6, the bulk modulus B and 
shear modulus G of  MgCO3-C2/m and  Mg2CO4-P21/c increase with increasing pressure, and the bulk modulus 
B and shear modulus G of  MgCO3-C2/m are larger than those of  Mg2CO4-P21/c at 50–140 GPa.

Seismic properties. Based on the calculated bulk and shear moduli and density, the compression (VP) and 
shear (VS) velocities of  MgCO3-C2/m and  Mg2CO4-P21/c are given by the following  expressions38:
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Figure 2.  Enthalpy difference between  Mg2CO4-P21/c and  Mg2CO4-Pnma.
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Figure 3.  Equation of state for  MgCO3-C2/m and  Mg2CO4-P21/c.
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Figure 4.  Elastic constants of  MgCO3-C2/m. 
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Figure 5.  Elastic constants of  Mg2CO4-P21/c. 
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As shown in Fig. 7, the density of  Mg2CO4-P21/c is larger than that of  MgCO3-C2/m, and the difference 
between their bulk modulus and shear modulus is smaller, respectively. Therefore, the VP and VS of  MgCO3-C2/m 
are larger than those of  Mg2CO4-P21/c in the studied pressure range, and their VP and VS tend to be parallel, 
respectively (See Fig. 8).

The VP and VS of  MgCO3-C2/m and  Mg2CO4-P21/c along different directions can be obtained by solving 
the Christoffel  equation39 

∣

∣Cijklnjnl − ρV2δik
∣

∣ = 0 . In order to visualize the propagation wave velocities of 
 MgCO3-C2/m and  Mg2CO4-P21/c along different directions, the AWESoMe  program40,41 is used to plot their 
3D representations of VP and VS and shear wave splitting and polarization vectors at various pressures (Figs. 9 
and 10).

The anisotropy AP of the VP for  MgCO3-C2/m and  Mg2CO4-P21/c is defined  as42:

The polarization anisotropy AS of the VS is defined as

(1)VP =

√

3B+ 4G

3ρ

(2)VS =

√

G

ρ

(3)AP =
VP,max − VP,min

VP,aggregate
× 100%.
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Figure 6.  Bulk modulus B and shear modulus G of  MgCO3-C2/m and  Mg2CO4-P21/c.
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The seismic anisotropies of  MgCO3-C2/m and  Mg2CO4-P21/c are shown in Fig. 11. The seismic anisotropy of 
 MgCO3-C2/m at 75 GPa is found to be in good agreement with the previous theoretical  calculations10. The ani-
sotropy of  Mg2CO4-P21/c is obviously larger than that of  MgCO3-C2/m. The seismic anisotropy of  MgCO3-C2/m 
and  Mg2CO4-P21/c showed obvious nonlinear dependence on pressure. This is mainly due to the nonlinear 
pressure of wave velocity caused by the nonlinear pressure dependence of the elastic moduli of  MgCO3-C2/m 
and  Mg2CO4-P21/c, especially their shear moduli.

Although the previous  experimental4–6 and  theoretical7–13 studies obtained  MgCO3-C2/m at high tempera-
ture and pressure, they did not consider the reaction with MgO, the main mineral of the Earth’s lower mantle. 
The  theoretical14 and  experimental15 results of Gavryushkin et al. show that  MgCO3 reacts with MgO to form 
 Mg2CO4-P21/c orthocarbonate under the temperature and pressure conditions of the lower mantle. By compar-
ing the high-pressure physical properties of  MgCO3-C2/m and  Mg2CO4-P21/c, it is found that their seismic 
anisotropy is quite different, while the equation of state, elastic modulus, density and wave velocity have similar 
relationship with pressure. The low wave velocities of  Mg2CO4-P21/c are more suitable to explain the existence 

(4)AS =
(VS1 − VS2)max

VS,aggregate
× 100%.
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Figure 8.  Compression (VP) and shear (VS) velocities of  MgCO3-C2/m and  Mg2CO4-P21/c.

