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Autonomous digitizer calibration 
of a Monte Carlo detector model 
through evolutionary simulation
Matthew Herald1*, Andrei Nicuşan1, Tzany Kokalova Wheldon2,3, Jonathan Seville1,3 & 
Christopher Windows‑Yule1,3

Simulating the response of a radiation detector is a modelling challenge due to the stochastic nature 
of radiation, often complex geometries, and multi‑stage signal processing. While sophisticated tools 
for Monte Carlo simulation have been developed for radiation transport, emulating signal processing 
and data loss must be accomplished using a simplified model of the electronics called the digitizer. 
Due to a large number of free parameters, calibrating a digitizer quickly becomes an optimisation 
problem. To address this, we propose a novel technique by which evolutionary algorithms calibrate 
a digitizer autonomously. We demonstrate this by calibrating six free parameters in a digitizer 
model for the ADAC Forte. The accuracy of solutions is quantified via a cost function measuring the 
absolute percent difference between simulated and experimental coincidence count rates across 
a robust characterisation data set, including three detector configurations and a range of source 
activities. Ultimately, this calibration produces a count rate response with 5.8% mean difference to 
the experiment, improving from 18.3% difference when manually calibrated. Using evolutionary 
algorithms for model calibration is a notable advancement because this method is novel, autonomous, 
fault‑tolerant, and achieved through a direct comparison of simulation to reality. The software used in 
this work has been made freely available through a GitHub repository.

Simulating the response of detectors to radiation is an important aspect in a variety of physics and medical 
fields because this allows users to test imaging algorithms, optimise experiments, and design new  detectors1–3. 
This is typically achieved by using Monte Carlo radiation transport codes to simulate the interactions of a radia-
tion field with a geometric model of the detector and then applying a pulse-processing chain to the recorded 
events to emulate the detector’s  response4. Software such as the Geant4 Application for Tomographic Emission 
(GATE) has been developed specifically for the purpose of running Monte Carlo simulations and emulating 
detector  responses5,6. In GATE, the ‘digitizer’ determines how the timing, energy, and position of interactions 
with the detector geometry are recorded, how events are grouped and implements the pulse-processing logic 
of the  system7. However, digitizer models must be precisely tuned to replicate the behaviour of a real detector.

Several detectors have been modelled using GATE and validated against experimental measurements such as 
the ADAC Forte, Siemens Inveon, and Phillips Vereos Positron Emission Tomography (PET)  scanners8–10. For 
PET systems, performance characterisation experiments are described by the National Electronics Manufacturers 
Associated (NEMA) which test the spatial resolution, sensitivity, and count-rate  response11. The GATE model’s 
digitizer is then calibrated to achieve the closest agreement with these experiments. GATE models which do not 
have well-calibrated digitizers may produce an unrealistic simulated detector response.

State‑of‑the‑art. Current methods of calibrating GATE models, as demonstrated in other work, are 
achieved by using known properties of the detector or by fitting models to count-rate  experiments7,10,12,13. Many 
steps in the digitizer model correspond directly to measurable properties of the detector, such as the energy 
resolution, dead-time, or time  resolution10. Values for these properties are often provided by the manufacturer 
and this can serve as a reliable starting point, but manual tuning is still needed to match the simulated and 
experimental response of the detector due to variation between each  detector8. Conversely, with a model-fitting 
approach, manual tuning can be avoided, but other challenges arise. For example, when fitting a dead-time 
model to the count rates or fitting a Gaussian function to the 511 keV photo-peak to determine the energy reso-
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lution, this relies on having both the singles and coincidence count rates, which may not both be available, and 
also involves fitting simplified models to the detector response, which may not capture the complexity of a real 
 system14. In summary, manual tuning of GATE models can produce a good agreement between simulation and 
experiment, but at the expense of time, resources, and objectivity, whereas fitting simplified models to determine 
the digitizer parameter values is a quicker, more objective, method but the information is not always available 
and can still produce inaccurate simulations.

Proposed methodology. In this work, we propose a new procedure which leverages recent advances in 
metaheuristics to perform an efficient optimisation of parameter values in a detector digitizer model created 
using GATE v9.1. The goal of the optimisation is to produce a set of parameters which can replicate the count-
rate response of the detector across varied source activities and detector separations.

To do this we use an evolutionary algorithm to modify the free parameters of the digitizer , resembling Dar-
winian evolution, and directly compare the simulated results of candidate solutions to the experimental data. 
The evolutionary algorithm chosen for this approach is the Covariance Matrix Adaptation Evolutionary Strategy 
(CMA-ES), which is a stochastic optimiser for robust non-linear non-convex numerical  optimisation15,16. Param-
eter combinations are generated following a multivariate normal distribution; in our case, finding the optimum 
digitizer parameters is equivalent to “evolving” the mean and covariance matrix of this distribution. A particular 
advantage of this setup is that the underlying optimisation function – i.e. the digitizer response – does not need 
to have a continuous response. The addition of stochastic “mutations” to the inputs tried, so as to mimic the 
injection of new genetic material in the biological population, allows CMA-ES to escape local, false minima, 
which gradient-based optimisers are prone to falling  into17. We demonstrate this procedure by calibrating the 
GATE digitizer model of the ADAC Forte, a dual-headed positron camera operated in coincidence  mode8. 
The Forte and its digital-twin GATE model are shown in Fig. 1. Six free parameters in the model are calibrated 
simultaneously by CMA-ES.

In order to interface with the existing CMA-ES optimiser and extend the types of problems it can be used with, 
we have developed a Python library called the Autonomous Calibration and Characterisation via Evolutionary 
Software (ACCES) v0.2.2. The purpose of ACCES is to use meta-programming in conjunction with an arbitrary 
Python script defining the simulation to populate the user-defined free parameters with candidate solutions 
generated by CMA-ES, then autonomously re-launch the simulation, analyse the results, and use CMA-ES to 
generate candidate solutions in a cycle until a termination criterion is  met16,18. The absolute percent difference 
between the total, true, and scattered plus random coincidence count rates are optimised using a multi-objective 
cost function to combine their differences into a single value. This method offers improvements over previous 
calibration procedures since the optimal parameters are chosen by directly comparing the performance of the 
optimised digitizer to count-rate experiments and multiple experiments are optimised simultaneously.

Methods
Count rate experiment. Characterisation experiments are conducted that measure the coincidence count 
rates of the Forte as a function of source activity. The experimental coincidence count rates are chosen to be 
compared to the simulated count rates to assess the optimisation of the model since this is the observable output 
from the detector in experiments and simulations. Additionally, the coincidence count rates have a complex 
relationship to the digitizer parameters, source activity, and detector configuration making this an ideal metric 
for comparison. Three detector separations representing the closest, median, and furthest separations possible 
for the detector are tested. The initial source activities for each separation are selected to test both the high-
activity range where the effect of detector dead-time induces count-losses and, as the source decays over several 
half-lives, testing the low-activity range where count-rates are linearly proportional to the source activity. The 
optimisation of the digitizer seeks to find a common set of parameter values to replicate the behaviour of the 

Figure 1.  The ADAC Forte at the Positron Imaging Centre during the count-rate experiment (a) and the GATE 
model of the detector and replicated experiment (b).
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detector across all of these conditions. Since there are six free parameters and 45 individual data points for each 
parameter combination (three detector separations, five activities per separation, and three coincidence count 
rates per activity), the optimisation problem is considered to be well-constrained.

For these experiments, the source consists of a high-density polyethene (HDPE) cylindrical phantom filled 
with a solution of water and fluorine-18. The phantom measures 120 mm long and 50 mm in diameter. The inner 
cylinder in which the water and fluorine-18 solution is filled measures 100 mm long and 12 mm in diameter. The 
phantom is filled with an initial activity, then placed in the centre of the field-of-view of the Forte and imaged 
over several half-lives until the activity is below 1 MBq. The three head separations and initial activities for each 
experiment are found in Table 1.