Figure 9.  3D representation of the VP and VS and the shear wave splitting and polarization vectors of  MgCO3-
C2/m at various pressures.
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of low-velocity zone near the subducting slab. Therefore, we believe that  Mg2CO4-P21/c may exist in the deep 
mantle, providing strong evidence for carbon storage in carbonate minerals, which may be the main reason why 
carbonate rocks cannot be detected in the lower mantle.

Minimum thermal conductivity. The thermal conductivity of minerals is critical to understanding the 
Earth’s thermal balance and  history43. The minimum thermal conductivity of  MgCO3-C2/m and  Mg2CO4-P21/c 
are calculated using Cahill’s model:

(5)Kmin = (kB
/

2.48)n2/3(vP + 2vS)

Figure 10.  3D representation of the VP and VS and the shear wave splitting and polarization vectors of 
 Mg2CO4-P21/c at various pressures.
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The anisotropy of the minimum thermal conductivity can be calculated by changing Eq. (5) into the follow-
ing form:

where kB is Boltzmann’s constant, n is the atomic number density per unit volume. The minimum thermal 
conductivities of  MgCO3-C2/m and  Mg2CO4-P21/c are shown in Fig. 12, and it is found that their minimum 
thermal conductivities increase with the increase of pressure, and that of  MgCO3-C2/m is larger than that of 
 Mg2CO4-P21/c. In the studied pressure range, Kmin[010] > Kmin[100] > Kmin[001], indicating that the thermal con-
ductivity in the [010] direction is the largest and the thermal conductivity in the [001] direction is the smallest.

Thermodynamic properties. Thermodynamic parameters are the preconditions for deriving the thermal 
state of the Earth’s interior. Therefore, the thermodynamic properties of  MgCO3-C2/m and  Mg2CO4-P21/c are 
crucial for studying the thermal state of the lower mantle. The constant volume heat capacity (CV) and the ther-
mal expansion coefficient ( α ) of  MgCO3-C2/m and  Mg2CO4-P21/c at various pressures are depicted in Figs. 13 
and 14, respectively. The CV and α of  MgCO3-C2/m are larger than those of  Mg2CO4-P21/c under the same pres-
sure.

Conclusions
On the basis of verifying the structure and equation of state of  MgCO3-C2/m, the phase transition pressure of 
 Mg2CO4-P21/c is determined. The high-pressure physical properties of  MgCO3-C2/m and  Mg2CO4-P21/c at 
50–140 GPa are investigated by first-principles calculations. By comparison, it is found that the elastic modu-
lus and wave velocity of  Mg2CO4-P21/c are smaller than those of  MgCO3-C2/m, and the density and seismic 
anisotropy are larger than those of  MgCO3-C2/m. The low wave velocity of  Mg2CO4-P21/c may be more suit-
able to explain the existence of the low-velocity zone near the subducting slab. Therefore, it is believed that 
 Mg2CO4-P21/c may exist in the deep mantle, providing strong evidence for carbon storage in carbonates and the 
reason why it cannot be detected in the lower mantle. The minimum thermal conductivity of  MgCO3-C2/m is 
greater than that of  Mg2CO4-P21/c, and their minimum thermal conductivity is the largest in the [010] direction 
and the smallest in the [001] direction. The constant volume heat capacity CV and thermal expansion coefficient 
α of  MgCO3-C2/m are larger than those of  Mg2CO4-P21/c. Unfortunately, there are no experimental data on 
the elastic constants, thermodynamic parameters, and minimum thermal conductivity of  MgCO3-C2/m and 
 Mg2CO4-P21/c, so further verification is required.

(6)Kmin = (kB
/

2.48)n2/3(vP + vS1 + vS2)
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Figure 12.  Minimum thermal conductivity of  MgCO3-C2/m (a) and  Mg2CO4-P21/c (b).
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Data availability
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