For each experiment, the total, true, and scattered plus random (corrupted) count rates are extracted as a func-
tion of the source activity. This is achieved by applying the NEMA protocol to projection images of the  source11. 
A demonstration of the workflow for extracting count rates from the acquisition is shown in Fig. 2. First, samples 
of a minimum of 500,000 lines-of-response (LoRs) are used to create a three-dimensional voxelised representa-
tion of the FOV with a 1 mm voxel size. At this stage, the source activity is calculated using exponential decay 
equations. From the voxels, a two-dimensional slice is extracted which is both parallel with the detector face and 
contains the voxel with the maximum number of LoRs. The slice is then collapsed into a line profile of the pixel 
intensities. All points within ± 20 mm of the maximum pixel are summed. To subtract the background counts, 
the values at both ends of the ± 20 mm are averaged, multiplied by the size of the window, and subtracted from 
the counts under the peak leaving only the true counts. The total counts are the sum of all LoRs passing through 

Table 1.  Head separations and initial activities for each calibration experiment.

Experiment Head separation (mm) Initial activity (MBq)

Experiment 1 800 75

Experiment 2 525 60

Experiment 3 250 40

Figure 2.  A demonstration of the protocol for extracting count rates from a sample of LoRs: (a) a sample of 
LoRs collected during the experiment is converted into voxels, (b) the slice containing the maximum number 
of LoRs is extracted, (c) the slice is collapsed into a line profile and the counts in the central 40 mm strip are 
summed and background counts subtracted to yield a total, true, and scattered + random count-rate (d). Steps 
a-c are repeated for multiple samples to generate the count-rate response as a function of activity.
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the slice and the scattered plus random coincidence count rate is the total counts subtracted by the true counts. 
The extracted coincidence count rates are shown in Fig. 3.

GATE model. GATE v9.1 is an extension of Geant4 v10.7.3 designed for the simulation of radiation detec-
tors used in physics, medicine, and engineering  applications5,6. GATE uses Geant4 to run Monte Carlo radiation 
transport simulations, generating a history of interactions of the detector with a radiation field, and then mim-
icking how the detector would  respond19. Using GATE consists of 6 steps: defining the geometries (detector and 
experiment), adding radioactive sources, describing the detector pulse processing chain (digitizer), including 
physics processes, specifying data output format, and prescribing acquisition settings (run time and time slice)5.

In this work, we use a detector geometry and GATE model for the ADAC Forte previously developed by 
the authors. The ADAC Forte is a dual-headed positron camera used at the Positron Imaging  Centre8. A full 
description of this model and its original calibration can be found in Herald et al.8. The experiment geometry is 
the same HDPE cylindrical phantom as described in “Count rate experiment” section. The radioactive source 
is a solution of water and fluorine-18 prescribed as emitting back-to-back 511 keV gamma rays. Since the mean 
positron range in water and HDPE it can be assumed that all positrons annihilate before leaving the phantom, 
thus making a back-to-back gamma source a reasonable approximation that decreases the time needed to run 
the simulations. The detector model’s digitizer structure follows the same as described in Herald et al., (2021). 
Six key parameters of the digitizer will be calibrated. These are the singles dead-time, coincidence dead-time, 
pileup, lower energy discriminator, upper energy discriminator, and the time resolutions as will be discussed is 
2.2. Physics processes are imported through the GATE’s ‘emstandard’ physics list, which includes the Livermore 
model for photon interactions and is based on the Evaluated Photon Data Library, 1997 (EPDL1997)20. The 
output format is coincidence data saved as a text file. The acquisition was prescribed as a 10 second simulation 
with the time slice saving data every 10 ms of simulated time.

Once the simulation begins the source activity determines the decay rate and individual decays are modelled 
on a Poisson distribution. Each event (two back-to-back 511 keV gamma rays) is initialised randomly within 
the source volume and prescribed a direction isotropically. As the gamma rays pass through the geometry, they 
have a stochastic chance of interacting with the materials following Beer-Lambert’s Law and using attenuation 
coefficients generated from material composition, density, and cross-sections from EPDL1997. Interactions 
which occur within the ‘Sensitive Detector’, in this case, the scintillation crystals, are termed ‘hits’. From the list 
of hits, which contains information about the type of interaction, time, position, and energy, the GATE digitizer 
converts hits into ‘pulses’. A pulse is the response of the detector element that is analogous to a signal which can 
be processed, eventually producing an output of what a real detector would record. The digitizer model for the 
ADAC Forte is shown in Fig. 4.

In this work, we demonstrate a novel application of evolutionary algorithms to calibrate the digitizer for a 
GATE model of the ADAC Forte, a dual-headed positron camera used at the Positron Imaging  Centre8. The 

Figure 3.  The total, true, and scatter + random coincidence count rates as a function of source activity for (a) 
250 mm, (b) 525 mm, and (c) 800 mm head separation.
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primary use of this GATE model is to emulate experiments using positron emission particle tracking, a radio-
imaging technique, in order to estimate the spatial and temporal resolution of tracer trajectories and to optimise 
experiment  design21,22. The detector consists of two wide-area sodium-iodide crystals measuring 590 mm × 470 
mm and 16 mm  thick23. The active area for recording coincidences measures 510 mm × 380 mm. Additionally, 
the two detector heads can be moved between 250 mm and 800 mm of separation which can accommodate a 
variety of  experiments24,25. The Forte and the GATE model of the Forte are shown in Fig. 1.

The six digitizer parameters chosen to be optimised are the singles dead-time, coincidence dead-time, pileup, 
lower energy discriminator, upper energy discriminator, and the time resolutions which are explained below. 
These parameters were chosen because they have not been measured directly through a characterisation experi-
ment meaning there is uncertainty in the optimal values. The singles dead-time is a paralysable dead-time which 
affects each pulse, rendering the detector unable to record another pulse until the dead-time has  ended14. If 
another gamma ray enters the detector before the singles dead-time is completed, the dead-time is reset and 
the gamma-ray is not recorded. Paralysable dead-time results in count losses and at high source activities can 
cause the count rate to decrease. Coincidence dead-time is a separate, non-paralysable dead-time affecting the 
recording of a  coincidence26. Unlike a paralysable model, a non-paralysable dead-time does not get reset with 
additional events. Pile-up time is the time between the detection of a single gamma-ray triggering the record-
ing of the pulse and the time at which other events can ‘pile-up‘ onto the same  pulse14. Pile-up has the effect of 
creating count-losses at high source activities. The lower and upper energy discriminators are the minimum and 
maximum energies of events which can trigger the singles dead-time27. The time resolution is the uncertainty in 
the timing of precision of the detector, defined by a Gaussian blurring with a full-width half-maximum28. If two 
gamma rays interact with the detector within the coincidence window of 15 ns, they are not guaranteed to be 
detected in coincidence due to the timing uncertainty. This has the effect of disregarding some real coincidences 
and accepting more random coincidences.

ACCES. When trying to calibrate a simulation’s free parameters so that an experimental measurement can be 
replicated, it is often useful to test a range of conditions and assess how the tested parameter values replicate the 
measurement. In the simplest case with only one free parameter, the value that minimises the error to the meas-
urement can be easily found and visualised by plotting parameter values and the error as a two-dimensional plot. 
This can also be extended to two free parameters by plotting the error as a third dimension on the plot. Beyond 
three dimensions, the number of parameter values needed to explore the solution space increases exponentially 
and the relationship between the parameters becomes non-intuitive. For these problems, an optimiser is needed 
to efficiently test a range of parameter values and converge to a set of optimal parameter values. However, in sim-
ulations and experiments, there often exist noisy measurements, thus a function defining the difference between 
experiment and simulation will be non-smooth and potentially have many false local minima. This means that 
gradient-based optimisers are ill-suited for calibrating simulations.

In these difficult optimisations, evolutionary algorithms  excel29. Evolutionary algorithms are a type of bio-
inspired computing which mimics natural selection. For example, in a population where individuals have a ran-
domised set of genes and selective pressure is exerted, only the individuals which have genes that enable them to 
survive will reproduce. Due to this, the next generation of individuals will be more adapted to selective pressure. 
Similarly, when an evolutionary algorithm is applied to a model function with quantitative free parameters which 
can be tuned, the parameter values act as genes, a model with a specific set of parameters is an individual, and a 
group of individual simulations is a  generation29. For each generation, a cost function determines an individual’s 
fitness and acts as a selective pressure. Using this method, parameter value combinations which result in a low 
cost function are prioritised until the solutions converge to a set of optimal values. A flow diagram of how an 
evolutionary algorithm can be applied to digitizer calibration is shown in Fig. 5.

Figure 4.  The digitizer model of the ADAC Forte.
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While there exist several types of evolutionary algorithms the CMA-ES algorithm is used in this work since 
it performed well in a comparative review of optimisation algorithms and there is a well-documented Python 
implementation CMA v3.0.316,30. To use CMA-ES, the ACCES Python library v0.2.2 is employed to interface 
with CMA-ES and edit an arbitrary script for updating free parameter values in the  simulation18. Using code 
inspection and meta-programming, simulation scripts are parallelised by ACCES allowing them to be launched 
locally or on a high-performance computer. The difference between the simulated system and experimental 
reality can then be quantified by a cost function so that CMA-ES can determine the next generation of solu-
tions. ACCES offers improvements over other interfaces to optimisers in that it is fault-tolerant and designed 
for high-performance computing.

ACCES needs only the bounds of the search parameters, and the number of individuals in a population, and 
stores the results after each generation, or ‘epoch’, so that the optimisation state can be restored at any point. The 
default implementation of CMA-ES requires the use of a single initial standard deviation for all parameters - i.e. 
assuming that all parameters have comparable value ranges and sensitivities. ACCES scales the parameter val-
ues by 40 % of each parameter’s allowed range, such that parameters of vastly different scales can be optimised 
together - e.g. singles dead times in the range [0, 2] and pile up between [0, 600]. As parameter combinations 
are drawn from normal distributions, an initial standard deviation of 40 % naturally covers the entire parameter 
range.

In order to allow the use of complex, potentially thread-unsafe simulations written in different programming 
languages, ACCES launches each simulation as a completely separate OS process, which is either scheduled by 
the kernel to be run locally on a shared-memory machine (e.g. a laptop) or using an external workload manager 
to launch jobs on multi-node clusters; in this study, ACCES automatically sets up and launches batch jobs for 
each parameter combination to be evaluated using GATE. To summarise, the two critical CMA-ES configura-
tion parameters are automatically determined by the computing resources available and the possible parameter 
ranges, such that no manual adjustments of optimiser settings for a given problem is necessary.

Digitizer calibration. We use ACCES in this work to optimise the six free parameters within the digitizer 
of the Forte GATE model described in “GATE model” section. The experiments described in “Count rate experi-
ment” section are used to determine the fitness of parameter combinations. Specifically, a cost function is applied 
which measures the percent difference between the experimentally observed and simulated count rates for the 
total, true, and scatter plus random count-rates across all three head separations and activities. The sum for each 
of these percent differences is denoted as εR , εT , and εSR respectively and computed using Eq. (1). Each type of 
count rate is treated as an objective to optimise and combined into a multi-objective optimisation by multiplying 
them together using Eq. (2). In this case, each type of count rate is treated as equally important; this could be 
changed by adding weights to each percent difference.

To run ACCES, three things must be prescribed: the number of simulations per epoch, the bounds of the 
parameter guesses, and the terminating criterion. The number of simulations per epoch should be large enough 
that sufficient learning can occur and the bounds of parameters must be set so as to keep guesses within a real-
istic range. We have tested ACCES using a simple analytical cost function, the Ackley function, which is widely 
used for testing optimization  algorithms31. This function, described in Eq. (3), has many local minima and one 
global minimum. The number of epochs needed to find the global minimum as well as the total number of cost 
functions evaluated can be studied as a function of the number of solutions per epoch. The results from this 
study are shown in Fig. 6. We used a two-dimensional ( d = 2 ) Ackley function with the parameters a = 20 , 
b = 0.2 and c = 2π.

(1)εR =
∑

100
|Rexp − RGATE|

Rexp

(2)ε = εRεTεSR

Figure 5.  The flow diagram for ACCES is applied to optimising free parameters in a digitizer of a GATE 
detector model.
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The results from this show that larger numbers of solutions optimise the parameters in fewer epochs, but at a 
cost of increasing the number of cost function evaluations. When optimising the Monte Carlo model’s digitizer, 
in order to be computationally efficient, the lowest reasonable number of simulations per epoch should be run. 
The number of simulations is set to 150 so that a wide range of different parameter combinations can be tried 
and the simulations can all be launched in parallel while not affecting the shared usage of the BlueBEAR high-
performance computing (HPC) system. In this work, each set of simulations with a common set of parameter 
solutions is run on a single Intel Icelake core of the BlueBEAR HPC with 8 GB of memory allocated. The maxi-
mum run-time is set to 4 hours and 30 minutes, which is approximately twice as long as the mean run-time 
expected. In the event that a set of simulations takes longer than 4 hours and 30 minutes, the job is terminated 
and the results are not in the solution space for the next generation of parameter solutions.

Additionally, the bounds of the parameter guesses are set to only explore solutions which make physical 
sense, excluding options like a negative dead-time or upper energy level being below the upper energy window. 
The bounds are also limited where needed such that the solution space is finite, yet spanning a range likely to 
contain the optimal value based on an estimate from a previously calibrated  system8. A list of the bounds and 
the initial guesses are shown in Table 2.

The termination criterion for the optimisation is the standard deviation for each parameter reaching 10% of 
the initial standard deviation. This range is chosen such that variation in the parameter values will not signifi-
cantly affect the accuracy of the model. The initial standard deviation is equal to the range of the bounds at the 
beginning of the optimisation and the scaled standard deviation is defined as unity. Once the optimal values are 
identified, they are input to the digitizer model and a coincidence count-rate response is generated to compare 
with the experimental data. These simulations are run at 2 MBq intervals starting at 1 MBq and reaching into the 
upper activities for each experiment. A study of the accuracy of extracted count-rates for the simulation with the 
highest separation and lowest activity (800 mm and 2 MBq) at different numbers of LoRs used to produce projec-
tion images showed that at least 10,000 events are needed to ensure that variance in the extracted count-rates is 
well below 10%. The results of this study are shown in Fig. 7. The lowest count rate that would be expected in an 
experiment is approximately 1 kHz. As a result, we determined that simulations should be run for 10 seconds of 
simulated time at each activity in order to ensure that 10,000 events are captured. As more events are recorded, 
the covariance of the extracted count rates decreases exponentially.

(3)ε(xi) = −a exp
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Figure 6.  (a) The two-dimensional Ackley function with the with evaluation as the third dimension. (b) 
The behaviour of the number of epochs needed to find the global minimum as well the total number of cost 
functions evaluated as function of the number of solutions per epoch.

Table 2.  Digitizer parameter bounds and initial guesses.

Parameter Lower bound Upper bound Initial guess

Singles dead-time (ns) 0 2 1

Coincidence dead-time (ns) 0 2 1

Pile-up (ns) 0 600 300

Lower energy discriminator (keV) 0 360 180

Upper energy discriminator (keV) 640 1200 920

Time resolution (ns) 10 20 15
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In order to contextualise the proposed for calibrating Monte Carlo detector models through evolutionary 
simulation to the existing methods, the ACCES-calibrated model is compared to the existing model described 
in Herald et al., (2021) through the ability to reproduce the real count-rate response of the ADAC Forte. This 
previous model was calibrated by using parameter values for the digitizer which were determined from the 
manufacturer’s characterisation and by manual calibration, taking a considerable amount of time and computa-
tional resources to achieve. The main advantage of using evolutionary simulation is the ability to achieve similar 
or, in this case, better results than manual calibration without spending the time and resources needed to run 
simulations, compare results, and update parameter values through iteration.

Results and discussion
In total, the ACCES optimisation took 56 epochs, 8400 cost function evaluations, and approximately 4 days to 
complete. At the beginning of the ACCES optimisation, the guesses for the six free parameters are broad so as 
to explore the solution space. After this initial period, the guesses begin to converge to their optimal values as 
shown in Fig. 8 where the mean solution values and their standard deviations are plotted for the parameters 

Figure 7.  The covariance of the total, true, and scattered plus random count rates for the 800 mm and 2 MBq 
simulation as a function of the number of LoRs used to generate a projection image.

Figure 8.  The mean parameter value guesses for each of the six free parameters with the standard deviation of 
the guesses are plotted as error bars. After 56 epochs all parameters are below 10% standard deviation and the 
optimisation is completed.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19535  | https://doi.org/10.1038/s41598-022-24022-x

www.nature.com/scientificreports/

over the optimisation. The scaled standard deviations are also shown in Fig. 9 to depict how the uncertainty in 
the optimisation decreases as the optimisation progresses.

Once the optimisation reached 10% uncertainty for each parameter, 0.1 scaled standard deviation, the param-
eters are considered calibrated. The final calibrated values are presented in Table 3. For all parameters except 
for the coincidence dead-time, the optimal solutions are well within their bounds, suggesting an optimal cali-
bration that would not change with different bounds. However, the optimal coincidence dead-time is found to 
be approximately 0 ns. While this could be due to the bounds being ill-suited to the problem, in this case, we 
believe this demonstrates that coincidence dead-time is insignificant to the digitizer model. Further, support 
for this is that the model under-predicts the peak count rates. The opposite would be expected if coincidence 
dead-time was important.

To assess the ability of the ACCES-calibrated digitizer model to replicate the experimental data, a new set of 
simulations is run for each head separation using the optimised values. After the simulations are finished, the 
results were plotted against the experimental data in Fig. 10. Visually, the count-rate response of the GATE model 
matches the general form of the real experiment. To quantify the accuracy, a mean absolute percent difference 
is calculated for each head separation and each type of count rate and presented in Table 4. Additionally, the 
results for the manually calibrated digitizer model are presented in Table 5.

The average mean absolute percent differences for the 250 mm, 525 mm, and 800 mm are 7.55%, 4.30%, and 
5.48%, respectively. The separation which was closest to the phantom experienced the highest error between the 
simulation and experiment. This could be caused by the closer separation amplifying differences between the 
phantom’s position in the simulation versus the experiment. In addition to this, the ACCES-calibrated model 
improves the match between simulation and experiment compared to a manually calibrated digitizer model 
which produced a mean absolute percent difference in the count rate response of 17.78%, 15.42%, and 21.75%. 
This represents ACCES producing a calibration which achieves a nearly three times better agreement with the 
experiments. This is a significant improvement and one accomplished without guiding the optimiser to these 
solutions. Overall, this calibration represents an agreement with the experiment that would be sufficient for the 
GATE model to be used as a predictive tool to generate data representative of real experiments.

To assist users in developing their own optimisations using ACCES, we have included an example within the 
GitHub repository found here. This example uses a simulated count-rate response of the ADAC Forte GATE 
model with prescribed parameter values in the digitizer as the ground truth response, then uses ACCES to 
calibrate two parameters, the singles dead-time and time resolution, to match the ground truth response. Two 
parameters were chosen because this is a more complex optimisation than a single parameter, yet easier to 

Figure 9.  The standard deviation of the parameter value guesses tried by ACCES. A lower standard deviation 
represents lower uncertainty in discovering the optimal parameter values.

Table 3.  Calibrated digitizer parameter values.

Parameter Calibrated value Uncertainty

Singles dead-time (ns) 1070 ± 16.7

Coincidence dead-time (ns) 10 ± 54.7

Pile-up (ns) 498 ± 9.31

Lower energy discriminator (keV) 284 ± 10.1

Upper energy discriminator (keV) 1020 ± 30.2

Time resolution (ns) 17 ± 0.347
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visualise than an optimisation with three or more parameters. The prescribed values for the singles dead-time 
and the time resolution are 1000 ns and 15 ns, respectively. The methodology in this simple example follows the 
same as that described in “Digitizer calibration” section. The results from this optimisation in Fig. 11 show the 
optimal parameter was determined to be 995.016 ns for the singles dead-time and 15.022 ns for the time resolu-
tion, which matches the prescribed parameters.

Conclusions
In this work, we have demonstrated the calibration of a GATE digitizer model using an evolutionary algorithm. 
The model’s accuracy was quantified by a direct comparison of the ability of different parameter value combina-
tions to replicate the count rate response of the detector across a diverse set of experiments. Importantly, the 

Figure 10.  The optimised GATE model count rates are plotted against the experimental data for the (a) 250 
mm experiment, (b) 525 mm experiment, (c) and the 800 mm experiment.

Table 4.  Mean absolute percent differences in the count rate of the ACCES-calibrated digitizer model.

ACCES-calibrated results

 Head separation 250 mm 525 mm 800 mm

Total count-rate 4.76% 1.71% 2.43%

True count-rate 4.55% 2.85% 2.25%

Scatter + random 13.33% 8.33% 11.77%

Average error 7.55% 4.30% 5.48%

Table 5.  Mean absolute percent differences in the count rate of the manually calibrated digitizer model.

Manually calibrated results

 Head separation 250 mm 525 mm 800 mm

Total count-rate 11.50% 4.48% 6.25%

True count-rate 17.86% 15.68% 10.85%

Scatter + random 23.98% 26.10% 48.15%

Average error 17.78% 15.42% 21.75%
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calibration was completed autonomously, needing only the number of simulations desired, the bounds of the 
search parameters, and the user-defined stopping criterion. This represents an advancement which brings simula-
tions closer to reality. By employing the ACCES software available from our GitHub repository to perform this 
calibration, the need for users to perform a calibration through trial-and-error is eliminated. Even though this 
method needs a relatively long time and a large number of computational resources, the ability for ACCES to 
run on a high-performance computing system and periodically save the optimisation state makes this method 
useful and practical for users who have these resources at their disposal. While this workflow was demonstrated 
through the calibration of a specific detector model following the NEMA protocol, this same type of method can 
be applied to other models and also expanded to cover other types of measurements such as spatial resolution 
and sensitivity. Additionally, this method of optimisation can be improved in the future by including a strategy 
for calibrating the structure of the digitizer by including or excluding pulse-processing stages and by adjusting 
parameters which are categorical instead of quantitative, such as the type of dead-time model (paralyzable or 
non-paralyzable) or the policy for recording multi-coincidences.

Data availability
All data generated or analyzed during this study are included in this published article. Additionally, the ACCES 
software used for optimisation and the calibrated GATE model of the ADAC Forte have been made avail-
able through the University of Birmingham Positron Imaging Centre’s GitHub Repository: https:// github. com/ 
uob- posit ron- imagi ng- centre/ ACCES- CoExS iST and https:// github. com/ uob- posit ron- imagi ng- centre/ GATE_ 
Models.
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